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Affinity Propagation Algorithm Based Multi-Source Localization
Method for Binary Detection

Yan WANG†a), Long CHENG††, Members, and Jian ZHANG†††, Nonmember

SUMMARY Wireless sensor network (WSN) has attracted many re-
searchers to investigate it in recent years. It can be widely used in the ar-
eas of surveillances, health care and agriculture. The location information
is very important for WSN applications such as geographic routing, data
fusion and tracking. So the localization technology is one of the key tech-
nologies for WSN. Since the computational complexity of the traditional
source localization is high, the localization method can not be used in the
sensor node. In this paper, we firstly introduce the Neyman-Pearson crite-
rion based detection model. This model considers the effect of false alarm
and missing alarm rate, so it is more realistic than the binary and probabil-
ity model. An affinity propagation algorithm based localization method is
proposed. Simulation results show that the proposed method provides high
localization accuracy.
key words: wireless sensor network, binary detection, multi-source, local-
ization, affinity propagation

1. Introduction

Wireless sensor network (WSN) with the advantages of low
costs and energy savings has been rapidly promoted. It be-
comes a research hotspot technology in recent years. Each
individual wireless sensor node has limited capacity of per-
ception, receiving and sending information and computing
power [1]. WSN not only consist of a large number of sen-
sor node but also own the characteristics of concealment and
fast and flexible deployment. Therefore, it can be used in
complex terrain and difficult environments. The position
information is critical for WSN applications such as geo-
graphic routing, data fusion and tracking. Therefore, the
localization problem is one of the most important issues for
WSN [2].

Since the computational complexity is high in the tra-
ditional source localization method, the source localization
method for the binary sensor network is investigated in this
paper. Two linear recursive three-dimensional source lo-
calization algorithms [3] are proposed by reorganizing the
non-linear measurement equations into linear equations to
improve the accuracy of localization. These methods take
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into consideration the random sensor position noise. An op-
timization to maximum likelihood method [4] is proposed
to estimate the position of acoustic source. The optimiza-
tion to maximum likelihood algorithm that minimizes the
sum of squares bias has been shown to consistently provide
superior estimation performance. An iterative source local-
ization method [5] is proposed. This method uses the anchor
sensor to estimate the coarse source location. The posterior
probability density function of the source is approximated
using Monte Carlo method. A mean square error analysis
method [6] is conducted to neglecting sensor position error
and clock bias to improve the localization accuracy. A de-
centralized energy ratios based acoustic source localization
method using the incremental gradient algorithm and nor-
malized incremental gradient algorithm is proposed [7].

In this paper, an affinity propagation algorithm based
multi-source localization method is proposed. This algo-
rithm owns the lower computational complexity is proposed
in the case of two sources. The optimal results can be ob-
tained based on the estimation of affinity propagation algo-
rithm. Simulation results show that the proposed method
own higher localization accuracy and lower computational
complexity.

2. Neyman-Pearson Detection Model

We consider a scenario where N sensor node and K acous-
tic sources are randomly deployed. The received signal
strength for ith sensor node yi can be expressed by

yi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
k=1

βk

dγ/2ik

+ ni ,H1

ni ,H0

(1)

where H1 denotes there are sources in the field and H0 de-
notes no sources in the field, ni is the measurement noise
and it is modeled as zero mean Gaussian distribution with
deviation σi, βk =

√
S k/2γ, S k is the energy of kth source,

γ is the path loss coefficient, dik is the distance between ith
sensor node and kth source.

The probability density function of measurement yi un-
der H1 and H0 can be obtained as:

P(yi |H1) =
1√

2πσ2
exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
1

2σ2

⎛⎜⎜⎜⎜⎜⎝yi −
N∑

k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2)
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P(yi |H0) =
1√

2πσ2
exp

⎧⎪⎨⎪⎩− y2
i

2σ2

⎫⎪⎬⎪⎭ (3)

According to Eqs. (2) and (3) and Neyman-Pearson cri-
terion, the discriminatory equation is given by [8]

Li(yi) =
P(yi |H1)
P(yi |H0)

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝2yi

N∑
k=1

βk

dγ/2ik

−
⎛⎜⎜⎜⎜⎜⎝

N∑
k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
H1
>

<
H0

ω

(4)

where ω is the decision threshold value.
According to Eq. (4), we can obtain:

1
2σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝2yi

N∑
k=1

βk

dγ/2ik

−
⎛⎜⎜⎜⎜⎜⎝

N∑
k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠

H1
>

<
H0

lnω (5)

The Eq. (5) can be further converted as:

yi

N∑
k=1

βk

dγ/2ik︸������︷︷������︸
h

H1
>
<
H0

σ2 lnω +
1
2

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2

︸������������������������︷︷������������������������︸
k

(6)

According to the Eq. (6), we can obtain that

H0 : h ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎝0, σ2

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠ (7)

H1 : h ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

N∑
k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2

, σ2

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎟⎟⎟⎠ (8)

We set that μ1 =

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2

, σ2
1 = σ

2

⎛⎜⎜⎜⎜⎜⎝
N∑

k=1

βk

dγ/2ik

⎞⎟⎟⎟⎟⎟⎠
2

.

Therefore, the false alarm rate of the sensor node can
be expressed:

PF = P(h > k |H0) = 1 − Φ
(

k
σ1

)
(9)

where, Φ(·) is the cumulative distribution function of stan-
dard normal distribution.

The detection rate of the sensor node is denoted as

PD = P(h > k |H1) = 1 − Φ
(

k − μ1

σ1

)
(10)

According to Eq. (9), we can obtain
k
σ1
= Φ−1(1 − α)

and
μ1

σ1
=

1
σ

N∑
k=1

βk

dγ/2ik

, α is the false alarm rate.

The joint detection probability is shown as:

pD = 1 − Φ
⎛⎜⎜⎜⎜⎜⎝Φ−1(1 − α) −

N∑
k=1

βk

σ
dγ/2ik

⎞⎟⎟⎟⎟⎟⎠ (11)

3. Affinity Propagation Algorithm Based Localization
Method

3.1 Basic Background of Affinity Propagation Algorithm

Affinity propagation (AP) algorithm is a clustering algo-
rithm based on the message passing between the data [9],
[10]. The main advantage of this algorithm is it does not
require the number of clusters before running this algorithm
in comparison with k-means method. The basic principle of
the AP algorithm as follows: Let x1 through xn be a set of
data points, and let S be a function that quantifies the simi-
larity between any two points, such that S (xi, x j) > S (xi, xk).
The AP algorithm proceeds by alternating two message
passing steps to update two matrices

(1) The responsibility matrix R which owns the values
r(i, k) that quantify how well-suit xk is to serve the ex-
emplar for xi, relative to other candidate exemplars for
xi.

(2) The availability matrix A which has the values a(i, k).
a(i, k) represents how appropriate it would be for xi to
pick xk as its exemplar, considering other points’ pref-
erence for xk as an exemplar.

3.2 Proposed Method

The proposed method with the example of two sources is
used to illustrate the process. It can be easily to extend to
multi-source environment. Since the AP algorithm does not
need to know the number of sources, it could estimate mul-
tiple cluster centers, i.e. the estimated number of sources
may larger than the actual number of sources. The part of
the estimated centers may deviate from the actual position
of source. Therefore, we modify the classical AP algorithm
to solve these problems. Firstly, the classical AP algorithm
computes the initial positions of sources. Secondly, we pro-
pose a method to divide the estimated multiple position into
two clusters. Finally, the centers of the new clusters are
the final position of the sources. The steps of the proposed
method as follows
Step 1. For a given data set which contains N elements, Xi

and Xj are the different element in this set. We initialize the
iteration number t = 1. We compute the similarity degree
between Xi and Xj as follows:

s(i, j) = −‖Xi − Xj‖2 i � j (12)

where, s(i, j) respects the similarity. If we can not obtain the
prior knowledge, the self-similarity set as a constant. Nor-
mally, it is set as the mean of the input similar matrices as
follows

s(l, l) =

N∑
i, j=1,i� j

s(i, j)

N × (N − 1)
, 1 ≤ l ≤ N (13)



1918
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Step 2. The Affinity Propagation algorithm proceeds by al-
ternating two message passing steps, to update responsibil-
ity matrix and availability matrix. The responsibility matrix
R has responsibility value r(i, j). The availability matrix A
contains availability value a(i, j). Compute the responsibil-
ity value r(i, j) how well-suited x j is to serve as the cluster
center for xi and the availability value a(i, j) as follows:

r(i, j) = s(i, j) −max
j′� j
{a(i, j′) + s(i, j′)} (14)

a(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧⎪⎪⎪⎨⎪⎪⎪⎩0, r( j, j) +
∑
i′�i, j

max{0, r(i′, j)}
⎫⎪⎪⎪⎬⎪⎪⎪⎭ i � j

∑
i′� j

max{0, r(i′, j)} i = j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)

The availability value set as zero in the iterative initial-
ization phase, i.e. a(i, j) = 0.
Step 3. Compute the responsibility matrix R and availability
matrix A as follows:

Rt+1 = (1 − λ)Rt + λRt−1

At+1 = (1 − λ)At + λAt−1
(16)

where, λ ∈ [0, 1] is the attenuation coefficient which is used
to avoid the numerical oscillation in iteration.

If the ownership category of each sample remains the
same in certain iteration or achieves the maximum itera-
tions, the algorithm stops. Otherwise jump to the 2 step and
update the number of iteration t, i.e. t = t + 1.
Step 4. The maximum value of the sum of the responsibil-
ity matrix and availability matrix is the cluster center, it is
expressed as:

ci ← argmax
i≤ j≤N

[r(i, j) + a(i, j)] (17)

Step 5. Compute the distance between the pair of two cluster
centers

l =
√

(xc − xc)2 + (yc − yc′ )2 c � c′ (18)

where, (xc, yc) and (xc′ , yc′ ) are the coordinates of the cluster
center ci and ci′ respectively.
Step 6. Divide the initial positions in Eq. (17) according to
Eq. (18). In order to illustrate this step, we provide a sim-
ple example using two sources. As shown in Fig. 1, there
are six initial estimated positions according to step 4. The
distance between center c1 and c4 is the furthest distance.
Therefore, we divide the initial positions into two clusters
according to center c1 and c4. Since the center c2 is nearer
c1 in comparison with center c1, so the c2 belongs to c1.

4. Simulation Results

In this section, we evaluate the performance of the proposed
method. N sensor nodes and K sources are randomly de-
ployed in the monitoring field. The default parameters in the

Fig. 1 An example of Step 6.

Table 1 The default parameters.

Fig. 2 The localization error versus the standard deviation of
measurement noise.

simulation experiments are shown in Table 1. We employ
the average localization error to evaluate the performance of
the proposed method:

Error =
1

NtK

Nt∑
i=1

K∑
k=1

√
(x̂ki − xk)2 + (ŷki − yk)2 (19)

where, Nt = 200, (xk, yk) is the true position for kth source,
(x̂ik, ŷik) is the estimated position of kth source for ith exper-
iment.

Figure 2 shows the relationship between the localiza-
tion error and the standard deviation of measurement noise
under different number of sensor nodes. It can be observed
that the localization error increases with the standard devi-
ation of measurement noise increase. This is because the
larger noise induces stronger interference. The localization
error decreases with the number of sensor nodes increases.

Figure 3 shows the impact of the packet loss rate
(PLR) on the localization error under different energies of
source. It indicates that the localization error of the pro-
posed method remains unchanged with the increase of PLR.
So, the proposed method is robust to packet loss rate. It can
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Fig. 3 The localization error versus the packet loss rate.

Table 2 Running times.

Fig. 4 The localization error versus the false alarm rate.

mitigate the effect of PLR. With the increase of the energy
of source, the localization error increases. This is because
the larger energy source will induce larger interfering with
each source.

Table 2 shows the running times of the proposed
method and the traditional method. The traditional method
uses the particle swarm optimization method to estimate the
position of sources. The two methods are coded using Mat-
lab 2008 and tested on a Windows 7 Professional worksta-
tion with Intel(R) Core(TM) 2 Duo CPU E7300 @ 2.66GHz
and 2.00GB RAM. Compared with the traditional method,
the proposed method obviously owns lower running time.
Therefore, the proposed method has lower computational
complexity.

Figure 4 shows the relationship between the false alarm
rate and the localization error. It can be observed that the
localization error increase with the increase of false alarm
rate. This is because the larger false alarm rate will result
in the number of false alarm nodes increases. And the av-
erage localization error increases as the number of sources

K increases. This is because the interaction effects make lo-
calization performance worse if there are too many sources.

5. Conclusion

In this paper, we investigate the multi-source localization
method based on binary detection for wireless sensor net-
work. The detection model is firstly introduced. The
Neyman-Pearson detection which considers the false alarm
rate and missing rate is presented. The affinity propagation
algorithm based localization method is proposed to estimate
the initial positions of sources. The further processing steps
are proposed to improve the localization accuracy. Simu-
lation results show that the proposed method achieves high
localization accuracy.
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