
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016
2283

PAPER

Autonomous Decentralized Semantic Based Traceability Link
Recovery Framework∗

Khalid MAHMOOD†a), Member, Mazen ALOBAIDI†, Nonmember, and Hironao TAKAHASHI††, Member

SUMMARY The automation of traceability links or traceability matri-
ces is important to many software development paradigms. In turn, the
efficiency and effectiveness of the recovery of traceability links in the dis-
tributed software development is becoming increasingly vital due to com-
plexity of project developments, as this include continuous change in re-
quirements, geographically dispersed project teams, and the complexity
of managing the elements of a project - time, money, scope, and people.
Therefore, the traceability links among the requirements artifacts, which
fulfill business objectives, is also critical to reduce the risk and ensures
project‘s success. This paper proposes Autonomous Decentralized Seman-
tic based Traceability Link Recovery (AD-STLR) architecture. According
to best of our knowledge this is the first architectural approach that uses an
autonomous decentralized concept, DBpedia knowledge-base, Babelnet 2.5
multilingual dictionary and semantic network, for finding similarity among
different project artifacts and the automation of traceability links recovery.
key words: semantic web, NLP, Babelnet, GATE, DBpedia, document sim-
ilarity

1. Introduction

The development of large scale software has become geo-
graphically distributed in order to get the qualified resources
at cheaper cost as well as to increase the efficiency in terms
of time, space, and reliability. A Distributed Software De-
velopment (DSD) is software development model that dis-
tributes the development of product or service among re-
mote sites [1]. In a geographical distributed software devel-
opment environment, requirements specification becomes
critical due to the characteristics of the temporal and spa-
tial distances, and language/cultural differences [2], this,
in turn, bring challenges like communication, collabora-
tion and trust gap [3]–[5], asymmetry in processes, policies,
standards, as well as several other factors that greatly influ-
ence project success.

The success of projects relies heavily on robust require-
ment management. As the backbone of requirements man-
agement, “Requirements Traceability” enables mapping of
individual requirements artifacts with all other artifacts
of the system (high/low level requirements, source code,

Manuscript received January 13, 2016.
Manuscript revised April 28, 2016.
Manuscript publicized June 7, 2016.
†The authors are with Oakland University, Rochester, USA.
††The author is with DTS Inc Japan, Tokyo, 108–0023 Japan.
∗This work is based on “A Semantic Approach for Traceability

Link Recovery in Aerospace Requirements Management System”,
by Khalid Mahmood et al. which appeared in Proc. IEEE Interna-
tional Symposium on Autonomous Decentralized Systems (ISADS
2015), Taichung, Taiwan, March 2015, c© 2015 IEEE.

a) E-mail: mahmood@oakland.edu
DOI: 10.1587/transinf.2016EDP7018

quality control, etc). In addition, requirements traceabil-
ity identifies and outlines the lineage of each requirement,
apart from its backward traceability (derivation), its for-
ward traceability (allocation) and its association with other
project artifacts. Traceability, according to IEEE Standard
Computer Dictionary, is defined as the degree to which a re-
lationship can be established between two or more products
of the development process [6]. Furthermore, the require-
ments traceability plays a vital role in ensuring the current
requirements are met, traces the impact of any changes to
the requirements, and defines the relationship among them
and a delivered system which, in turn, ultimately lowers risk.
Requirements traceability also reduces efforts for software
maintenance, development, testing under constant evolving
requirements, and implementation changes by developers
till final release.

During development lifecycle of large scale products
when teams are geographically distributed, it becomes im-
practical to update tractability links continuously. The in-
ability to constantly update the links results in inconsistency
in traceability matrix that ultimately results in project over-
runs, failure, and maintenance difficulty [7]. In the past
researchers have focused on traceability link recovery for
centralized software development environment by employ-
ing mainly Information Retrieval (IR) [8] techniques. How-
ever, these IR techniques [9], [10] obtain high recall [11] by
linking each requirements to all source code entities (and
other requirements artifacts) but precision [11] was reported
almost close to zero. On other hand, few of these tech-
niques [12] obtain high precision (almost 90%) by report-
ing only obvious links, but at cost of almost zero recall.
Both of these extreme scenarios are undesirable as technical
team members would then need to manually review gener-
ated candidates links to remove false positive by referring
the updated source code and new requirement artifacts to
recover missing links.

The main problem with IR techniques is that they don’t
consider knowledge of domain (application) and program-
ming language used for development, and semantics of
requirements particularly determining the context of term
used, resolving ambiguity and vagueness present in require-
ments artifacts. Recently some semantic relatedness tech-
niques have been applied for traceability link recovery, how-
ever, they are unable, a) to obtain high precision and re-
call mainly because of inaccurate multiple triplet extraction,
b) making use of domain specific and cross domain knowl-
edge, c) performing accurate disambiguation of polysemous

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

2284
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

terms, and d) to obtain accurate semantic similarity among
various artifacts. Additionally, the centralized architecture
for system like distributed software traceability bring the
challenges of having online expansion, scalability, and fault
tolerance in the system.

To address all these application and system chal-
lenges, AD-STLR architecture uses proposed a novel graph
and semantic based disambiguation algorithm, triple ex-
traction algorithm, algorithms to extract knowledge from
Wikipedia, Babelnet, DBpedia, and semantic similarity al-
gorithm. AD-STLR also employs Autonomous Decentral-
ized System [13] based architecture to achieve scalability,
online expansion, and fault tolerance (without introduction
of single point of failure), and easy system maintenance.
Thus, AD-STLR will allow distributed teams or organiza-
tion units across the world to make their own decisions with
the consideration of other teams by linking local artifacts
to other teams’ artifacts. In addition, the AD-STLR sys-
tem improves the communication between distributed teams
by allowing distributed teams to track each other’s activ-
ities and exposing the impact of these activities on local
projects. Similarly, our approach will make remote manage-
ment more efficient by allowing project managers to man-
age, track and monitor schedule, cost, risks, quality, and
preform integration management.

The main contributions of this paper are as follows:

1. proposes a new Autonomous Decentralized Semantic
Traceability Links Recovery (AD-STLR) Framework
to improve distributed teams collaboration by achiev-
ing same view of traceability matrix for all project
managers based on requirement/project artifacts dis-
tributed in different geographical locations.

2. presents a new semantic relatedness base artifacts sim-
ilarity and graph based disambiguation algorithms that
uses DBpedia knowledge-base, and Babelnet 2.5 mul-
tilingual dictionary and semantic network for finding
similarity among project/product artifacts.

3. unlike existing approaches [14], the proposed approach
extracts multiple triplets from one sentence.

The rest of the paper is structured as follows: The sub-
sequent section describes related works. Section 3 contains
the preliminaries, and Sect. 4 contains the application. In
Sect. 5, the architecture of AD-STLR is presented. The eval-
uation and results are shown and discussed in Sect. 6. Sec-
tion 7 concludes the paper, and Sect. 8 gives future work.

2. Related Works

There are two effective methodologies applicable to facili-
tate Traceability Link Recovery that are related to our pro-
posed approach, namely, Information Retrieval Techniques
(IR) [15]–[18] and Semantic Relatedness Techniques [11],
[19], [20].

2.1 Information Retrieval Techniques

Information Retrieval (IR) has been the subject of extensive
debate as to its successes and failures in automated Trace-
ability Links. IR is mainly defined as the task of discovering
candidate traceability links on the basis of the similarity be-
tween software engineering artifacts that can be transformed
in some unstructured text format [8]. Lei Liu et al. [17]
measured word semantic similarity by using pattern vector
space model where similarity between two words is calcu-
lated by the cosine of angle between their vectors. Antoniol,
Giuliano et al. [21] proposed an approach that discovers
traceability links between source code and software en-
gineering artifacts based on Information Retrieval (IR)
where software engineering artifacts are ranked against
queries constructed from the identifiers of source code. Ali
et al. [22] proposed an approach to establish and maintain
traceability links between source codes and software re-
quirements to improve the precision and recall of infor-
mation retrieval (IR) techniques by discarding/re-ranking
the reported links from IR based on the outcome links
that are generated from software repositories. Diaz, Di-
ana, et al. [23] proposed an approach that purifies the noise
from the candidate links list generated by IR technique.
This approach leverages the code ownership to improve
the traceability link recovery. It uses the author’s compo-
nents and context to assess the candidate links. Marcus
et al. [24] proposed approaches that advocate for the use of
latent semantic indexing (LSI) to recover traceability links
between documentation and source code. However, all the
above proposed approaches based on IR, lack accuracy in
term of precision, recall, and perform poorly in short con-
text [22], [24], [25]. These approaches also disregard word
order, syntactic relations, morphology, semantic relation,
and word ambiguities [26].

2.2 Semantic Relatedness Techniques

Semantic Similarity and Semantic Relatedness have been
the subjects of few studies that are associated with trace-
ability link recovery. Semantic Similarity is usually defined
by considering the lexical relations of synonymy, or equiva-
lent words, and hyponymy, or the type-of relation [27]–[29].
Semantic Relatedness, on the other hand, extends the defi-
nition of similarity by examining all types of semantic rela-
tions that connect two concepts [11], [30], [31]. The Wu &
Palmer measure calculates semantic similarity by attempt-
ing calculating the depths of the two synsets in the WordNet
taxonomies, along with the depth of the Least Common Sub-
sumer [20]. Zhang, Witte et al. proposed an approach that
applies deep semantic similarity analysis based on the idea
of ontology alignment [11]. This approach has four phases:
building ontologies, modeling the domains of source code
and software documents, creating a knowledge base by au-
tomatically populating these ontologies through code analy-
sis and text mining, and finally establishing traceability links

MAHMOOD et al.: AUTONOMOUS DECENTRALIZED SEMANTIC BASED TRACEABILITY LINK RECOVERY FRAMEWORK
2285

between code and documents through ontology alignment.
Falbo et al. attempted to extend semantic document man-
agement platform for the requirement domain by using se-
mantic annotations in requirement documents [32]. Further-
more, there is a consideration of the conceptualization es-
tablished by the proposed software requirements, with ref-
erence to its ontology and the generation of the traceability
matrix, both of which are based on a dependency relation-
ship and related axioms (reasons). Chan, Patrick, et al. [33]
contributed to this semantic approach by improving the sim-
ilarity measurement of low-frequency words and concepts.
Furthermore, there is an exploration of the conceptualiza-
tion established by computing the words locations in the
wikipedia article and text style. Although, all of the above
mentioned approaches improve accuracy, they have some
limitations: only one database is used, which recovers trace-
ability between source codes and software artifacts only,
which in turn ignores word ambiguities.

3. Preliminaries

3.1 Babelnet

Babelnet [34] is a multilingual encyclopedic dictionary and
utilizes different semantic knowledge-base, namely Word-
Net, Open Multilingual WordNet, Wikipedia, OmegaWik,
Wiktionary, and Wikidata. In addition, its semantic network
connects concepts and named entities in a very large net-
work of semantic relations.

3.2 DBPedia

DBPedia, is a data-set extracted from Wikipedia and trans-
formed to Resource Description Framework (RDF) model
data, using the Notation3 (N3) data representation for-
mat [35]. In addition, DBPedia allows to run sophisticated
queries against Wikipedia, and to link the different data sets
on the Web to Wikipedia data.

3.3 Stanford NLP APIs

Stanford NLP APIs is a program that works out the gram-
matical structure of sentences by using the parser [36]. Note
that similar to Stanford APIs we use the abbreviation of Part
of Speech (POS) tagging that are widely used by NLP com-
munity, that are adopted from the Penn Treebank project.
For convenience of readers, we mention the POS taggs used
in our paper: NP (Noun phrase), NN (Noun, singular or
mass), NNS (Noun, plural), NNP (Proper noun, singular),
NNPS (Proper noun, plural), PRP (Personal pronoun), FW
(Foreign word), WP (Wh-pronoun), RB (Adverb), VP (Verb
phrases), VBN (Verb, past participle), VBZ (Verb, 3rd per-
son singular present), VBG (Verb, gerund or present partici-
ple), VB (Verb, base form), VBD (Verb, past tense), VBP
(Verb, non-3rd person singular present).

3.4 GATE

General Architecture for Text Engineering (GATE) is a de-
velopment environment that provides a rich set of interac-
tive tools for the creation, measurement and maintenance of
software components for processing human language [37].

4. Application

AD-STLR can be applied in any distributed software devel-
opment scenario [38], [39]. Our earlier work [40] mentions
an application where AD-STLR can be applied on “Weather
Services for Air Traffic Aviation in Detroit”. This paper
presents development of National Aeronautics and Space
Administration (NASA) autonomous drone traffic manage-
ment application. In this application all of its production
units are geographically distributed with skilled workforce.
However, distributed teams’ presence poses an additional
challenge to the development process, namely, effective
communication, coordination, tracking and control, cooper-
ation, and conformance with regulations and standards [32].
NASA strives to ensure that the application and the inde-
pendent stakeholders’ efforts in Software Development Life
Cycle follow the Federal Aviation Administration’s (FAA)
governance policies and standards for Airspace. This re-
quires frequent traveling of project managers, thus increases
the risk of communication gap. This process is extremely
costly in terms of time, resources, and risk. However, our
proposed AD-STLR can offer an excellent solution because
it increases effectiveness and efficiency while reducing costs
and risks. Our approach can be used by product owners,
product managers, business analysts, and developers alike
in distributed product development.

4.1 Application & System Requirements

The application requirements include a) high accuracy: cor-
rect generation of Traceability matrix considering the con-
tinuous changing requirements, coding and testing artifacts.
It is measured using recall and precision [11], and b) usabil-
ity (user friendly).

The system requirements of AD-STLR are online-
expansion, fault-tolerance with low complexities, and ac-
ceptable timeliness under dynamic conditions. Online ex-
pansion means that during process of addition of nodes, and
during addition/updating of artifacts at any node the sys-
tem should provide service with reasonable response time.
Additionally, the joining process of new nodes should be
done with low complexity, without stopping the system and
maintain high-response (acceptable) for the system’s users.
Moreover, to cope with the dynamic changes in the network
a fault-tolerance process is required that should be done with
low complexity. Node failures must not lead to severely
hampering the service provision. The decentralized nature
of AD-STLR provides inherent fault-tolerance capability up
to large extent.

2286
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

5. AD-STLR Architecture

Distributed software development can be facilitated by hav-
ing the same view of traceability matrix at all locations. In
this regard we propose a traceability links recovery method-
ology that offers a clear and concise distributed project man-
agement and it is equally useful for all industry sectors and
is very unique from existing models in the literature.

5.1 System Architecture

Figure 1 shows AD-STLR architecture that is based on Au-
tonomous Decentralized System (ADS) concept [13], [41].
AD-STLR employs “Content Code” (CC) communica-
tion [42] to meet semantic interoperability. Figure 2 shows
the format of the broadcasting message. The, “Message ID”
uniquely identifies message and CC shows the type of the
message: AR, UR, DR. “Source Type” specifies the source
of the artifact e.g. requirements management tools, source
control tools etc. to leverage semantic enabled searching.
The parameter “Artifact ID” is used to determine the re-
quirement identification, while “Sender NodeID” identifies
the node that broadcasts the message. “The Data param-
eter” describes attributes of the artifact e.g. requirement
name, requirement summery etc. AD-STLR uses three mes-
sages namely, Add Requirement (AR), Update Requirement
(UR), and Delete Requirement (DR). Content code is regis-
tered at each node (peer). Each node may be in one of the
following states: monitoring, listening, accepting, and pro-
cessing. Below we illustrate in detail the autonomous oper-
ations and the description of states a node may acquire:

Fig. 1 Autonomous decentralized semantic based on overlay network

Fig. 2 AD-STLR message format

1. Autonomous monitoring: each node constantly moni-
tors the changes in requirement artifacts. As soon as
the node detects that any requirement has been added,
deleted, or updated, it generates corresponding mes-
sage (AR, UR, or DR) and broadcasts to all nodes.
Note that each node interacts with requirements man-
agement tools, source control tools, or quality manage-
ment tools through given APIs/ interfaces to differen-
tiate among addition, deletion, or updating of require-
ments.

2. Autonomous listening: during listening phase each
node listens for the arrival of broadcasting messages
and is based on predefined rules that enables the user
to accept or reject the message autonomously.

3. Autonomous accepting: upon accepting the broadcast-
ing message, the node autonomously examines its con-
tents and registers Message ID and Data (Fig. 2)

4. Autonomous processing: in this state each node in-
vokes the traceability link algorithm that measures
the similarity among local requirement and relevant
remotely located requirements, generates traceability
links candidates, caches links candidates, and presents
the traceability matrix in the form of a dashboard.

5.2 Node Architecture

A node is a machine having AD-STLR modules installed.
As shown in Fig. 3, each node is comprised of seven compo-
nents: “Natural Language Processing” (NLP), “Triple Ex-
traction”, “Triple Disambiguation”, “Category Extraction”,
“Wiki Knowledge Extraction”, “Inference”, and “Aerospace
Ontology”.

5.3 NLP Module

The NLP module uses GATE framework [43] for tokeniza-
tion, stemming, lemmatization [36], and Part-of-Speech
Tagging [44]. Tokenization is process that splits the arti-
facts into tokens, where stemming and lemmatization are
processes that convert or remove inflexional, derivational
form to a common world form. Furthermore, the module
exploits Stanford Parser [36] specifically LexicalizedParser
function to construct a structure tree that can characterize
each node as a noun phrase, verb phrase, or a full stop (.)
and generates a syntactical structure of sentences. We then
split the constructed tree into sub-trees based on specified
tag, ‘S’, in our implementation (see Algorithm 1). Further-
more, NLP module has the task of passing the structure tree
to the Triple Extraction Module.

Algorithm 1 illustrates the steps of how parsing tree
and sub-trees are constructed. The triple-extraction func-
tion essentially takes the unstructured text and constructs
the parsing tree using Stanford APIs (line 2). On other hand,
function extraction-trees takes the parsing tree output from
function triple-extraction, and splits the parsing tree into
sub-trees based on ‘S’ node in line 5–6. In line 7–11, the

MAHMOOD et al.: AUTONOMOUS DECENTRALIZED SEMANTIC BASED TRACEABILITY LINK RECOVERY FRAMEWORK
2287

Fig. 3 Autonomous decentralized semantic based traceability link recov-
ery framework

Algorithm 1 Pseudo code of NLP module
1: procedure TRIPLE-EXTRACTION(sentence)
2: sentencetree← f ind tree by using stand f ord parser
3: end procedure
4: procedure EXTRACTION-TREES(S entenceTree)
5: trees← f ind S tag f rom sentenceTree
6: trees← f ind S tag f rom sentenceTree f or multiple triples
7: if trees = null then
8: return sentenceTree
9: else

10: return trees
11: end if
12: end procedure

sub-trees collection is examined and returned. However, the
full complete input parsing tree is returned when the collec-
tion of sub-trees is empty.

5.4 Triple Extraction Module

The primary goal of this module is to extract Triples (sub-
ject, predicate, and object) from the document and pass them
to the Triple Disambiguation Module. The subject is the re-
source that is being described by a predicate and an object.
The object is either a resource referred to by a predicate or
a literal value. The predicate is a relation between a subject
and an object [45]. Our proposed algorithm is an extension

Algorithm 2 Pseudo code of Subject Extraction
1: procedure EXTRACT-SUBJECT(tree)
2: NP← f ind NP f rom tree
3: sub jecti ← f ind NN,NNS ,NNP,NNPS sub ject f ound in NP
4: sub ject j ← check again NN,NNS , NNP ,NNPS f or multiple

sub jects in NP
5: if sub ject = EMPTY then
6: sub jecti ← f ind PRP, FW sub ject f ound in NP
7: sub ject j ← check again PRP, FW f or multiple sub jects in

NP
8: end if
9: if sub ject = EMPTY then

10: sub jecti ← f ind WP,RB sub ject f ound in NP
11: sub ject j ← checkagain WP,RB f or multiple sub jects in NP
12: end if
13: if sub ject = EMPTY then
14: return empty
15: else
16: return sub ject
17: end if
18: end procedure

of “Triplet Extraction from Sentences” algorithm in [14] to
cater: a) the recognition of multiple subjects and objects in
one sentence b) consideration of multi-word (e.g. Informa-
tion Technology) as one token. The process of this module
is as follows:

5.4.1 Subject Identification

To find the subject, we use the Noun Phrase (NP) sub-tree.
Since the NP might have compound subjects, we search for
all subjects NP sub-trees. If no subject is found in NP sub-
tree, we search for all prepositions, and then all adverbs and
Wh-adverbs.

The pseudo code in Algorithm 2 explains the sub-
ject extraction. EXTRACT-SUBJECT function takes a tree
structure as input and invokes Breadth-first search (BFS) in
line 2. In particular, we search for the Noun Phrase (NP)
node. If found, line 3–4 extract the first node of Noun, sin-
gular or mass (NN) node or Noun, plural (NNS) node or
Proper noun, singular (NNP) node or Proper noun, plural
(NNPS) node and label it as subject. The same steps are re-
peated to find a second subject if it exists. Line 5 examines
the subject: if it is not empty then it is returned, otherwise
lines 6–8 invoke BFS searching for first Personal pronoun
(PRP) node or foreign word (FW) as subject. The process
is repeated again one more time to find a second subject. If
not found, lines 10–12 invoke BFS searching for first Wh-
pronoun (WP) or Adverb (RB). The search is repeated again
for same types with second subject. Line 13 examines the
subject and returns it if not empty.

5.4.2 Predicate Identification

The Verb Phrases (VP) are obtained from the structured
tree of the NLP module and the predicate is extracted from
the deepest verb in the VP tree. The pseudo code in Al-
gorithm 3 illustrates the predicate extraction. EXTRACT-

2288
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Algorithm 3 Pseudo code of Predicate Extraction
1: procedure EXTRACT-PREDICATE(tree)
2: VP← f ind VP f rom tree
3: if VP ! = null then
4: predicate ← f ind deepest verb VBN, VBG, VBZ f ound in

VPsubtree
5: if predicate = null then
6: predicate← f ind deepest verb VB f ound in VPsubtree
7: if predicate = null then
8: predicate ← f ind deepest verb VBD, VBP f ound in

VPsubtree
9: if predicate = null then

10: predicate ← f ind deepest verb NN, NNS , NNP,
NNPS f ound in VPsubtree

11: if predicate = null then
12: return Empty
13: end if
14: end if
15: end if
16: end if
17: return predicate
18: end if
19: return Empty
20: end procedure

PREDICATE function takes a tree structure as input and in-
vokes BFS in line 2. In particular, we search for the VP
node. Lines 3 examines the VP node if it is null, then pred-
icate is returned empty, otherwise its deepest verb, namely,
VBN, VBG, and VBZ are extracted using Depth-first search
(DFS) (in line 4) and labeled as predicate. Lines 5–6 exam-
ine the predicate: if it is not empty then it is returned, oth-
erwise, DFS is called to search for deepest VB. Once found
it is labeled as predicate. Lines 7–8 repeat the same actions
as in lines 5–6 but this time looking for deepest VBD or
VBP and assign it as predicate. Finally, line 9–10 validates
the predicate, if it is still empty then DFS is called again to
search for NN or NNS or NNP or NNPS. If not found, then
predicate is returned empty.

5.4.3 Object Identification

The Verb Phrases (VP) are obtained from the structured tree
of the NLP module. To find the object, a search is performed
to find the nouns first, then prepositions, and lastly adjec-
tives. If no object is found then the next targets are past
tense verbs in the VP tree. Algorithm 4 could be interpreted
and understood further using explanation of for Algorithm 2
& Algorithm 3 (see Sects. 5.4.1 & 5.4.2).

5.5 Triple Disambiguation Module

The primary challenge of natural language processing is
Word Sense Disambiguation (WSD) which is the task of
identifying the correct meaning of the word or phrase within
the context [46]. Our approach introduces a novel technique
to identify which sense of the polysemous subject or object
should be used in particular contexts by first fetching the
senses and glosses of both from all resources of Babelnet
(wordnet, Wikipedia, etc).

Algorithm 4 Pseudo code of Object Extraction
1: procedure EXTRACT-OBJECT(tree)
2: VP← f ind VP f rom tree
3: ob jecti ← f ind NN,NNS ,NNP,NNPS , ob ject f ound in VP
4: ob ject j ← check again NN, NNS , NNP ,NNPS , ob ject f or

multiple ob jects in VP
5: if ob ject = null then
6: ob jecti ← f ind VBN, VB, PRP, VBP, RB, JJ f ound in VP
7: ob ject j ← f ind VBN, VB, PRP, VBP, RB, JJ f or multiple

ob jects in VP
8: end if
9: if ob ject = null then

10: ob jecti ← f ind VBD ob ject f ound in VP
11: ob ject j ← check again VBD f or multiple ob jects in VP
12: end if
13: if ob ject = null then
14: return empty
15: else
16: return ob ject
17: end if
18: end procedure

Algorithm 5 Pseudo code of Disambiguation
1: procedure DISAMBIGUATE-WORDS(sub ject, subpostag, ob ject,

ob jpostag)
2: bestsub jectsense← most f requent sense f or sub ject
3: maxoverlap← 0
4: sub jectsenses← FETCH − S ENS ES (sub ject , subpostag)
5: ob jectsenses← FETCH − S ENS ES (ob ject , ob jpostag)
6: for each subsense in sub jectsenses do
7: for each ob jsense in ob jectsenses do
8: subS ignature← set o f glosses in the subsense
9: ob jS ignature← set o f glosses in the ob jsense

10: overlap ← COMPUT EOVERLAP (MERGGLOS S ES
(subsignature) ,MERGGLOS S ES (ob jsignature))

11: if overlap > maxoverlap then
12: maxoverlap← overlap
13: bestsub jectsense← subsense
14: bestob jectsense← ob jsense
15: end if
16: end for
17: end for
18: return (bestsub jectsens, bestob jectsense)
19: end procedure
20: procedure MERGGLOSSES(sigsense)
21: tokens← sigS ense − wordNet gloss
22: tokens← sigS ense − wikitionary gloss
23: tokens← sigS ense − omegaWiki gloss
24: tokens← sigS ense − wikiData gloss
25: tokens← sigS ense − wikipedia gloss
26: end procedure

Algorithm 5 shows the pseudo code and Fig. 4 shows
the overall process of our graph based approach of disam-
biguation. First, we enrich each polysemous subject and the
objects for disambiguation by getting their senses (Lines 4
and 5 of algorithm) from all resources of Babelnet. The sub-
ject senses and object senses are then processed in nested
for loops as shown in line 6–17, where we find the simi-
larity between every sense of subject with every sense of
object by looking at the overlapped number of tokens in
glosses. Note that we send glosses of each sense to the
NLP module to extract the triples before calling the LESK

MAHMOOD et al.: AUTONOMOUS DECENTRALIZED SEMANTIC BASED TRACEABILITY LINK RECOVERY FRAMEWORK
2289

Fig. 4 Disambiguation using various resources of Babelnet

algorithm [47]. In Fig. 4, merged glosses of each sense af-
ter NLP process on all senses obtained from resources of
Bablent have been shown and are also represented in proce-
dure MERGGLESSES (line 20–26) in pseudocode. Once
the composite context using all resources of Bablnet has
been defined, we use LESK similarity [47] to disambiguate
senses of polysemous subjects and objects. In the pseudo
code of Algorithm 5, LESK procedure was called in line 10.

5.6 Category Extraction Module

This module preforms following tasks: accepts the DBpe-
dia category from Disambiguation module for each sense,
finds the super-category and subcategory of the input cat-
egory from DBpedia, fetches DBpedia categories for each
disambiguated sense, and passes the result to the Inference
Module (see Algorithm 6).

5.7 Wiki Knowledge Extraction Module

Algorithm 7 shows Wiki Knowledge Extraction Module that
focuses on three primary tasks:

1. Inquiring wiki page: For each term in the document,
we construct a unique URL that retrieves the corre-
sponding wiki page for given term

2. Parsing Wiki page: the fundamental task of this step is
to parse HTML and extract the abstract and infobox of
the retrieved wiki page

3. Analytics: the primary task of this process is maintain-
ing statistical info of matching terms of artifact N with
M associated entities found in infobox and abstract of
wiki page

4. Passing the calculating statistics to the Inference Mod-
ule

Algorithm 6 Pseudo code of Category Extraction
1: procedure GET CATEGORIES (name entity)
2: categories← f ind name entity categories using Babelnet
3: RETURN categories
4: end procedure
5: procedure GET BROADER CATEGORIES (category)
6: broader categories ← f ind broader categories using DBpedia

S KOS relationship
7: RETURN broader categories
8: end procedure
9: procedure GET BROADER CATEGORIES (category)

10: sub categories ← f ind broader categories using DBpedia
S KOS relationship

11: RETURN broader categories
12: end procedure
13: procedure GET SUB CATEGORIES (category)
14: broader categories ← f ind sub categories using DBpedia

S KOS relationship
15: RETURN sub categories
16: end procedure

Algorithm 7 Pseudo code of Wiki Knowledge Extraction
1: procedure WIKI KNOWLEDGE (entity)
2: URL← constructURL(Word)
3: WikiPage← getWikiPage(URL)
4: HtmlDoc← ParseHT ML(wikiPage)
5: Abstract entities← JerichoAPI Extract(HtmlDoc))
6: In f obox entity[]← JerichoAPI Extract(HtmlDoc))
7: RETURN Abstract entities[], In f obox entity[])
8: end procedure

5.8 Aerospace Ontology Module

We have developed a domain specific aerospace ontol-
ogy which has only 200 concepts. This ontology con-
tains only disambiguation knowledge and it uses three re-
lationships: rdfs:label, rdf:type, and hasdomain. For exam-
ple, Aerospace manufacture rdfs:label “Lockheed Martin”,
Aerospace manufacture rdf:type “aerospace industry”, and
Aerospace manufacture hasdomain “aerospace”.

Aerospace domain knowledge is extracted by infer-
ence engine module of AD-STLR using Jena API [48]. As
Aerospace ontology contains only disambiguate knowledge,
therefore, inference engine knowledge, therefore, inference
engine first refer this knowledge before considering general
purpose ontology (See Algorithm 8, lines 4–9) of our sys-
tem.

5.9 Inference Module

In inference engine, we first employ disambiguated knowl-
edge of Aerospace ontology to quickly retrieve the category
of any given token. After token is retrieved, firstly we ex-
tract “label” against given Name Entity, next “type” against
resultant label is extracted to get category class. Finally,
“hasDomain” relationship is used against the obtained type
in previous step to get a resultant domain category. If the
token is not inferred at this level, this inference module uses

2290
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Algorithm 8 Pseudo code of Inference Algorithm
1: procedure Semantic-Similarity(Arti f act1Triplets[], Arti f act2Triplets[])
2: //Triplet[] contains triplet alog with POS Tags.
3: for each triple in arti f cat1 and arti f act2 do
4: typesub j1 = Gettype(GetlabelAerospaceonto(sub jectarti f ct1))”;
5: typeob j1 = Gettype(GetlabelAerospaceonto(Ob jectarti f ct1))”;
6: typesub j2 = Gettype(GetlabelAerospaceonto(sub jectarti f ct2))”;
7: typeob j2 = Gettype(GetlabelAerospaceonto(Ob jectarti f ct2))”;
8: domain1 = GetDomain(typesub j1, typeob j1)
9: domain2 = GetDomain(typesub j2, typeob j2)

10: if domain1 = domain2 then
11: semantic similarity score + I;
12: break;
13: end if
14: Arti f act1 categories←Get CAT EGORIES (sub jectArti f act1
, ob jectArti f act1);

15: Arti f act2 categories←Get CAT EGORIES (sub jectArti f act2
, ob jectArti f act2);

16: Arti f act1 wikiknowledge[] ← Wiki KNOWLEDGE (sub ject
arti f act1 , ob ject arti f act1);

17: Arti f act2 wikiknowledge[] ← Wiki KNOWLEDGE (sub ject
arti f act2 , ob ject arti f act2);

18: semantic S imilarity S core← 0;
19: for each t cat in Arti f act1 categories do
20: CURRENT :
21: for each n cat in Arti f act2 categories do
22: broader categoriesgets←
23: GET BROADER CAT EGORIES (ncat);
24: sub categories← GET S UB CAT EGORIES (ncat);
25: if t cat = n cat then
26: semantic similarity score←
27: semantic similarity score + I;
28: continue CURRENT ;
29: end if
30: for each b cat in broader categories do
31: if t cat = b cat then
32: semantic similarity score←
33: semantic similarity score + J;
34: continue CURRENT ;
35: end if
36: end for
37: for each s cat in sub categories do
38: if t cat = s cat then
39: semantic similarity score←
40: semantic similarity score + K;
41: continue CURRENT ;
42: end if
43: end for
44: end for
45: end for
46: end for
47: for each pred arti f act1 in Arti f act 1 Triplets do
48: for each spred arti f act2 in Arti f act 2 Triplets do
49: if pred arti f act1 = pred arti f act2 then
50: semantic similarity score←
51: semantic similarity score + M;
52: end if
53: end for
54: end for
55: for each nameentity arti f act1 in sub ject arti f act1[] and

ob ject arti f act1[] do
56: arti f act1sub ject wikiknowledge LIS T =Wiki KNOWLEDGE

(sub ject arti f act1[]);
57: arti f act1ob ject wikiknowledge LIS T =Wiki KNOWLEDGE

(ob ject arti f act1[]);

58: arti f act2sub ject wikiknowledge LIS T =Wiki KNOWLEDGE
(sub ject arti f act1[]);

59: arti f act2ob ject wikiknowledge LIS T =Wiki KNOWLEDGE
(ob ject arti f act2[]);

60: if sub ject arti f act1[nameentity arti f act1] OR Ob ject arti f act1
[nameentity arti f act1] == Arti f act2sub ject wikiknowledge LIS T
OR Arti f act2sub ject wikiknowledge LIS T then

61: semantic similarity score←
62: semantic similarity score + R;
63: if sub ject arti f act1[nameentity arti f act1]OR

Ob ject arti f act1 [nameentity arti f act1] ==
Arti f act1sub ject wikiknowledge LIS T OR
Arti f act1ob ject wikiknowledge LIS T then

64: semantic similarity score←
65: semantic similarity score + S ;
66: end if
67: end if
68: end for
69: RETURNsemantic similarity score
70: end procedure

DBPedia knowledge.
We maintain a count for the overlapping of DBpedia

categories and then calculate similarity score. In addition,
it generates candidates for traceability links. Algorithm 8
shows the pseudo code of our weighting scheme. Here we
assume that I >= J >= K and M >= R >= S. In the semantic
similarity algorithm we have defined three levels for similar-
ity measure namely current (most similar), root (least sim-
ilar) and sub levels (moderate similar). We first determine
the subject’s and object’s categories of all artifacts using
Babelnet (mainly DBpedia). Next for each subject and ob-
ject of first artifact we compare it with the category of each
subject and object of remaining artifacts. For the sake of
simplicity lets assume that there are only two artifacts. If
the categories are matched at this level (i.e. current level)
then we increment the similarity score by the value of I (line
22–29). Consider for example that the subject Florida is in
artifact 1 and the artifact 2, has the subject Arizona. The cat-
egory for both Florida and Arizona would be “States of the
United States”. Therefore a match, at this level, increments
the similarity score by I. If the matching fails at this level
then the next level is the sub category level where we deter-
mine the sub-categories of the artifact 1 subject and objects
(entities). We then compare each of these sub-categories
with the artifact 2 entity category already in process. A
match, at this level, increments the similarity score by J
(line 30–36). If we continue our previous example then
the sub-categories for Arizona can be “Geography of Ari-
zona”, “Education in Arizona” etc. If we are not successful
in matching the categories at the current level then we move
forward to the next level, the root level. In this level we
determine the broader categories for the first artifact. Next
each broader category is matched with the category of the
artifact 2 subject and object already in process. If the cate-
gories are matched at this level (i.e. root level), we increment
the similarity score by value K (line 37–34). If we continue
our previous example of Florida and Arizona the root cate-
gory would be “United States”, and therefore a match, at this

MAHMOOD et al.: AUTONOMOUS DECENTRALIZED SEMANTIC BASED TRACEABILITY LINK RECOVERY FRAMEWORK
2291

level, increments the similarity score by K. In case of fail-
ure of similarity matching using name entities at the above
defined three levels (i.e. current, root and sub levels) we per-
form keyword matching of predicates of both artifacts and
in case of a match, increment the similarity score by M (line
47–54). Lastly, we also extract the Infoboxes of all subjects
and objects of artifacts and perform keyword matching with
subjects and objects of other artifacts and their entities ob-
tained from infoboxes. If match is found then constants S
and R are added in semantic scores respectively. Note that
DBpedia does not provide updated information against an
entity because there is a certain timeline to update the in-
formation in the dump. For the sake of retrieving any infor-
mation that belongs to the recent time, we parsed Wikipedia
pages using Jericho HTML Parser [49] to get entities from
abstract and infoboxes.

6. Evaluation

This section evaluates application requirements of AD-
STLR: correct generation of traceability links using preci-
sion and recall [11] measures. Precision is the ratio of the
number of true positive links retrieved over the total number
of links retrieved, whereas, recall is the ratio of the number
of true positive links retrieved over the total number of true
positive links in control set. The evaluation and comparison
were carried out as follows:

1. upon detecting the new/modified/deleted requirement
in any node, the system selects relevant requirement
artifacts

2. retrieves the similarly threshold set by local product
manager (administrator)

3. reads requirement by requirement from the first set
4. loops through each requirement in selected sets
5. calculates the semantic similarity among selected re-

quirements artifacts
6. collects and analyzes the results of the running experi-

ments against existing answer sets
7. uses the results information to calculate precision and

recall for evaluation

Evaluation os AD-STLR was carried out using Gen-
eral Architecture and Engineering Text (GATE), Stanford
NLP APIs [36], Babelnet 2.5, and DBpedia. In addition, we
conducted experiments by using 4-core Intel(R) Core(TM)
i7-2720QM CPU @ 2.20GHz and 64 bits Java JVM.

6.1 DataSets

In order to simulate a real world scenario, we have selected
two different datasets: MODIS & CM-1 [50]. To evaluate
AD-STLR, we have chosen one benchmark algorithm from
Information retrieval (IR) category while other one from se-
mantic relatedness. Vector Space Model (VSM) [51] was
chosen as benchmark because its average precision and re-
call is significantly better than others algorithms from IR
class of traceability link recovery algorithms [7], [9], [10],

Table 1 DataSets

DataSet High Req Low Req Traces
ModisDataset 19 49 41
CM-1 235 220 361

[12]. Similarly Wu Palmer [20] was chosen for comparison
as its precision and recall is close to human judgments and
has high performance compared to other semantic similarity
algorithms [11], [52], [53]. The details of datasets used are
listed in Table 1.

6.1.1 MODIS

The NASA Moderate Resolution Spectrometer (MODIS)
dataset [50] is a small dataset built from the full De-
sign (high- and low-level requirements documents) for the
MODIS space instrument software. This dataset includes
19 high-level requirements, 49 low-level requirements, and
a validated true positive 41 links that we refer to as the “True
traces”.

6.1.2 CM-1

The dataset includes an exhaustive requirement and design
document for a NASA space instrument [50]. The dataset
contains 235 high level and 220 low-level requirements. The
trace for the dataset was manually verified. The “theoretical
true trace” (answer-set) built for this dataset consisted of 361
correct links. Each of the high and low-level files contain the
text of one requirement element.

6.2 Results

The preliminary results show that both AD-STLR and the
benchmark algorithms are suitable for the problem of re-
covering traceability links among software artifacts, how-
ever AD-STLR achieves higher values of precision and re-
call with higher threshold values towards 100 percent of pre-
cision and recall.

A possible explanation lies in the nature of the three
models. The similarity measure of a VSM [51] is low be-
cause it only takes into account the terms that appear in
both software artifacts, weight the frequencies of their oc-
currences, disregard their order and semantic relation, don’t
consider knowledge of domain (application), and disam-
biguate. On the other hand, Wu Palmer associates software
artifacts based on the depth of two synsets in the WordNet
taxonomies and ignore word ambiguities. Conversely, AD-
STLR model links software artifacts based on semantic re-
lation, word ambiguities using ontologies such as Babelnet,
and DBpedia.

Our analysis shows that Wu Palmer performs very low
in term of precision and recall mainly because of knowl-
edge available in wordnet, therefore, our quantitative analy-
sis mainly focuses on comparisons of AD-STLR and VSM.
Figure 5 shows the comparison of AD-STLR, VSM, and
Wu Palmer in term of precision where X-axis represents the

2292
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

Fig. 5 Comparison: precision of AD-STLR against VSM and Wu
Palmer

Fig. 6 Comparison: recall of AD-STLR against VSM and Wu Palmer

threshold percentage that we used to retrieve all documents.
It can be seen that AD-STLR outperforms VSM and Wu
Palmer algorithms on all threshold points. Also, increas-
ing the threshold value (up to 50%) leads to better precision
for AD-STLR and VSM because threshold value has direct
impact on precision. For example, when the threshold is
set to 30%, our proposed approach generates a higher num-
ber of positive links retrieved such as an approximately 7
percent improvement compared to VSM and 22 percent to
Wu Palmer approach. Our results show precision drops sig-
nificantly when we increase the threshold beyond 50% for
AD-STLR and 40% for VSM, whereas Wu Palmer dropped
to zero after 5%. When threshold is increased by 5%, our
quantitative analysis shows that there is on average 8 per-

cent improvement in precision for AD-STLR and 4% in the
case of VSM respectfully.

As shown in Fig. 6, lowering the threshold leads to
higher recall because the total number of true positive links
is independent from the threshold value. In addition, when
threshold was varied from (0–20%), the recall for AD-STLR
is 100% and starts to drop afterwords. On the other hand, for
VSM recall is above than 80% when threshold is up to 10%,
and then it starts to deteriorate significantly.

When precision and recall are plotted against recall,
(not shown in graph) the area under the curve has maximum
value when threshold is 50%: AD-STLR is returning accu-
rate results (high precision), as well as returning a majority
of all positive results (high recall).

7. Conclusion

Projects are constantly updated and modified in light of new
risks and developing products. Traceability links are a pri-
mary part of requirements management for software devel-
opment. Since Automated Traceability Links are an impor-
tant element to ensure the success of software engineering
projects, our proposed framework helps projects meet busi-
ness requirements, improve the precision and recall of trace-
ability links between requirements artifacts, and increase the
success of projects by improving time, cost, risk, and qual-
ity.

8. Future Work

Currently we are extending our Aerospace ontology to fur-
ther improve the the efficiency and effectiveness of our ap-
proach. Additionally, we will extend our semantic approach
to include rules to ensure that AD-STLR should not only
create traceability matrix but also ensure that documenta-
tion follow standards and regulation requirements. Further-
more, exhaustive comparison with other semantic related al-
gorithms will be performed, in future we will add source
code files in our model too.

References

[1] T.W. Malone et al., The future of work, Audio-Tech Business Book
Summaries, Incorporated, 2004.

[2] M. Webster, “The requirements for managing the geographically
distributed development organization and the collabnet solution,”
White Paper, IDC, 2005.

[3] U.M. Apte, M.G. Sobol, S. Hanaoka, T. Shimada, T. Saarinen, T.
Salmela, and A.P. Vepsalainen, “Is outsourcing practices in the usa,
japan and finland: a comparative study,” Journal of information tech-
nology, vol.12, no.4, pp.289–304, 1997.

[4] K. Ketler and J. Walstrom, “The outsourcing decision,” International
journal of information management, vol.13, no.6, pp.449–459,
1993.

[5] J. Dibbern, T. Goles, R. Hirschheim, and B. Jayatilaka, “Information
systems outsourcing: a survey and analysis of the literature,” ACM
SIGMIS Database, vol.35, no.4, pp.6–102, 2004.

[6] A. Geraci, F. Katki, L. McMonegal, B. Meyer, J. Lane, P. Wilson,
J. Radatz, M. Yee, H. Porteous, and F. Springsteel, IEEE standard

http://dx.doi.org/10.1080/026839697345017
http://dx.doi.org/10.1016/0268-4012(93)90061-8
http://dx.doi.org/10.1145/1035233.1035236

MAHMOOD et al.: AUTONOMOUS DECENTRALIZED SEMANTIC BASED TRACEABILITY LINK RECOVERY FRAMEWORK
2293

computer dictionary: Compilation of IEEE standard computer glos-
saries, IEEE Press, 1991.

[7] N. Ali, Analysing Source Code Structure and Mining Software
Repositories to Create Requirements Traceability Links, Ph.D. the-
sis, École Polytechnique de Montréal, 2012.

[8] A. Qusef, G. Bavota, R. Oliveto, A.D. Lucia, and D. Binkley, “Eval-
uating test-to-code traceability recovery methods through controlled
experiments,” Journal of Software: Evolution and Process, vol.25,
no.11, pp.1167–1191, 2013.

[9] A. Abadi, M. Nisenson, and Y. Simionovici, “A traceability tech-
nique for specifications,” The 16th IEEE International Conference
on Program Comprehension, pp.103–112, IEEE, 2008.

[10] S.K. Sundaram, J.H. Hayes, and A. Dekhtyar, “Baselines in require-
ments tracing,” ACM SIGSOFT Software Engineering Notes, pp.1–
6, 2005.

[11] A. Budanitsky and G. Hirst, “Evaluating wordnet-based measures
of lexical semantic relatedness,” Computational Linguistics, vol.32,
no.1, pp.13–47, 2006.

[12] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “On the
equivalence of information retrieval methods for automated trace-
ability link recovery,” 2010 IEEE 18th International Conference on
Program Comprehension (ICPC), pp.68–71, IEEE, 2010.

[13] T. Koga, X. Lu, and K. Mori, “Autonomous decentralized high-as-
surance surveillance system for air traffic control,” 2014 IEEE 15th
International Symposium on High-Assurance Systems Engineering
(HASE), pp.154–157, 2014.

[14] D. Rusu, L. Dali, B. Fortuna, M. Grobelnik, and D. Mladenic,
“Triplet extraction from sentences,” Proc. 10th International Mul-
ticonference Information Society-IS, pp.8–12, 2007.

[15] D.L. Lee, H. Chuang, and K. Seamons, “Document ranking and the
vector-space model,” IEEE Softw., vol.14, no.2, pp.67–75, 1997.

[16] U.L.D.N. Gunasinghe, W.A.M. De Silva, N.H.N.D. de Silva, A.S.
Perera, W.A.D. Sashika, and W.D.T.P. Premasiri, “Sentence similar-
ity measuring by vector space model,” International Conference on
Advances in ICT for Emerging Regions (ICTer), pp.185–189, 2014.

[17] L. Liu, M. Zhong, and R. Lu, “Measuring word similarity based on
pattern vector space model,” International Conference on Artificial
Intelligence and Computational Intelligence, AICI’09, pp.72–76,
2009.

[18] V.V. Raghavan and S.K.M. Wong, “A critical analysis of vector
space model for information retrieval,” Journal of the American So-
ciety for information Science, vol.37, no.5, pp.279–287, 1986.

[19] S.J. Green, “Building hypertext links by computing semantic sim-
ilarity,” IEEE Trans. Knowl. Data Eng., vol.11, no.5, pp.713–730,
1999.

[20] Z. Wu and M. Palmer, “Verbs semantics and lexical selection,” Proc.
32nd annual meeting on Association for Computational Linguistics,
pp.133–138, Association for Computational Linguistics, 1994.

[21] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,”
IEEE Trans. Softw. Eng., vol.28, no.10, pp.970–983, 2002.

[22] N. Ali, Y.-G. Gueheneuc, and G. Antoniol, “Trustrace: Mining soft-
ware repositories to improve the accuracy of requirement traceabil-
ity links,” IEEE Trans. Softw. Eng., vol.39, no.5, pp.725–741, 2013.

[23] D. Diaz, G. Bavota, A. Marcus, R. Oliveto, S. Takahashi, and A. De
Lucia, “Using code ownership to improve ir-based traceability link
recovery,” IEEE 21st International Conference on Program Compre-
hension (ICPC), pp.123–132, 2013.

[24] A. Marcus, J.I. Maletic, and A. Sergeyev, “Recovery of traceability
links between software documentation and source code,” Interna-
tional Journal of Software Engineering and Knowledge Engineering,
vol.15, no.05, pp.811–836, 2005.

[25] D. Metzler, S. Dumais, and C. Meek, Similarity measures for short
segments of text, Springer, Berlin Heidelberg, 2007.

[26] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, “Ontological ap-
proach for the semantic recovery of traceability links between soft-
ware artefacts,” IET software, vol.2, no.3, pp.185–203, 2008.

[27] P. Resnik, “Using information content to evaluate semantic similar-
ity in a taxonomy,” arXiv preprint cmp-lg/9511007, 1995.

[28] J.J. Jiang and D.W. Conrath, “Semantic similarity based on cor-
pus statistics and lexical taxonomy,” arXiv preprint cmp-lg/9709008,
1997.

[29] P. Resnik et al., “Semantic similarity in a taxonomy: An
information-based measure and its application to problems of am-
biguity in natural language,” J. Artif. Intell. Res. (JAIR), vol.11,
pp.95–130, 1999.

[30] T. Pedersen, S. Patwardhan, and J. Michelizzi, “Wordnet:: Similar-
ity: measuring the relatedness of concepts,” Demonstration papers
at hlt-naacl, Association for Computational Linguistics, pp.38–41,
2004.

[31] E. Gabrilovich and S. Markovitch, “Computing semantic relatedness
using wikipedia-based explicit semantic analysis,” IJCAI, pp.1606–
1611, 2007.

[32] R. de Almeida Falbo, C.E.C. Braga, and B.N. Machado, “Seman-
tic documentation in requirements engineering,” 17th Workshop on
Requirements Engineering (WER 2014), Pucón, Chile, 2014.

[33] P. Chan, Y. Hijikata, T. Kuramochi, and S. Nishida, “Semantic re-
latedness estimation using the layout information of wikipedia ar-
ticles,” International Journal of Cognitive Informatics and Natural
Intelligence (IJCINI), vol.7, no.2, pp.30–48, 2013.

[34] R. Navigli and S.P. Ponzetto, “Multilingual WSD with just a few
lines of code: the BabelNet API,” Proc. 50th Annual Meeting of
the Association for Computational Linguistics (ACL), Jeju, Korea,
2012.

[35] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer,
“Semantic wikipedia,” Proc. 15th international conference on World
Wide Web, ACM.

[36] “The stanford NLP (natural language processing) group.”
[37] “GATE.ac.uk - biz/usps.html.”
[38] M.B. Blake, G. Hamilton, and J. Hoyt, “Using component-based de-

velopment and web technologies to support a distributed data man-
agement system,” Annals of Software Engineering, vol.13, no.1-4,
pp.13–34, 2002.

[39] D. Feldkamp, W. Siberski, B. Thönssen, and H. Wache, “E-
government for distributed autonomous administrations,” AAAI
Spring Symposium: AI Meets Business Rules and Process Manage-
ment, pp.28–38, 2008.

[40] K. Mahmood, H. Takahashi, and M. Alobaidi, “A semantic approach
for traceability link recovery in aerospace requirements management
system,” ISADS IEEE, 2015.

[41] K. Mahmood, L. Xiaodong, Y. Horikoshi, and K. Mori, “Au-
tonomous pull-push community construction technology for high-
-assurance,” IEICE Trans. Inf. & Syst., vol.E92-D, no.10,
pp.1836–1846, 2009.

[42] I.-L. Yen, R. Paul, and K. Mori, “Toward integrated methods for
high-assurance systems,” Computer, vol.31, no.4, pp.32–34, 1998.

[43] H. Cunningham, “GATE, a General Architecture for Text Engineer-
ing,” Computers and the Humanities, vol.36, pp.223–254, 2002.

[44] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini, “Building a
large annotated corpus of english: The penn treebank,” Computa-
tional linguistics, vol.19, no.2, pp.313–330, 1993.

[45] G. Klyne and J.J. Carroll, “Resource description framework (RDF):
Concepts and abstract syntax,” W3C Recommendation, 2005.

[46] N. Ide and J. Véronis, “Introduction to the special issue on word
sense disambiguation: the state of the art,” Computational linguis-
tics, vol.24, no.1, pp.2–40, 1998.

[47] S. Banerjee and T. Pedersen, “An adapted lesk algorithm for word
sense disambiguation using wordnet,” in Computational linguistics
and intelligent text processing, pp.136–145, Springer, 2002.

[48] B. McBride, “Jena: Implementing the rdf model and syntax specifi-
cation.,” SemWeb, 2001.

[49] H. Jericho, “Parser,” 2011.
[50] J. Sayyad Shirabad and T. Menzies, “The PROMISE Repository of

Software Engineering Databases,” School of Information Technol-

http://dx.doi.org/10.1002/smr.1573
http://dx.doi.org/10.1109/icpc.2008.30
http://dx.doi.org/10.1162/coli.2006.32.1.13
http://dx.doi.org/10.1109/icpc.2010.20
http://dx.doi.org/10.1109/hase.2014.29
http://dx.doi.org/10.1109/52.582976
http://dx.doi.org/10.1109/icter.2014.7083899
http://dx.doi.org/10.1109/aici.2009.249
http://dx.doi.org/10.1002/(sici)1097-4571(198609)37:5<279::aid-asi1>3.0.co;2-q
http://dx.doi.org/10.1109/69.806932
http://dx.doi.org/10.3115/981732.981751
http://dx.doi.org/10.1109/tse.2002.1041053
http://dx.doi.org/10.1109/tse.2012.71
http://dx.doi.org/10.1109/icpc.2013.6613840
http://dx.doi.org/10.1142/s0218194005002543
http://dx.doi.org/10.1049/iet-sen:20070062
http://dx.doi.org/10.3115/1614025.1614037
http://dx.doi.org/10.4018/ijcini.2013040103
http://dx.doi.org/10.1587/transinf.e92.d.1836
http://dx.doi.org/10.1109/2.666840
http://dx.doi.org/10.1023/a:1014348124664
http://dx.doi.org/10.1007/3-540-45715-1_11

2294
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.9 SEPTEMBER 2016

ogy and Engineering, University of Ottawa, Canada, 2005.
[51] A.D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering

traceability links in software artifact management systems using
information retrieval methods,” ACM Trans. Softw. Eng. Methodol.,
vol.16, no.4, 2007.

[52] C. Corley and R. Mihalcea, “Measuring the semantic similarity of
texts,” Proc. ACL workshop on empirical modeling of semantic
equivalence and entailment, pp.13–18, Association for Computa-
tional Linguistics, 2005.

[53] D. Lin, “An information-theoretic definition of similarity,” ICML,
pp.296–304, 1998.

Khalid Mahmood is currently working
as an assistant professor at Oakland Univer-
sity, Michigan USA. Dr. Mahmood’s research
interests include integrated area of Internet of
Things, cognitive mobile computing and seman-
tic web. Research topics comprises of Seman-
tics based Sensor Web, Semantic based Infor-
mation Security & Data Loss Prevention, Au-
tonomous Decentralized Systems, Big Data an-
alytics using Linked data, Semantic based web
filtering and Semantic based Cloud Robotics.

Mazen Alobaidi is a Ph.D. student at De-
partment of Computer Science Engineering in
Oakland University, USA. His research interests
include autonomous decentralized systems, dis-
tributed application architecture and Semantic
Web technologies.

Hironao Takahashi is Prof. ORIC
Greenwich University. He received PhD degree
in Computer Science in 2010 from Tokyo In-
stitute of Technology and received the MS de-
gree in MOT in 2006 Tokyo University of Sci-
ence. His research area is High speed I/O sys-
tem architecture on Autonomous Decentralized
System. He invented Data Transmission Sys-
tem technology architecture and is holding nine
patents of this field. He is member of IEEE,
IEICE, IEE and IPSJ.

http://dx.doi.org/10.1145/1276933.1276934
http://dx.doi.org/10.3115/1631862.1631865

