
1368
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

LETTER

Inferring Phylogenetic Network of Malware Families Based on
Splits Graph

Jing LIU†a), Student Member, Yuan WANG†, Pei Dai XIE†, and Yong Jun WANG†, Nonmembers

SUMMARY Malware phylogeny refers to inferring the evolutionary
relationships among instances of a family. It plays an important role in
malware forensics. Previous works mainly focused on tree-based model.
However, trees cannot represent reticulate events, such as inheriting code
fragments from different parents, which are common in variants genera-
tion. Therefore, phylogenetic networks as a more accurate and general
model have been put forward. In this paper, we propose a novel malware
phylogenetic network construction method based on splits graph, taking
advantage of the one-to-one correspondence between reticulate events and
netted components in splits graph. We evaluate our algorithm on three mal-
ware families and two benign families whose ground truth are known and
compare with competing algorithms. Experiments demonstrate that our
method achieves a higher mean accuracy of 64.8%.
key words: malware phylogeny, splits graph, phylogenetic networks

1. Introduction

Malware, short for malicious software, is a pervasive prob-
lem of network security. The volume of malware is growing
at an exponential pace, it brings severe challenges to secu-
rity vendors. However, the majority of new incoming in-
stances are tweaked variants of previously encountered mal-
ware. They share the same functionality and exhibit charac-
teristics of families.

Phylogeny model inference of malware aims at reveal-
ing the evolutionary relationships among families. It is not
only helpful to malware classification, but also beneficial to
forecast the evolution trend of families and thwart variations
in advance. Given a collection of malware instances, phy-
logeny inference is different from generating a dendrogram
based on similarity metric. It focuses on determining the
temporal ordering among instances, the ancestor-descendent
relationships between them. Besides, malware samples are
usually captured in binary form with limited information,
which makes phylogeny construction more challenging.

Previous researches of malware phylogeny inference
mainly focused on tree-based model [1]–[6]. Karim et al. [1]
used the UPGMA algorithm to generate phylogeny trees.
Gupta et al. [6] proposed graph pruning techniques to es-
tablish phylogeny trees of malcode based on temporal infor-
mations. Seideman et al. [2] built phylogeny trees by com-
puting the minimal spanning tree based on distance met-
ric. However, phylogeny trees are not suitable to describe

Manuscript received November 29, 2016.
Manuscript revised February 21, 2017.
Manuscript publicized March 22, 2017.
†The authors are with the College of Computer, National Uni-

versity of Defense Technology, Changsha, Hunan, China.
a) E-mail: liujing nudt@nudt.edu.cn

DOI: 10.1587/transinf.2016EDL8230

Fig. 1 An example of reticulation

reticulate events, as Fig. 1 shows. If the ground truth is
Fig. 1 (b) , instance ‘e’ inherits code fragments from instance
‘a’ and instance ‘b’, there exists a reticulation in phyloge-
netic. Whereas phylogeny trees are either Fig. 1 (a) or (c),
they cannot display reticulate edges in tree representation.

Phylogenetic networks are more general to model evo-
lutionary relationships. More recently, several researches
have begun using directed acyclic graphs (DAGs) to display
malware evolutions [7]–[9]. Jang et al. [7] used the mini-
mal spanning tree to construct phylogeny DAGs of malware.
And it added reticulate edges by preprocessing to find nodes
with multiple parents. Andreson et al. [8], [9] employed the
Bayesian network discovery algorithm to construct DAGs
via statistical inference of conditional dependencies. While
it demanded an informative prior about the partial ordering
of instances.

In this paper, we propose a novel malware phylogenetic
networks construction algorithm based on splits graph, with-
out any prior ordering or post-processing, which refrains
us from time consuming manual work and is more suit-
able for automatic analysis. It is based on the theorem that
there exists an one-to-one correspondence between reticu-
lations in network N and netted components of the splits
graph S G(N). Therefore, through generating splits graph
S G(T1,T2) from two phylogeny trees, if netted components
occur in S G(T1,T2), then we apply splits decomposition to
construct phylogenetic networks with reticulations. Other-
wise, any of the trees is the representation of family phy-
logeny. The number of trees can be easily expanded.

We conduct experiments on three malware families and
two benign families whose ground truth are known and com-
pare with MKLGC [8] and BNPrior [9]. Results demon-
strate that our method performs better in both overall accu-
racy and precision. It achieves a mean accuracy of 64.8%.

The rest of the paper is organized as follows. Section 2
describes the proposed method. Experiments are demon-
strated in Sect. 3. Conclusions are given in Sect. 4.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

LETTER
1369

2. Proposed Method

Given a collection of variants of a malware family, the
phylogenetic network is built on a directed acyclic graph
G = (V, E). Each node v in the graph denotes an instance of
malware, with one root node without incoming edges. And
an edge e = (u, w) denotes u is an ancestor of w and w is a
descendant of u. Nodes with two or more than two incoming
edges are called “reticulate node”.

In this section, we describe our algorithm of construct-
ing phylogenetic networks in detail. We first generate two
phylogeny trees T1, T2 by a heuristic algorithm. T1 is built
from the graph edit distance of function-call graphs ex-
tracted from programs. And T2 is built from Euclidean dis-
tance of instructions frequency. After that, we construct the
splits graph S G(T1,T2) of T1 and T2. According to the the-
orem [10], if there exists netted components in S G(T1,T2),
then we employ splits decomposition to find reticulations
and construct final networks.

2.1 Phylogeny Trees Construction

In this work, we consider a heuristic algorithm to infer di-
rected phylogeny trees. The trees are constructed from two
different distance matrixes calculated between instances of
a malware family. One of the metrics is the graph edit dis-
tance of function call graphs, the other is Euclidean distance
of the frequency of instruction mnemonics.

2.1.1 Function Call Graph

Function call graph G = (V, E) is a directed graph extracted
from disassembly code of programs. It is a high-level struc-
ture feature and represents the functionality of a program.
Each vertex in the graph represents a function and each
edge represents a caller-callee relationship between func-
tions. Function call graph has the advantage of covering
all possible paths a program has. Moreover, it is resilient
to low-level obfuscations, such as basic block reordering or
register reassignment.

In our work, we use IDA Pro to acquire function call
graphs of instances, which has achieved reasonable accu-
racy. There are two kinds of functions: local functions and
external functions. Local functions are those written by pro-
gram authors and external functions are statically linked or
dynamically imported. We take control flow graphs as labels
of local functions and function names for external functions.
Then we use Hungarian algorithm [11] to calculate the graph
edit distance between each pair of instances.

2.1.2 Instruction Frequency

Instruction mnemonics feature is a low-level semantic rep-
resentation extracted from disassembly binary. Owning to
its meaningful semantic characteristics and easy for gener-
ating, it is widely used in malware analysis. In our work, we

Fig. 2 Splits graph construction

utilize instruction mnemonics without operands. First, we
use IDA Pro with python plugin to disassemble instructions
of instances. Then we calculate the frequency of instruc-
tions, forming a feature vector fi = (f1, f2, . . . , fn), each fi
denotes frequency of a specific instruction. After that, we
utilize Euclidean distance to measure the distance between
two programs.

di j =

√√
n∑

k=1

(
fik − f jk

S k
)2 (1)

where, n denotes the number of instruction kinds comprised
in a given malware family, S k denotes the frequency vari-
ance of each instruction.

Getting the two distance matrixes, we use a heuristic
algorithm to infer directed phylogeny trees. Let X denotes
the instances set, we maintain an active nodes set S a, which
consists of all nodes in current tree T ′. We first pick the
real root node from ground truth being the first active node.
At each step, we add a node x from X − S a that satisfy
{ dmin (y, x) | y ∈ S a, x ∈ (X − S a) } to T ′, and add a di-
rected edge (y, x). Until S a = X, the process stops.

2.2 Splits Graph Construction

For a given set X, a split S = A1
A2

is a partition of X into two
non-empty and complementary sets and A1 = X − A2. A
split is trivial if A1 or A2 has only one element. For a tree
T , each edge of T defines a split. For example in Fig. 2, the
split of edge e1 in T1 is S T1 (e1) = {a,b,c}{e,d} . The splits set of T1

is Σ(T1), contains five trivial splits: { {a}
{b,c,d,e} ,

{b}
{a,c,d,e} ,

{c}
{a,b,d,e} ,

{d}
{a,b,c,e} ,

{e}
{a,b,c,d} }, and two non-trivial splits: { {a,b}{c,d,e} ,

{d,e}
{a,b,c} }.

Splits graph S G(
∑

) is representation of a set of splits.
For the two phylogeny trees T1 and T2, let Σ(T1) and Σ(T2)
denote the splits of trees, X denotes the collection of in-
stances, Σ denotes the union of Σ(T1) and Σ(T2), S t denotes
trivial splits and S n denotes non-trivial splits of Σ. Then
S G(T1,T2) is constructed as follows:

1. Separate Σ into S t and S n;
2. For each split S i =

xi

X−xi
in S t, add a node xi and an

1370
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

edge ei pointed to xi in the graph, and create a star graph, as
shown in Fig. 2 (i);

3. For each split S j =
{xp,...,xq}

X−{xp,...,xq} belongs to S n, find
the shortest path P = (xp, ep, . . . , eq, xq) from xp to xq in
graph. For each node x j along the path except for xp and xq,
add a new corresponding node x′j and a new edge {x j, x′j}.
For each edge e j along the path except for ep and eq, add a
new corresponding edge e′j. Figure 2 (ii) shows the graph of

adding split {a,b}{c,e,d} , (iii) shows the graph of adding split {d,e}{a,b,c} ,
and (iv) shows the final S G(T1,T2) after adding split {c,e}

{a,b,d} .
Two splits S 1 =

A1
A2

and S 2 =
B1
B2

are called compatible
if one of the four intersections A1

⋂
B1, A1

⋂
B2, A2

⋂
B1

or A2
⋂

B2 is empty. Given a splits set
∑

, compatible re-
lationships of each pair of splits among

∑
are described

by conflict graph (CG). Each node i in CG denotes a split
S i, two nodes i and j are connected in the condition that
S i and S j are incompatible. Connected components of CG
have one-to-one correspondence with netted componets in
splits graph [10]. Therefore, we can find splits contained in
each netted component by looking through the correspond-
ing connected component in CG. For example,

∑
(T1,T2)

has only one edge ({d,e}{a,b,c} ,
{c,e}
{a,b,d}) in CG, and the correspond-

ing netted component is shown in Fig. 2 (iv).
If there exists netted components in S G(T1,T2), as

shown in Fig. 2 (iv), then for each netted component, we di-
vide X′ into two subsets R and B, where X′ denotes nodes
contained in the component, R denotes the reticulate nodes
and B denotes the backbone nodes, which B = X′ − R. We
consider all possible subsets R of X′, from size 1 to |X|. For
each choice of R, if the splits of B after eliminating splits of
R in the netted component correspond to a tree, the process
stops. Then we modify the netted component into represen-
tation with backbone tree and reticulate nodes. Finally, the
phylogenetic network is constructed.

3. Experiments

To evaluate the algorithm we proposed, we conduct exper-
iments on five families, of which true phylogenetic graphs
are described in [12]. Three of the families are malware:
Net-Worm.Win32.Mytob, Net-Worm.Win32.Koobface and
Email-Worm.Win32.Bagle, whose evolutions are depicted
by several experts. And the dataset is acquired from VX
Heavens [13]. The other two families are benign programs:
NetworkMiner [14] and Mineserver [15]. They are gathered
on open-source repositories.

We utilize three metrics to quantify our results, the
precision, recall and F-norm. F-norm is an overall metric
to measure the error on identified edges. They are defined
as follows:

precision =
true edges in graph

the total number o f edges in graph

recall =
true edges in graph

the total number o f edges in ground truth

Table 1 Results comparison

Family Method F-norm Precision Recall

Mytob

MPNoSG 2.8284 0.5833 0.5499

BNPrior 6.2450 0.2059 0.3684

BN 7.0000 0.0833 0.1579

MKLGC 7.9373 0.1563 0.5263

Koobface

MPNoSG 3.4641 0.6251 0.6783

BNPrior 4.5826 0.4516 0.7778

BN 5.8310 0.1923 0.2778

MKLGC 5.2915 0.5812 0.5000

Bagle

MPNoSG 3.0000 0.7143 0.6667

BNPrior 4.6904 0.5263 0.8333

BN 7.4162 0.1026 0.1667

MKLGC 5.7446 0.2000 0.3333

Mineserver

MPNoSG 2.8284 0.7692 0.6667

BNPrior 2.8284 0.6818 0.9375

BN 5.3852 0.0667 0.0625

MKLGC 4.0000 0.7222 0.8125

NetworkMiner

MPNoSG 4.2426 0.55 0.55

BNPrior 4.3589 0.5128 1.0000

BN 6.1644 0.2632 0.5000

MKLGC 4.5826 0.4857 0.8500

||A − B||F−norm =

√∑
i

∑
j

(Ai j − Bi j)2

where, true edges denote correctly identified edges, A, B
denote adjacency matrices of the phylogeny graph we con-
structed and the ground truth graph. Each element Ai j (or
Bi j) is either 0 or 1, it denotes whether there exists a directed
edge from instance i to instance j.

We compare our method with MKLGC proposed in [8],
BN and BNPrior proposed in [9], which are all the most re-
cent researches of malware phylogeny networks reconstruc-
tions. Table 1 shows the results. As the table in bold demon-
strates, our algorithm outperforms other algorithms in F-
norm, the overall accuracy of all families. Besides, it has
the best precision of all families. For the lower recall than
BNPrior, we analysed the reason. Edge directions in the
phylogeny networks of malware families are difficult to in-
fer. Parts of wrong identified edges are because of the wrong
directions. Therefore, BNPrior with prior information about
correct edge directions acquired from human experts attains
better recall than ours. However, BNPrior has a number of
additional wrong edges, therefore, the precision and overall
accuracy of BNPrior are lower than ours.

We found that the distance metrics we used are both
symmetric. While in phylogeny tree construction, one mis-
take may cause a series opposite direction edges because of
symmetric distance. Figure 3 shows the phylogenetic graphs
of NetworkMiner. Because d(1.3, 1.4) = d(1.4, 1.3), so the

LETTER
1371

Fig. 3 The phylogenetic graphs of NetworkMiner

Fig. 4 The phylogenetic graphs of mineserver

wrong edge (0.76, 1.4) will add edge (1.4, 1.3) with oppo-
site direction sequentially. If the distance is asymmetric,
d(1.3, 1.4) < d(1.4, 1.3) will avoid this mistake, that can ef-
fectively increase the recall. In next work, we will take this
problem into account.

Figure 4 shows the phylogenetic graphs of Mineserver.
As the figure shows, we recovered majority edges. While,
reticulate edges (20c7, 7120) and (0e29, 05e8) are not rec-
ognized. We analysed the two trees of Mineserver, we
found that the two trees have the same topology of tuple
(20c7, 306b, 7120) and tuple (6bf3, 0e29, 05e8). There are
no incompatible splits of two trees in these two tuples. Both
function call graph and instruction frequency are static fea-
tures, through adding dynamic feature trees may improve
the performance.

4. Conclusion

In this paper, we propose a novel malware phylogenetic net-
work reconstruction method, taking advantage of the one-
to-one correspondence between reticulate events and netted
components in splits graph. Our method does not require
any prior knowledge about the ordering of instances, which
avoids time consuming manual works and makes it more
suitable for automatic analysis. Moreover, results demon-
strate that our method outperforms other algorithms in both
overall accuracy and precision.

Acknowledgments

This work is supported by NSFC (No.61472439, No.
61379052, No.61271252), National Natural Science Foun-
dation of China under Grant.

References

[1] M.E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny generation using permutations of code,” Journal in Com-
puter Virology, vol.1, no.1-2, pp.13–23, 2005.

[2] J.D. Seideman, B. Khan, and A.C. Vargas, “Malware biodiversity
using static analysis,” International Conference on Future Network
Systems and Security, pp.139–155, Springer, 2015.

[3] J.D. Seideman, B. Khan, and A.C. Vargas, “Identifying malware
genera using the Jensen-Shannon distance between system call
traces,” 2014 9th International Conference on Malicious and Un-
wanted Software: The Americas (MALWARE), pp.1–7, IEEE,
2014.

[4] A. Pfeffer, C. Call, J. Chamberlain, L. Kellogg, J. Ouellette, T.
Patten, G. Zacharias, A. Lakhotia, S. Golconda, J. Bay, R. Hall, and
D. Scofield, “Malware analysis and attribution using genetic infor-
mation,” 2012 7th International Conference on Malicious and Un-
wanted Software (MALWARE), pp.39–45, IEEE, 2012.

[5] M.E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny using maximal pi-patterns,” EICAR 2005 Conference:
Best Paper Proceedings, pp.156–174, 2005.

[6] A. Gupta, P. Kuppili, A. Akella, and P. Barford, “An empirical
study of malware evolution,” 2009 First International Communica-
tion Systems and Networks and Workshops, pp.1–10, IEEE, 2009.

[7] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lin-
eage inference,” Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13), pp.81–96, 2013.

[8] B. Anderson, T. Lane, and C. Hash, “Malware phylogenetics based
on the multiview graphical lasso,” International Symposium on In-
telligent Data Analysis, pp.1–12, Springer, 2014.

[9] D. Oyen, B. Anderson, and C. Anderson-Cook, “Bayesian networks
with prior knowledge for malware phylogenetics,” Workshops at the
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[10] G. Dan, V. Bansal, V. Bafna, and Y.S. Song, “A decomposition the-
ory for phylogenetic networks and incompatible characters,” Journal
of Computational Biology, vol.14, no.10, pp.1247–1272, 2007.

[11] H.W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics, vol.52, no.1, p.7–21, 2005.

[12] B. Anderson, “Integrating multiple data views for improved malware
analysis,” 2014.

[13] http://vxheaven.org/
[14] https://sourceforge.net/projects/networkminer/
[15] https://github.com/fador/mineserver

http://dx.doi.org/10.1007/s11416-005-0002-9
http://dx.doi.org/10.1007/978-3-319-19210-9_10
http://dx.doi.org/10.1109/malware.2014.6999409
http://dx.doi.org/10.1109/malware.2012.6461006
http://dx.doi.org/10.1109/comsnets.2009.4808876
http://dx.doi.org/10.1089/cmb.2006.0137
http://dx.doi.org/10.1002/nav.20053
http://dx.doi.org/10.2172/1119578

