
238
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

LETTER

Efficient Algorithm for Sentence Information Content Computing
in Semantic Hierarchical Network

Hao WU†a), Member and Heyan HUANG†b), Nonmember

SUMMARY We previously proposed an unsupervised model using the
inclusion-exclusion principle to compute sentence information content.
Though it can achieve desirable experimental results in sentence semantic
similarity, the computational complexity is more than O(2n). In this paper,
we propose an efficient method to calculate sentence information content,
which employs the thinking of the difference set in hierarchical network.
Impressively, experimental results show that the computational complex-
ity decreases to O(n). We prove the algorithm in the form of theorems.
Performance analysis and experiments are also provided.
key words: information content, sentence IC, inclusion-exclusion princi-
ple, difference set, hierarchical network

1. Introduction

Nowadays semantic textual sentence similarity becomes a
research hotspot [1], [2] in short text related area of natural
language processing (NLP). From the view point of infor-
mation theory, the essence of natural language is the carrier
of information. The amount of information can be calcu-
lated by information content (IC) [3]. IC has been success-
fully applied in word similarity computation [3]–[5]. In sen-
tence similarity computation reaserch, Wu and Huang [6]
proposed a sentence IC computational model utilizes the
inclusion-exclusion principle from combinatorics. To the
best of our knowledge, it’s the first model that can compute
non-overlapping sum IC for a sentence [1], [2], [6]. It is
a fully unsupervised computational model and obtains de-
sirable experimental results on the test set. But the com-
putational complexity is over O(2n) [6] which becomes the
bottleneck for its further applications.

To address the above-mentioned efficient issue, we pro-
pose a new model to compute sentence IC which employs
the thinking of the difference set and makes use of the fea-
tures of hierarchical network. Actually, many combinations
of nodes share the same subsumer (the node subsumes the
other nodes) which respects common IC of nodes. In the
inclusion-exclusion principle model, the same common IC
has been continuously added and subtracted, which causes
the unreasonable waste of computation, but it is difficult to
decide which combinations should be abolished. In order

Manuscript received August 29, 2016.
Manuscript publicized October 18, 2016.
†The authors are with Beijing Engineering Research Center of

High Volume Language Information Processing and Cloud Com-
puting Applications, School of Computer Science, Beijing Institute
of Technology, Beijing, 100081, China.

a) E-mail: wuhao123@bit.edu.cn
b) E-mail: hhy63@bit.edu.cn (Corresponding author)

DOI: 10.1587/transinf.2016EDL8177

to avoid double counting, we add the words into the infor-
mation space one by one and add information gain of the
newly input one each time, which is the idea of the differ-
ence set rather than the inclusion-exclusion principle. The
proof and experimental results demonstrate the consistency
of IC values computing between the two models. The com-
putational complexity decreases dramatically by employing
the new mothod.

The contributions of this work are summarized as fol-
lows: 1) it presents a high-efficiency computational model
by exploiting the thinking of the difference set for comput-
ing sentences IC, 2) it establishes a theoretical system with
lemmas and theorems for sentence IC computing, and 3)
the elaborated algorithms, comparative analysis and experi-
ments about computational complexity are given.

2. Preliminaries

Following the standard argumentation of information the-
ory, Resnik [3] defines information content (IC):

IC (c) = − log P(c), (1)

where P(c) refers to statistical frequency of concept c. The
implementation of P(c) is

P (c) =

∑
w∈words(c) count(w)

N
, (2)

where words (c) is the set of the words contained in concept
c and sub-concepts of c in the hierarchy of semantic net, N is
the sum of frequencies all the words contained in semantic
hierarchical net.

Let c1, · · · , cn be the collection of concepts, we defined
the quantity of common information of n-concepts∗:

commonIC (c1,· · ·, cn)= IC

(
n⋂

i=1
ci

)
= IC

(
m⋃

j=1
c j

)
, (4)

where c j ∈ subsum (c1, · · · , cn), m is the total number of c j.
For physical meaning of ∩ and ∪, see Sect. 3.1 for details.

∗In previous work [6], we define common IC of n-concepts is

commonIC (c1,· · ·, cn)= IC

(
n⋂

i=1
ci

)
= max
c∈subsum(c1 ,··· ,cn)

[− log P(c)], (3)

where, subsum (c1, · · · , cn) is the set of concepts that subsume all
the concepts of c1, · · · , cn. In consideration of accurate calculation
for multiple subsumers of c1, · · · , cn, here, we change it to Eq. (4).

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

LETTER
239

Specially, when n is 1, Eq. (4) becomes IC of one single
concept: commonIC (c1) = IC (c1).

Through the inclusion-exclusion principle [6], the
quantity of total information of n-concepts is

totalIC (c1, · · · , cn) = IC

(
n⋃

i=1
ci

)

=
n∑

k=1
(−1)k−1 ∑

1≤i1<···<ik≤n
commonIC

(
ci1 , · · · , cik

)
.

(5)

For sentence S = {ci|i = 1, 2, . . . , n; n = |S |}, where ci

is the concept of the i-th concept in S , |S | is concept count
of S , the quantity of the information in S is

IC (S) = totalIC (c1, · · · , cn) . (6)

We can see Eqs. (4) and (5) are indirect recursion.
Therefore, computational complexity of precise Eq. (6) must
be higher than previous work using Eqs. (3) and (5).

For more details about Preliminaries section, see pa-
per [3] and [6] for reference.

3. Sentence IC Computing

By employing the idea of the difference set, let ICG(cn) be
IC gained by introducing concept cn to the set of n − 1 con-
cepts and intersectIC (n |n − 1) be the common IC shared
between concept cn and previous n − 1 concepts. Formally,

ICG(cn) = IC(cn) − intersectIC (n |n − 1) (7)

Specially, define intersectIC (1 |0) = 0, and ICG(c1) =
IC(c1). Thus, sentence IC can be defined as

IC(S) =
n∑

i=1
ICG(ci) (8)

The following sections will show how to compute
intersectIC(i|i − 1).

3.1 Basic Concepts and Functions

For convenience in the discussion, we name some concepts
and define some functions:

1) HSN: Hierarchical semantic network is a semantic
knowledge base with hierarchical structure such as Word-
Net [7]. In WordNet, content words are grouped into sets
of cognitive synonyms (synsets), each expressing a distinct
concept (a node in HSN). The most frequently encoded rela-
tion among synsets is the super-subordinate relation (is-a re-
lation). All noun synsets ultimately go up to the root synset
(the concept of entity).

2) SIS: Semantic information space is the space map-
ping of HSN through Eqs. (1) and (4). Concepts (Nodes)
with the super-subordinate relation in HSN are the space
with inclusion relation in SIS. The space of super concept
is subsumed by that of subordinate one. SIS isn’t a tradi-
tional space which uses orthogonality multidimensional to
construct, while it utilizes the inclusion relationship of the

information to represent.
Physical meaning of IC is the space size of concepts

in SIS: the space size of concept c is IC(c), the common
space size of n-concepts is commonIC (c1, · · · , cn), the total
space size of n-concepts is totalIC (c1, · · · , cn) and the in-
tersection space size between concept cn+1 and n-concepts
is intersectIC(n + 1|n).

3) Root(ci) indicates the set of paths, each path consists
of sequence of nodes from ci to the root in HSN. Root(n) is
the short form of Root (c1, · · · , cn). Formally, let S et(p) be
the set of nodes in path p, Root (n) = {pk |∀Root(ci), pk ∈
Root(ci), pt ∈ Root(ci), S et(pk) � S et(pt), i = 1, 2, . . . , n}.
|Root(ci)| means the number of paths in Root(ci).

4) HS N(ci) expresses the set of nodes in any of path in
Root(ci). HS N(n) is the short form of HS N (c1, · · · , cn).
Formally, HS N (n) = {ck |∀HS N(ci), ck ∈ HS N(ci), i =
1, 2, . . . , n}. From is-a relationship among concepts, we
have

totalIC(HS N(ci)) = IC(ci); (9)

totalIC(HS N(n)) = totalIC(c1, · · · , cn). (10)

5) S IS (ci)/S IS (n) denotes the space occupied by the
nodes of HS N(ci)/HS N(n). S IS (n) is also the shortened
form of S IS (c1, · · · , cn). |S IS (ci)| and |S IS (n)| is the size of
the space S IS (ci) and S IS (n) respectively. From the physi-
cal meaning of totalIC, we have

|S IS (ci)| = totalIC(HS N(ci)) > 0; (11)

|S IS (n)| = totalIC(HS N(n)) > 0. (12)

3.2 Method Proving

Suppose Ω is the universal set of all the nodes in HSN, de-
fine Outer(ci) = {ck |∀ck ∈ Ω, ci � HS N(ci)}, Outer(n) =
{ci|∀ci ∈ Ω, ci � HS N(n)}. For Outer(n), we have

Lemma 1 (Only Outer Node Expands Space). If n ∈ N+,
then cn+1 ∈ Outer(n)⇔ |S IS (n + 1)| > |S IS (n)|.
Proof. From the relationship between HSN and SIS, we
know each node in HSN holds a space in SIS. Equa-
tions (9) and (10) show the space owned by subordi-
nate nodes embody the space possessed by super nodes.
From the definition of Outer(ci)/Outer(n), only nodes in
Outer(ci)/Outer(n) are not the super nodes of any node in
HS N(ci)/HS N(n), so only Outer(ci)/Outer(n) provide ad-
ditional space for S IS (ci)/S IS (n) and vice versa. Accord-
ing Eqs. (11) and (12) we can have Lemma 1. �

For the space of S IS (ci)/S IS (n) is already held by
nodes of HS N(ci)/HS N(n), we can easily infer the follow-
ing corollary from Lemma 1:

Corollary. If n ∈ N+, then cn+1 ∈ HS N(n)⇔ |S IS (n+1)| =
|S IS (n)|.

Let Deepest(ps) be the deepest node in HSN from path
set ps. Define Intersect(n + 1|n) = {Deepest({S et(pt) ∧

240
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.1 JANUARY 2017

HS N(n)}), pt ∈ Root(cn+1), t=1, · · · , |Root(cn+1)|}. The node
number of Intersect(n+ 1|n) is |Intersect(n+ 1|n)|. We have

Theorem 1 (Intersected Margin Nodes). If cn+1 ∈ Outer(n),
let |Root(cn+1)| = m, then |Intersect(n + 1|n)| ≤ m and
intersectIC(n + 1|n) = totalIC(Intersect(n + 1|n)).

Proof. Prove |Intersect(n + 1|n)| ≤ m: For cn+1 ∈ Outer(n),
geometrically, we know that m non-overlapping paths of
cn+1 have m intersected points at marginal nodes of HS N(n).
One case that overlaps of paths which begin from cn+1 to
root happen in Outer(n), and they keep overlapping till paths
reached HS N(n), the number of intersected nodes must be
less than m.

Prove intersectIC(n + 1|n) = totalIC(Intersect(n +
1|n)): Define HS N(n + 1|n) = HS N(cn+1) ∧ HS N(n). Let
S IS (n + 1|n) be the space held by nodes in HS N(n + 1|n),
in other words, the space intersected between S IS (cn+1) and
S IS (n); |S IS (n+1|n)| denotes the space size of S IS (n+1|n).
From Eq. (12), |S IS (n + 1|n)| = totalIC(HS N(n + 1|n)).
From physical meaning of intersectIC, intersectIC(n +
1|n) = |S IS (n + 1|n)|.

From the definition of Intersect(n + 1|n), each node in
HS N(n + 1|n) either has subordinate nodes in Intersect(n +
1|n), or is the node in Intersect(n + 1|n). From Eq. (10),
totalIC(HS N(n+ 1|n)) = totalIC(Intersect(n+ 1|n)). Thus,
intersectIC(n + 1|n) = totalIC(Intersect(n + 1|n)). �

From Theorem 1 and Eq. (8), sentence IC is

IC(S)=
n∑

i=1
[IC(ci)−totalIC(Intersect(i|i−1))]. (13)

Specially, when network degenerates to tree structure,
∀cn+1 ∈ Outer(n), |Root(cn+1)| ≡ 1. Thus, |Intersect(n +
1|n)| ≡ 1.

Let S ubordinate(ci) denotes the set of subordinate
nodes of ci in HSN. Define leaf nodes of HS N(n):
Lea f (n) = {ci|∀ci ∈ HS N(n), S ubordinate(ci) ∧ HS N(n) =
∅}:
Lemma 2 (Leaf Nodes Represent Space). If n ∈ N+, then
|S IS (n)| = |S IS (Lea f (n))|.
Proof. From the definition of Lea f (n): Any leaf concept
can’t be subsumed by any other concepts in HS N(n), in-
cluding any other leaf concepts. On the contrary, any non-
leaf concept can be subsumed by at least one other concept
in HS N(n). In other words, only nodes in Lea f (n) don’t
have any subordinate node in HS N(n). The space of subor-
dinate nodes subsumes the space of their super nodes. From
Eqs. (10) and (12), the space size of S IS (n) can be repre-
sented by all leaf nodes of HS N(n). �

Let Lea f (n + 1|n) be leaf nodes of HS N(n + 1|n). For-
mally, Lea f (n + 1|n) = {ci|∀ci ∈ HS N(n + 1|n),HS N(n +
1|n) ∧ S ubordinate(ci) = ∅}. Then we have

Theorem 2. If n ∈ N+, then intersectIC(n + 1|n) =
totalIC(Lea f (n + 1|n)).

Proof. From Lemma 2, |S IS (n + 1|n)| = |S IS (Lea f (n +

Algorithm 1: getTotalIC(S)
Input: S : ∀{c1, c2, · · · }
Output: tIC: Total IC of input S

1 if S is empty then
2 return 0

3 S = {ci |i = 1, 2, . . . , n; n = |S |} ← Lea f (S)
4 Initialize: tIC = 0, Lea f Root(0)← empty root path set
5 for i = 1; i ≤ n; i + + do
6 Intersect(i|i − 1), Lea f Root(i)←

getIntersectNode(Lea f Root(i − 1), ci)
7 ICG = IC(ci) − getTotalIC(Intersect(i|i − 1))
8 tIC+ = ICG

9 return tIC

Algorithm 2: getIntersectNode(ci, Lea f Root(i−1))
Input: ci, Lea f Root(i − 1)
Output: Intersect(i|i − 1), Lea f Root(i)

1 Initialize: Intersect(i|i − 1)← empty concept set;
Lea f Root(i)← Lea f Root(i − 1); get Root(ci) from HSN

2 if Lea f Root(i − 1) is empty then
3 Lea f Root(i)← Root(ci)
4 return Intersect(i|i − 1)

5 foreach rnew ∈ Lea f Root(ci) do
6 iPos← Root position of rnew

7 foreach rorig ∈ Lea f Root(i − 1) do
8 (p, q)← intersected position between (rnew, rorig)
9 if p == 0 then /* ci � Outer(i − 1) */

10 Intersect(i|i − 1)← add ci

11 break outer ForEach loop

12 if q == 0 then
13 Lea f Root(i)← remove rorig

14 if p < iPos then
15 iPos = p

16 Lea f Root(i)← add rnew

17 Intersect(i|i − 1)← add the iPosth concept in rnew

18 return Intersect(i|i − 1), Lea f Root(i)

1|n))|. According to the physical meaning of totalIC,
totalIC(Lea f (n + 1|n)) = |S IS (Lea f (n + 1|n))|. Thus,
intersectIC(n + 1|n) = totalIC(Lea f (n + 1|n)). �

From Theorem 2 and Eq. (8), sentence IC is

IC(S) =
n∑

i=1
[IC(ci) − totalIC(Lea f (i|i − 1))]. (14)

3.3 Algorithms

The elaborate algorithms to compute sentence IC are
showed in Algorithm 1 and 2. Algorithm 1 describes how
to get sentence IC with Eq. (14), where Lea f Root(n) =
{pk |∀ci ∈ Lea f (n), pk ∈ Root(ci)}. Algorithm 2 represents
the way to obtain Intersect(i|i−1) from HS N(i−1) for ∀ci ∈
HSN.

From the definitions of Intersect(n+1|n) and Lea f (n+
1|n), ∀ci ∈ Lea f (n+1|n), ci ∈ Intersect(n+1|n), but it’s pos-
sible: ∃ci ∈ Intersect(n + 1|n), S ubordinate(ci) ∧ HS N(n +
1|n) � ∅, that is, ci � Lea f (n + 1|n). We can acquire
Lea f (i|i − 1) ⊆ Intersect(i|i − 1). Thus, Eq. (14) is the most

LETTER
241

Table 1 The efficiency contrasted between the methods. The first two
columns are the number of noun concept in a sentence pairs and the amount
of this kind of sentence pairs. The 3-5 and 6-8 columns are the contrast of
time consuming (unit: ms) for the two methods with designed complexity.

n pairs O(n ∗ 2n) In-Ex O(2n) O(n2) Fast O(n)
2 909 0.02 0.02 0.02 0.01 0.01 0.01
3 1368 0.08 0.07 0.04 0.04 0.03 0.02
4 1413 0.24 0.17 0.08 0.09 0.04 0.03
5 1486 0.64 0.40 0.16 0.16 0.06 0.04
6 1122 1.60 1.02 0.32 0.25 0.08 0.05
7 866 3.84 2.45 0.64 0.36 0.09 0.06
8 563 8.96 5.77 1.28 0.49 0.11 0.07
9 385 20.48 12.54 2.56 0.64 0.13 0.08

10 194 46.08 28.51 5.12 0.81 0.15 0.09
11 147 102.40 63.46 10.24 1.00 0.18 0.10
12 107 225.28 140.78 20.48 1.21 0.20 0.11
13 63 491.52 312.25 40.96 1.44 0.22 0.12
14 54 1064.96 689.81 81.92 1.69 0.25 0.13
15 34 2293.76 1453.12 163.84 1.96 0.26 0.14
16 29 4915.20 3128.24 327.68 2.25 0.28 0.15
17 16 10485.76 6804.69 655.36 2.56 0.30 0.16
18 9 22282.24 14685.67 1310.72 2.89 0.31 0.17

efficient form of Eq. (13). However, when concepts have
specific features and cannot be removed at will for the fur-
ther modification of algorithms, we should use full set of
Intersect(n + 1|n) instead of Lea f (n + 1|n). In this case,
Step 3 in Algorithm 1 should be deleted and the algorithm
becomes the computation of sentence IC using Eq. (13).

3.4 Complextiy Analysis and Experiments

Searching subsumers between concepts, which consists of
deepest intersected nodes between paths of two nodes in
HSN, is the most time-consuming computing. Let one time
of comparing between two nodes be the minimum compu-
tational unit (O(1)).

The previous method uses Eqs. (3) and (5). Accord-
ing to the Binomial Theorem, the amount of combina-
tions among concepts to find subsumers of them can be de-
duced [6]:

C (n, 1) +C (n, 2) + · · · +C (n, n) = 2n − 1. (15)

where n is the amount of the concepts in the sentence pair,
C (n, 1) is the number of 1-combinations from n-concepts.
Actually, this method is approximate and the real computa-
tional times of precise method are more than [0 ∗ C(n, 1) +
1 ∗ C (n, 2) + · · · + (n − 1) ∗ C (n, n)]. Therefore, the com-
putational complexity of previous method is between O(2n)
and O(n ∗ 2n).

Efficient method employs Eq. (13) or (14). There are
two layers of loops to find intersected nodes between nodes
from Algorithm 1 and 2. The function Lea f (S) at Step 3
in Algorithm 1 can be realized by no more than two layers
of loops based on its definition. Generally, |Intersect(n +
1|n)| ≤ 2 and Step 2 in Algorithm 1 could be deemed as
an ordinary step rather than recursive statement. Hence, the
computational complexity is about O(n2).

We use all dataset of English from [2] to setup our ex-
periments. Because total IC of two sentences are required
in sentence similarity computing, we use each joint of two
sentences as one computing unit which has the max compu-
tational complexity. For convenience in IC computing using

WordNet, only real nouns are employed. The experimental
results show the consistency of IC values from two models.

Table 1 show the efficiency contrasted between the
models. To our surprise, the computational complexity of
efficient algorithm is only O(n) according to the polyno-
mial index from curve fitting of experimental results utiliz-
ing Matlab toolkit. This complexity decrease may be caused
by employing Lea f Root(n) to efficiently represent HS N(n).

4. Conclusion

This work proposes an efficient model to compute sentence
IC by utilizing the thinking of the difference set in hierarchi-
cal network. It solves the waste of computation by employ-
ing the inclusion-exclusion principle. Theoretical system
with lemmas and theorems has been established for support-
ing the correctness of sentence IC computing. Algorithms
based on the theorems are elaborated. The computational
complexity decreases to O(n) from more than O(2n). Effi-
ciency improvement indicates that sentence IC model could
be applied to long texts such as paragraphs or even docu-
ments.

Acknowledgments

The work described in this paper was mainly supported by
State Key Program of National Natural Science Founda-
tion of China under Grant 61132009, National Programs
for Fundamental Research and Development of China (973
Program) under Grant 2013CB329303 and National Natural
Science Foundation of China under Grant 61502259.

References

[1] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-Agirre,
W. Guo, I. Lopez-Gazpio, M. Maritxalar, R. Mihalcea, G. Rigau, L.
Uria, and J. Wiebe, “SemEval-2015 task 2: Semantic textual similar-
ity, English, Spanish and pilot on interpretability,” Proceedings of the
9th International Workshop on Semantic Evaluation (SemEval 2015),
June, 2015.

[2] E. Agirre, C. Banea, D. Cer, M. Diab, A. Gonzalez-Agirre, R.
Mihalcea, G. Rigau, and J. Wiebe, “Semeval-2016 task 1: Seman-
tic textual similarity, monolingual and cross-lingual evaluation,” Pro-
ceedings of SemEval, pp.497–511, 2016.

[3] P. Resnik, “Using information content to evaluate semantic similarity
in a taxonomy,” International Joint Conference on Artificial Intelli-
gence (IJCAI), 1995.

[4] J.J. Jiang and D.W. Conrath, “Semantic similarity based on corpus
statistics and lexical taxonomy,” Proceedings of International Confer-
ence Research on Computational Linguistics (ROCLING X), 1997.

[5] D. Lin, “Using syntactic dependency as local context to resolve word
sense ambiguity,” Proceedings of the 35th Annual Meeting of the As-
sociation for Computational Linguistics and Eighth Conference of the
European Chapter of the Association for Computational Linguistics,
pp.64–71, ACL, 1997.

[6] H. Wu and H. Huang, “Sentence similarity computational model
based on information content,” IEICE Trans. Inf. & Syst., vol.E99-D,
no.6, pp.1645–1652, June 2016.

[7] G.A. Miller, “WordNet: a lexical database for English,” Communica-
tions of the ACM, vol.38, no.11, pp.39–41, 1995.

https://doi.org/10.18653/v1/s15-2045
http://aclweb.org/anthology/S16-1081
http://dl.acm.org/citation.cfm?doid=976909.979626
https://doi.org/10.1587/transinf.2015edp7474
https://doi.org/10.1145/219717.219748

