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Sparse Recovery Using Sparse Sensing Matrix Based Finite Field
Optimization in Network Coding

Ganzorig GANKHUYAG†a), Eungi HONG†b), Nonmembers, and Yoonsik CHOE†c), Member

SUMMARY Network coding (NC) is considered a new paradigm for
distributed networks. However, NC has an all-or-nothing property. In this
paper, we propose a sparse recovery approach using sparse sensing matrix
to solve the NC all-or-nothing problem over a finite field. The effectiveness
of the proposed approach is evaluated based on a sensor network.
key words: network coding, compressive sensing, sparse matrices, all-or-
nothing property

1. Introduction

In contrast to simple forwarding of data packets, network
coding (NC) provides a means for intermediate nodes to
combine new data with the forwarded data packets and
thus improve throughput of the network system [1]. Such
throughput improvement has been proven to reach the max-
flow capacity of a network, and this benefit, together with
the efficiency and scalability of NC, makes the method use-
ful in many situations, particularly for distributed networks
such as sensor networks and ad hoc networks. During the
last decade, there have been many efforts to improve cod-
ing gain, achieve maximum network capacity, and increase
the throughput and robustness when sufficient packets are
received for perfect decoding. However, the all-or-nothing
problem has not been well studied. In the all-or-nothing
problem, the client node cannot decode any data from the
received packets unless it receives at least the same number
of coded packets as the original number of packets.

Some approaches to resolve the all-or-nothing prob-
lem have been proposed. An approximate decoding algo-
rithm for sensor networks where the received packet size is
less than that of the original packet has been proposed [2].
This algorithm decodes the correlated source data using ad-
ditional information, such as similarity information of the
original data. In addition, a rank-metric code with an NC
technique for error correction has been proposed [3]. With
this technique, source packets can be decoded if the number
of lost packets is less than the minimum distance provided
by the rank-metric code. However, previous approaches in-
crease the packet size and complexity of intermediate nodes.
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In contrast, other approaches to overcome the all-or-
nothing problem by combining NC and a compressive sens-
ing method have been proposed. Compressive sensing is a
powerful method that can acquire and reconstruct a com-
pressible signal by finding solutions for an undetermined
system. There are two conditions for successful recovery,
i.e., signal sparsity in some domain and a measurement ma-
trix to satisfy the recovery condition for compressive sens-
ing [4]. A combination of NC and compressive sensing has
been proposed [5]. In this approach, the NC transfer matri-
ces are generated with Bernoulli distribution, and correlated
sensor network data are processed as real numbers with fi-
nite precision. Similarly, in another study, the original data
dimensional space is reduced via random projection, and the
nodes execute NC over a real field [6]. However, these com-
bined approaches solve the all-or-nothing problem over a
real field. To the best of our knowledge, if NC is performed
in a real field instead of a finite field, the payload size may
be extended because of the combining operation. In this
paper, we propose a framework for NC based on a compres-
sive sensing technique in the finite field that can avoid the
all-or-nothing problem. At intermediate nodes, NC is per-
formed using sparse network transfer matrices that satisfy
the compressive sensing recovery condition. When packet
loss occurs at the client side, the correlated data is recov-
ered using a compressive sensing recovery algorithm in the
finite field with sparse network transfer matrix.

The remainder of this paper is organized as follows. In
Sect. 2, the proposed system design with correlated source
data, the encoding scheme, and the compressive sensing
based recovery algorithm are presented. In Sect. 3, we eval-
uate the performance of the proposed approach in an illus-
trative sensor network scenario. Conclusions are presented
in Sect. 4.

2. Proposed Design

2.1 Random Linear Network Code

In our network system, sources, intermediate nodes, and
clients are distributed over an ad hoc network. Let us as-
sume a data vector un(∈ R) is genererated by N discrete
sources, where un for 1 ≤ n ≤ N. Here, all neighboring data
represent the same event or sequence of events; thus, the
data are highly and spatially correlated, i.e., in the neighbor-
ing source data, un is k-sparse in a well-known transforma-
tion domain Ψ (i.e., wavelet and discrete cosine transform
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(DCT)), such that

sn = Ψun, (1)

where sn is the k-sparse vector of un, the number of non-zero
elements in sn is k � N. The measured vector of sn can
be ordered in magnitude. The best k-sparse approximation
keeps the k-largest coefficients and remaining as zero [5]. In
practice, k-sparse approximation is a useful method to make
k-sparse signal; however, it generates an approximation er-
ror. The transform domain matrix ΨN×N = {ψ1, . . . , ψN} is a
unitary matrix ΨΨT = I, i.e., un = Ψ

T sn. We assume that
the transform domain matrixΨ is known by the intermediate
node and client.

Before the data are combined in intermediate nodes,
conversion of the source data from real field (R) to finite
field (F) is necessary, each sn is discretized and mapped into
an element in F. The quantization function Q[.] transforms
the source data to F with size of 2p. Thus, the field conver-
sion is based on the quantization and dequantization func-
tion [4], which is expressed as:
⎧⎪⎪⎨⎪⎪⎩
R→ F, x(i) = Q

[
s(i)
]
, i = 1, . . . , w

F→ R, s(i) = DQ
[
x(i)
]
, i = 1, . . . , w

, (2)

where w is element length of xn and sn, x(i) is the vector
value in the finite field of s(i), mapped by Q[.].

After the field conversation, a random linear network
code (RLNC) is processed in the intermediate node. The
packet generated from the RLNC can be expressed as

y = C∗x, (3)

where y is a linear combination of x and network transform
matrix C in the finite field, and ∗ denotes the matrix multipli-
cation in the finite field, i.e., y is a random projection vector
of x by C. We assume that the network transform matrix
C has the following properties. The sparse network transfer
matrix satisfies two different properties: a non-singularity
for RLNC decoding and restricted isometry property for
compressive sensing recovery. Each element of ci j in the
sparse network transform matrix is considered an i.i.d. ran-
dom variable with an associated probability mass function.

P(ci j = k) =

⎧⎪⎪⎨⎪⎪⎩
1 − δ, k = 0

δ/2p − 1, k ∈ {1, 2, . . . , 2p − 1}. (4)

Here, δ is the sparsity factor. If δ is low, then the probability
of entry in C is close to zero. The sparsity factor δ is influ-
ences the complexity of intermediate nodes. In fact, in the
experimental testbed, random linear NC with a sparse net-
work matrix has been applied in order to minimize the en-
coding complexity in intermediate nodes [7]. Besides, suc-
cess of the random linear network decoding is directly re-
lated to non-singularity of the network transfer matrix. In
addition, random linear NC is directly related to the nonsin-
gularity of the network transfer matrix. A previous study
demonstrated that for a given sparsity factor, the probabil-
ity of having a nonsingular transfer matrix is high when the

field size is sufficiently large [8]. The sparsity factor is di-
rectly related to the effectiveness of the proposed approxi-
mate decoding algorithm. In our error prone network model,
we assume that if ε packet loss occurs and l is the number of
intermediate node, the client obtains a Cm×n network trans-
fer matrix, where m = l − ε, m is determined by considering
packet loss under given network conditions. The network
transform matrix C, also referred to as a sensing matrix, en-
sures compressive sensing sparse recovery. Sufficient condi-
tions for a sparse recovery solution depend on the restricted
isometry property (RIP) [4]. Sufficient conditions are im-
portant in the construction of sensing matrices. The RLNC
is generated considering a Cm×n sparse sensing matrix. To
guarantee efficient recovery of the k-sparse signal such that
sensing matrix C satisfies the RIP [4]. However, sparse ran-
dom matrices cannot satisfy the RIP property. However, a
sparse sensing matrix provides a different form of this prop-
erty, i.e., RIP(p), which is expressed as

(1 − δk)‖x‖p ≤ ‖C‖p ≤ (1+δk)‖x‖p, (5)

where δk is an isometry constant of matrix C, which must
not be too far from zero, and p is equal to 1 (or very
close) [9]. In this paper, unlike the compressive sensing ap-
proach where random projection is prevented when packet
loss occurs in the network, we want approximate recovery
of the data rather than no recovery.

2.2 RLNC Recovery

On the client side, l linearly independent symbols are re-
ceived, and recovering the source data is attempted.
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)
...
y(l)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= [c1 · · · cn] ∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)
...

x(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Here, cn is the column vectors of Cl×n network transform
matrix. If the rank of network transform matrix C is equal
to N (i.e., l = N full rank), then x is uniquely determined as

x̂ = C−1y, (7)

where C−1 is the inverse of the network transform matrix
C, which can be obtained by a common approach, such as
Gaussian elimination over a finite field. However, if the size
of total received symbols is less than original signal, l <
N (i.e., rank deficient), then x has no unique solution and
may have infinite solution. Thus, in order to solve the rank
deficiency problem, we rewrite the received rank deficient
matrix (6) as follows:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(1)
...

y(m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 · · · c1n
...

. . .
...

cm1 · · · cmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∗
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)
...

x(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where ym is the random projection of xn and Cm×n. Our net-
work transfer matrix fulfills the RIP(p) condition, and the
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Algorithm 1 Recovery Algorithm.
Initialization: received symbol y, network transfer matrix C,
if rank(C) = N then

x̂ = C−1y.
else

x̂ = argmin ‖x‖0 sub ject to Cx = y. //Sparse recovery
end if

source data of x are k-sparse in Ψ domain. Thus, we rede-
fine the rank deficiency problem into compressive sensing
recovery theory. e.g., if rank(C) = l and l < n, we solve
this problem using a sparse recovery algorithm. After re-
covering the x value with the recovery algorithm, the value
s of the original data can be obtained by (1). An example of
recovery algorithm is given in Algorithm 1.

2.3 Sparse Recovery Approach

For the sparse recovery algorithm, we redefine the rank de-
ficiency problem. The signal x represents a vector of length
n with a k-sparse signal over the finite field. And y is error
occurred data with the vector length is equal to m (m � n),
that linear combination by x and Cm×n matrix over the finite
field. To recover x, we must solve the minimization prob-
lem, defined as

x̂ = argmin ‖x‖0 sub ject to Cx = y, (9)

where x ∈ Fn and C ∈ Fm×n.
In standard compressive sensing theory, operations are

performed over R. In addition, operations are processed
in real field, and this minimization problem is non-convex
and considered NP-hard. Thus, a standard relaxation ap-
proach used in compressive sensing is to replace l0 norm by
l1 norm. There are many algorithms in the real field to solve
this optimization problem (i.e., lasso, basis pursuit, and or-
thogonal matching pursuit); however, finite alphabet opti-
mization problems are more complex, comparing with their
real-valued parts. For example, although it is difficult to find
the logarithm inversion over a finite field, the same is easy
with real values. Some research into solving the optimiza-
tion problem has been conducted in the finite field. The first
paper of compressive sensing over the finite field introduces
the theoretical result of error exponent outcome [10]. The
probability of existence of a signal sparser than the input sig-
nal that matches the measurements using random finite field
sensing matrices was calculated. A greedy finite field algo-
rithm that works with a sparse binary sensing matrix over the
finite field has been developed [11]. They showed a compar-
ison between real and finite field CS recovery performance
for both generated data and sparse gray scale images. Pre-
vious studies are primarily theoretical and were performed
in an ideal environment to determine the possibilities offered
by compressive sensing over finite fields with sparse sensing
matrices. We employ the ideal l0 norm (equal to the Ham-
ming distance) to solve (9), which is a well-known greedy
algorithm of orthogonal matching pursuit (OMP) [12].

At step i ≥ 1, the optimal index J is selected. The

Algorithm 2 Finite Field OMP.
Initialization: r(0) = y
while (i ≤ k) do
J = argmin j

∥∥∥αc j − ri
∥∥∥

0
x̂ = C+J y
ri+1 = y −CJ x̂
i = i + 1
end while

Fig. 1 Example of sensor network

classic OMP over real field selects columns that mini-
mizing the distance J = argmin j

∥∥∥αc j − ri
∥∥∥

2
where α =

ric j/
∥∥∥c j

∥∥∥
2

[12]. Nevertheless, l2 norm is undefined over a
finite field, where Hamming distance can be used. The dis-
tance between columns and residual is calculated as J =
argmin j

∥∥∥αc j − ri
∥∥∥

0
, where α is the minimum value that

J when αc j − ri = 0. Thus, α is every feasible value
of ri/unique(C) over the finite field, where unique(C) is
non-redundant value of matrices C. After find the near-
est columns of C to ri, x̂ = C+J y is calculated to estimate
x. Here C+J is not square matrix, and we use the pseudo-
inverse. The full algorithm of the finite field OMP is given
in Algorithm 2.

3. Evaluation and Simulation

Here, we give an example of a sensor network that captures
a source signal from another location. In this example, sen-
sors are connected via wireless links, and the sensors trans-
mit RLNC encoded data. Furthermore, sensors combine
data using RLNC, wherein each sensor measures its own
data and receives data from neighboring sensors. In this
example, there are 53 sensors that measure the amplitude
of a seismic signal at another location. An example of the
distributed sensors is shown in Fig. 1. We assume that the
neighboring sensor set is constructed of three sensors based
on their location. Here, s1, s2, and s3 are the measured am-
plitude of seismic data from sensors 1, 2, and 3, respectively.
The measured signals are time-shifted and energy scaled by
Gaussian distribution (i.e., s1 − s2 N(8, 0)). The correlation
of the signals increases as sensors get close to the neigh-
boring sensors. Figure 2 shows the seismic signal measured
by sensor 1. Each sensor captures a signal that processes a
series of sampled values in a time window of size w (win-
dow size w = 32), and the size of finite field is 210 (i.e.,
2p). Figure 3 shows the decoded data processed by the pro-
posed algorithm, where packet loss ε, where 30% of total
packet. The sparsity factor of network transfer matrix is 0.2
and the DCT transform matrix is used to select k-sparse sig-
nal. Since the k-sparse signal selected from DCT domain
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Fig. 2 Measured original seismic signal

Fig. 3 Decoded seismic signal based on the proposed algorithm

Table 1 Average MSE for finite field OMP and classic OMP

ε Finite Field OMP Classic OMP
10% 0.0 4.558e-28
20% 0.0 5.366e-28
30% 0.0 6.999e-28

Table 2 Simulation result in NMSE (ε = 30%).

Sensor 1 Sensor 2 Sensor 3
Approximate decoding 0.846 0.230 0.216
Proposed approach 0.010 0.005 0.015

is based on the assumption of high correlation between the
neighboring sensors; thus, the recovered data of sensor 1
(Figs. 2 and 3) are very similar. However, there is a discon-
tinuity in the recovered signal because of the k-sparse ap-
proximation process, i.e., approximation error. This discon-
tinuity can be avoided if we select an appropriate k-sparse
approximation method or the signal is sufficiently sparse in
some domain.

The performance of our finite field OMP algorithm and
the classic OMP algorithm [12] is compared over a real field
when applied to the measured data from sensor 1, sensor 2,
and sensor 3, where w = 32. The sensor’s total length in the
same period is n (i.e., n = 3 × w) and has a sparsity k/n of
approximately 14%. The measurement matrices of Cm×n are
sparse matrix, where m = n − ε and ε is set to 10%, 20%,
and 30% of total signal n. Table 1 shows the average mean
square error (MSE) of the reconstructed and original signal.
The results confirm that the finite field OMP can recover the
signal at a similar performance level compared to the classic
OMP over a real field.

We compare the proposed method to an approximate
decoding approach [2] because the approximate decoding

approach uses similarity data of the sources to solve an un-
determined system. For fair comparison, we set the finite
field size to 25, because in [2], this setting yields the best
results when the source data are similar. Table 2 shows the
normalized the mean square error (NMSE) of the proposed
algorithm and the approximate decoding approach. The pro-
posed algorithm outperforms the previous method. There-
fore, we conclude that the proposed method is an effective
solution for solving the all-or-nothing problem.

4. Conclusion

We have proposed a new framework for sparse recovery over
a finite field with sparse random network transfer matrices
that can overcome the all-or-nothing problem in NC. The
sparse network transfer matrices are used for random linear
NC and satisfy the RIP(p) property of the compressive sens-
ing recovery condition. Simulation results demonstrate that
the proposed approach can achieve better performance than
previous methods. In the future, a theoretical analysis of the
sparse network transfer matrices will be performed.
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