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PAPER

A Linear Time Algorithm for Finding a Spanning Tree with
Non-Terminal Set VNT on Cographs

Shin-ichi NAKAYAMA†a) and Shigeru MASUYAMA††, Members

SUMMARY Given a graph G = (V, E) where V and E are a vertex and
an edge set, respectively, specified with a subset VNT of vertices called a
non-terminal set, the spanning tree with non-terminal set VNT is a con-
nected and acyclic spanning subgraph of G that contains all the vertices of
V where each vertex in a non-terminal set is not a leaf. In the case where
each edge has the weight of a nonnegative integer, the problem of finding
a minimum spanning tree with a non-terminal set VNT of G was known to
be NP-hard. However, the complexity of finding a spanning tree on general
graphs where each edge has the weight of one was unknown. In this pa-
per, we consider this problem and first show that it is NP-hard even if each
edge has the weight of one on general graphs. We also show that if G is a
cograph then finding a spanning tree with a non-terminal set VNT of G is
linearly solvable when each edge has the weight of one.
key words: spanning tree, cograph, algorithm

1. Introduction

Consider a graph G = (V, E) and a function w from its edge
set to the set of nonnegative integers. By V and E we denote
the vertex and edge sets of G, respectively. For any subgraph
Gi = (Vi, Ei) of G where Vi and Ei are the vertex and edge
sets of Gi, let w(Gi) =

∑
e∈Ei
w(e) be its weight.

Given a graph G and subset VNT of its vertices called
a non-terminal set, a minimum spanning tree with a non-
terminal set (MSTNT) is a connected and acyclic spanning
subgraph of G that contains all the vertices of V with the
minimum weight where each vertex in the non-terminal set
is not a leaf [8]. Zhang and Yin [8] showed that the problem
for finding an MSTNT is NP-hard and describe an approxi-
mation algorithm for finding an MSTNT on general graphs.
This problem can be applied to the design of computer net-
works where the devices used for relays and those used for
terminals are different.

In this paper, we only consider graphs with w(e) = 1
for each edge. We first prove that, on general graphs, the
problem for finding a spanning tree with a non-terminal
set (STNT) where w(e) = 1 for each edge is also NP-
hard. Therefore, we assume that a given graph always has
a weight of one and that the weight w(e) is omitted unless
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otherwise specified. As finding an STNT on general graphs
is NP-hard, we restrict a given graph to be a cograph. The
class of cographs has been intensively studied since their
definition by Seinsche [7]. Cographs are recursively de-
fined as the class of graphs constructed from a single ver-
tex under the closure of the operations of disjoint union and
join operations [1], [4]. A cograph has a unique tree rep-
resentation, called a cotree, which shows how the cograph
can be recursively constructed. This provides the basis for
fast polynomial time algorithms for problems such as iso-
morphism, colouring, clique detection, clustering, minimum
weight dominating sets, minimum fill-in and Hamiltonic-
ity [1]–[3]. Here we show that for a cograph G, a linear time
(that is, O(|V | + |E|) time) algorithm for finding an STNT of
G exists.

2. Complexity of the STNT Problem

In this section, we prove that the problem for finding an
STNT on general graphs is NP-hard.

In the problem for finding STNT T of G = (V, E), V is
divided into two disjoint vertex sets; one is a non-terminal
set VNT and the other is a potential terminal set VT in which
each vertex may, but not necessarily be, a leaf of T .

Theorem 1: On general graphs, the problem for finding
an STNT is NP-hard.

Proof. We prove this by polynomial-time reduction from the
Hamiltonian path problem that is NP-hard, to our problem.
An instance I of the Hamiltonian path problem is as follows:
Given a graph G = (V, E) where V = {s, v1, · · · , vn−2, t} and
E ⊂ V ×V , find a path P from s to t that passes through each
vertex of V − {s, t} exactly once.

We transform an instance I of the Hamiltonian path
problem to an instance I′ of the STNT problem. On an in-
stance I′ of the STNT problem, let s and t be potential ter-
minals of G and {v1, · · · , vn−2} be the set VNT of non-terminal
vertices of G. We show that an instance I of the Hamiltonian
path problem has a solution if and only if an instance I′ of
the STNT problem has a solution.

To prove the only-if part, we assume that an instance
I of the Hamiltonian path problem has a solution, that is,
a Hamiltonian path P = s, v1, · · · , vn−2, t exists. This is
obviously a spanning tree of G. Since P is a path, only
s and t are leaves. s and t are potential terminals, then
P = {s, v1, · · · , vn−2, t} is an STNT of G. It means that if I
has a solution, then the I′ of the STNT problem on G has a
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solution.
To prove the if-part, we next assume that, on an in-

stance I′, G has an STNT T . Since VNT = {v1, · · · , vn−2}
and potential terminals are only s′ and t′, each vertex in
{v1, · · · , vn−2} is not a leaf of the STNT. Therefore, the STNT
is a path starting from s to t. For the above reasons, P =
{s, · · · , t} is a Hamiltonian path on G.

Consequently, as the Hamiltonian path problem is NP-
hard, the STNT problem is NP-hard. �

3. Cographs and Cotrees

A cograph can be constructed from isolated vertices by
consecutive application of disjoint union and join opera-
tions [1]. We introduce here a cotree that is a tree where
each of its internal vertices is labeled with either number 0
or 1. On cotree TC , we call a vertex labeled 1 and 0 a label-1
and label-0 vertex, respectively. Every cotree TC defines a
cograph G having the leaves of TC as vertices, and in which
the subtree rooted at each vertex v of TC corresponds to the
induced subgraph in G defined by the set of leaves descend-
ing from v. A subgraph corresponding to a subtree of TC

rooted at vertex v is denoted by Gv.

• A subtree of TC consisting of a single leaf corresponds
to an induced subgraph of G with a single vertex.
• A subtree of TC rooted at a label-0 vertex v corresponds

to the disjoint union of subgraphs of G defined by the
children of v.
• A subtree of TC rooted at a label-1 vertex v corresponds

to the join of subgraphs of G defined by the children
of v; that is, we construct the disjoint union and add
an edge between each pair of two vertices correspond-
ing to leaves in the different subtrees of TC . (As il-
lustrated in Fig. 2 (a), label-1 vertex v12 of cotree TC has
two children corresponding to subgraphs Gv04 with three
isolated vertices 8, 9, 10 and Gv05 with two isolated ver-
tices 11, 12. Then, the join operation of Gv04 and Gv05 are

executed at label-1 vertex v12 of cotree TC , that is, we
add edges {8, 11}, {8, 12}, {9, 11}, {9, 12}, {10, 11} and
{10, 12}.)

In the following, let G = (V, E) be a cograph with a
vertex set V = VNT ∪ VT and Ĝ = (VNT , Ê) be a cograph
induced by a non-terminal set VNT .

Figures 1 (a) and (b) illustrate a cograph G and a co-
graph Ĝ, respectively. Moreover, Figs. 2 (a) and (b) illus-
trate a cotree TC of G and a cotree T̂C of Ĝ, respectively.
On G shown in Fig. 1 (a), vertices 6, 8, 15 are in VT and
other vertices are in VNT .

Ĝ is derived from G by removing potential terminals
and each edge that is adjacent to them. For deriving a cotree
T̂C of Ĝ from TC of G, we first remove leaves vp’s corre-
sponding to potential terminals and all edges adjacent to
such leaves vp’s. After this process, we remove vertices
whose descendants have no non-terminal vertex, so we de-
rive T̂C . Thus, each vertex v of T̂C corresponds to v of TC .

Fig. 1 Cographs G and Ĝ.

Fig. 2 Cotrees TC of G and T̂C of Ĝ.

4. The Idea on Which the Proposed Algorithm Is Based

Our algorithm first finds a spanning tree T̂ on Ĝ induced
by non-terminal vertices. Then, in this section, we assume
that a cograph Ĝ is induced by a non-terminal set VNT and
Ĝ is connected. A case where Ĝ is not connected will be
considered in Sect. 6.

We first find a spanning tree T̂ on Ĝ. As all leaves of T̂ ,
that are non-terminal vertices, must be finally connected to
potential terminals for constructing an STNT of G, it is de-
sirable that the number of leaves of T̂ is as few as possible.
(In the following, connecting a vertex v to a vertex u means
that we connect v to u by using an edge {v, u}.) A spanning
tree of Ĝ with the least number of leaves is a Hamiltonian
path on Ĝ. On a cograph G, a linear time algorithm for find-
ing a Hamiltonian path is known [1]. This algorithm finds
the minimum number of disjoint paths that cover all the ver-
tices of G if G has no Hamiltonian path. Therefore, we first
find a Hamiltonian path on Ĝ, if it exists, and regard it as
a spanning tree of Ĝ. When no Hamiltonian path exists on
Ĝ, we find disjoint paths q1, · · · , q j that cover all vertices of
Ĝ. In this case, as will be described in the next section, a
spanning tree T̂ is constructed by connecting one terminal
for each of qi, i = 2, · · · , j to a vertex of q1 so that it contains
no cycle. Each leaf of T̂ on Ĝ needs to be connected to a
distinct potential terminal on G, because it is a non-terminal
vertex. Then, for constructing an STNT on G, we construct
a spanning tree T̂ so as to connect each leaf of T̂ to a dis-
tinct potential terminal on G. Moreover, we show that if at
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least one of leaves of T̂ cannot be connected to a distinct
potential terminal on G, then G has no STNT.

4.1 A Method for Finding a Hamiltonian Path in a Co-
graph

Our algorithm for finding an STNT employs the algorithm
for examining whether a Hamiltonian path exists or not in
a cograph [1]. So, we explain this algorithm proposed by
Corneil et al. [1].

We first define the technical terminology. For a finite
graph G = (V, E), we call s(G) = max(c(G−S )−|S | : S ⊆ V
and c(G−S ) � 1) the scattering number of G where c(G−S )
denotes the number of connected components of G−S ; a set
S ⊆ V is called a scattering set of G, if c(G−S )−|S | = s(G),
c(G − S ) � 1 holds and no other set S ′ with s(G) exists
such that S ′ ⊃ S which denotes that S is a proper subset
of S ′. We call the vertices in the scattering set S scattering
vertices. The minimum number of disjoint paths that cover
the all vertices of G is denoted by π0(G).

On cographs, the following theorem on relation among
scattering number s(G), Hamiltonian paths, Hamiltonian cy-
cles and the minimum number π0(G) of disjoint paths is
known [6].

Theorem 2 ([6]): Let G = (V, E) be a cograph. Then
(1) G has a Hamiltonian path if and only if s(G) ≤ 1,
(2) G has a Hamiltonian cycle if and only if s(G) ≤ 0

and |V | ≥ 3,
(3) π0(G) = max(1, s(G)). �
Based on this theorem, Corneil et al. [1] show that

s(G) can be calculated by applying the following bottom-
up traversal for a cotree.

We assign ai = −1, bi = 1 to each leaf i of a cotree.
As for internal vertices of a cotree, two values av, bv are
assigned to each vertex by the following procedures. We
assume that an internal vertex v has k (> 0) children.
• For a label-1 vertex:

av =
k

max
i=1

⎛⎜⎜⎜⎜⎜⎜⎝ai −
∑
j�i

b j

⎞⎟⎟⎟⎟⎟⎟⎠ (1), bv =
k∑

i=1

bi (2).

• For a label-0 vertex:

av =
k∑

i=1

max(ai, 1) (3), bv =
k∑

i=1

bi (4).

For a cotree, s(G) can be calculated by bottom-up
traversal from leaves to the root. After calculating s(G), the
value ai of each internal vertex i corresponds to the scatter-
ing number s(Gi) of a subgraph Gi and the value of the root
corresponds to s(G) of a cograph G.

Figure 3 illustrates the calculation results of the scat-
tering number s(Ĝ) of Ĝ shown in Fig. 1 (b). The value
a (= 2) of the root corresponds to s(Ĝ). As s(Ĝ) = 2, no
Hamiltonian path exists in Ĝ and two disjoint paths (e.g.,
P1 = 1 2 7 3 14 4 13 5, P2 = 10 11 9 12) can cover all

Fig. 3 Cotree of Ĝ.

vertices of Ĝ by Theorem 2. Moreover, a scattering set Ŝ of
Ĝ is {13, 14}.

Our algorithm first finds a Hamiltonian path or a dis-
joint path cover on Ĝ. In the following, we explain in detail
how to construct a Hamiltonian path or a disjoint path cover
on Ĝ.

We find a Hamiltonian path or a disjoint path cover by
applying bottom-up traversal for T̂C from leaves to the root.
On a subgraph corresponding to a subtree rooted at a label-1
vertex or a label-0 vertex of T̂C , we explain how we con-
struct a Hamiltonian path or a disjoint path cover. However,
subgraphs corresponding to subtrees rooted at a label-0 ver-
tices v0 are a disjoint union of subgraphs Ĝv11 , · · ·, Ĝv1k corre-

sponding to subtrees rooted at children v11, · · ·, v1k of v0, that

is, each structure of Ĝv11 , · · ·, Ĝv1k does not change after ex-

ecuting the disjoint union at v0. Then, we describe how to
construct a Hamiltonian path or a disjoint path cover only on
subgraphs corresponding to subtrees rooted at label-1 ver-
tices.

A subtree T̂C
v1i

of T̂C rooted at a label-1 vertex v1i cor-

responds to a subgraph Ĝv1i . On Ĝv1i , a Hamiltonian path, if
it exists, or a disjoint path cover is found as follows. Let
v01, v02, · · ·, v0k be label-0 vertices that are children of v1i and

Ĝv01 , Ĝv02 , · · ·, Ĝv0k be corresponding subgraphs, respectively.
We assume that each Hamiltonian path or each disjoint path
cover on Ĝv01 , · · ·, Ĝv0k has been found. (See Fig. 4 (a).) As

Ĝv0j , j = 1, · · · , k, are subgraphs corresponding to children

of label-1 v1i , each vertex of Ĝv0j is adjacent to all vertices

of each of the other subgraphs Ĝv0i , i � j. When construct-

ing a Hamiltonian path or a disjoint path cover on Ĝv1i , a

subgraph Ĝv0h that has al disjoint paths p1, p2, · · ·, pal is se-

lected among Ĝv01 , · · ·, Ĝv0k by applying formula (1), that is,

a subgraph satisfying formula (1) is Ĝv0h . (As illustrated in

Fig. 4 (a), Ĝv01 is selected by applying formula (1).) Vertices

of the other subgraphs Ĝv0j , j � h are scattering vertices.

A Hamiltonian path or a disjoint path cover on Ĝv1i is con-

structed by aligning paths p1, p2, · · ·, pal in Ĝv0h and scatter-
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Fig. 4 Construction of a spanning tree.

ing vertices s1, s2, · · ·, sq in the other subgraphs Ĝv0j , j � h
alternately, i.e., align them in the following manner: p1, s1,
p2, s2, · · ·. If the number of scattering vertices is al − 1,
then we can construct a Hamiltonian path H = p1, s1, p2,
s2, · · ·, sal−1 , pal . When the number of scattering vertices is
more than al−1, a Hamiltonian path is constructed by align-
ing the vertices of path pi and surplus scattering vertices sal ,
sal+1 , · · ·, sq alternately, so that l1, sal , l2, sal+1 , · · ·, lp is ob-
tained where l1, · · · , lp are the vertices of pi. (See Fig. 4 (b).)
If the number a′ of scattering vertices is less than al−1, each
vertex of Ĝv1i are covered by exactly one of al − a′ disjoint
paths. (See Fig. 4 (c).)

Our algorithm constructs a spanning tree on Ĝ by us-
ing a Hamiltonian path or by connecting obtained disjoint
paths. When Ĝ has a Hamiltonian path H, H is a spanning
tree on Ĝ. If Ĝ has no Hamiltonian path, then we construct
a spanning tree of Ĝ by connecting obtained disjoint paths
as follows: When we cannot construct a Hamiltonian path,
then the number of scattering vertices is less than al − 1.
Therefore, Ĝ has a new path P = p1, s1, p2, s2, · · ·, sq,
pq+1 and let other paths be pq+2, · · ·, pal on Ĝv0h . Each vertex

of Ĝv0h is adjacent to all vertices in the other subgraphs Ĝv0j ,
j � h, by the definition of the cograph. Then, as each vertex
of pq+2, · · ·, pal is adjacent to all scattering vertices in Ĝv0j ,

j � h, we can construct a spanning tree T̂ by connecting
either end(terminal) of each path of pq+2, · · ·, pal to s1. (See
Fig. 4 (c).)
Example: We explain how to find the minimum disjoint path
cover of Ĝ as shown in Fig. 1 (b). By executing the proce-
dure at v11 of T̂C as shown in Fig. 2 (b), we find the minimum
disjoint path cover of Ĝv11 . Since Ĝv02 that includes 4-disjoint
paths p1 = 1, 2, p2 = 3, p3 = 4 and p4 = 5 satisfies the for-
mula (1), then a scattering vertex is 7. Paths p1 = 1, 2 and
p2 = 3 are connected by the scattering vertex 7. Therefore,
the minimum disjoint path cover of Ĝv11 is p′1 = 1, 2, 7, 3,
p′2 = 4 and p′3 = 5.

When we execute the procedure at v12 of T̂C , scatter-
ing vertices are 11, 12, since Ĝv04 that includes 2-disjoint

paths p1 = 9, p2 = 10 satisfies the formula (1). Therefore,
the minimum disjoint path cover 9, 11, 10, 12 of Ĝv12 is con-
structed by aligning p1 = 9, p2 = 10 and scattering vertices
11, 12 alternately.

When we execute the procedure at root r of T̂C , as Ĝv01
that includes 4-disjoint paths p1 = 1, 2, 7, 3, p2 = 4, p3 = 5
and p4 = 9, 11, 10, 12 satisfies the formula (1), scattering
vertices are 13, 14 in Ĝv06 . Therefore, two paths 9, 11, 10, 12
and 1, 2, 7, 3, 14, 4, 13, 5 constructed by aligning paths p1,
p2, p3 and scattering vertices 14, 13 alternately, are the min-
imum disjoint path cover.

5. A Method for Finding an STNT

By finding a Hamiltonian path or a disjoint path cover on Ĝ,
we can tell which subgraph Ĝ j includes disjoint paths and
which subgraph Ĝk includes scattering vertices by applying
equations (1)–(4). Finally, we can construct a spanning tree
T̂ on Ĝ by connecting obtained disjoint paths q1, · · ·, qk on
a subgraph as described in Sect. 4.1.

However, construction of a disjoint path qi for each
subgraph Ĝi, has several possibilities depending on how to
connect terminals of disjoint paths p1, p2, · · ·, pal on a sub-
graph Ĝv0h of Ĝi and scattering vertices s1, · · ·, sq. (See

Fig. 4.) Each leaf of T̂ on Ĝ needs to be connected to a
distinct potential terminal on G, because it is a non-terminal
vertex. As a spanning tree T̂ is constructed by connecting
disjoint paths qi’s, terminals of a path qi on Ĝi constructed
by connecting p1, · · ·, pk on Ĝv0h may finally become leaves

of T̂ . (See Fig. 6.) Then, for constructing an STNT of G,
we construct a disjoint path qi on each subgraph Gi such that
one terminal of qi are connected to a distinct potential ter-
minal. We next explain a method for constructing a disjoint
path qi on each subgraph Gi.

For constructing a spanning tree T̂ , we find a Hamil-
tonian path or a disjoint path cover by applying bottom-
up traversal for T̂C from leaves to the root. Similarly, we
choose one terminal for each of q1, · · ·, qk and connect them
to a distinct potential terminal by applying bottom-up traver-
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Fig. 5 P̂-graph, Ŝ -graph, P-graph and S -graph.

sal for cotree TC . In the following, on a subgraph corre-
sponding to a subtree rooted at a label-1 vertex or a label-0
vertex of TC , we explain how to choose one terminal for
each of q1, · · ·, qk and connect them to a distinct poten-
tial terminal. However, subgraphs corresponding to subtrees
rooted at a label-0 vertices v0 are disjoint union of subgraphs
Gv11 , · · ·, Gv1k corresponding to subtrees rooted at children v11,

· · ·, v1k of v0, that is, each structure of Gv11 , · · ·, Gv1k after ex-

ecuting the disjoint union at v0 does not change. Then, we
describe how to choose one terminal for each of q1, · · ·, qk

and connect them to a distinct potential terminal on only
subgraphs corresponding to subtrees rooted at label-1 ver-
tices.

There is one-to-one correspondence between the leaves
of TC and the vertices of G. We first describe the case where
a label-1 vertex is adjacent to only leaves of TC . As each
pair of v1, · · ·, vk is adjacent by the definition of cographs,
when a label-1 vertex v1 is adjacent to leaves v1, · · ·, vk, a
subgraph Gv1 induced by v1, · · ·, vk is a complete graph.
(As illustrated in Fig. 3, v13 corresponds to v1 in this case.)
Then, Gv1 has a Hamiltonian path P constructed only by
non-terminal vertices. In this case, since exactly two ter-
minals of P are leaves of the spanning tree, if two or more
potential terminals exist in Gv1 , then an STNT on Gv1 can be
constructed. If only one potential terminal exists in Gv1 , no
STNT exists in Gv1 , but one terminal of P can be connected
to a potential terminal in Gv1 .

We next describe the case where a label-1 vertex v1i is
adjacent to at least one label-0 vertex of TC . (As illustrated
in Fig. 3, v11, v12 and r correspond to v1i in this case.)

As described before, we construct a Hamiltonian path,
if it exists, or a disjoint path cover by applying bottom-up
traversal for T̂C . We assume that, on T̂C , a label-1 vertex v1i
has children v01, v02, · · ·, v0k that are label-0 vertices. On Ĝv1i
corresponding to a subtree T̂C

v1i
rooted at v1i , we call Ĝv01 , Ĝv02 ,

· · ·, Ĝv0k children subgraphs of Ĝv1i . (See Fig. 5 (a). In this

Fig. 6 Case 1.

case, Ĝv01 and Ĝv02 are children subgraphs of Ĝv1i .) On chil-

dren subgraphs Ĝv01 , Ĝv02 , · · ·, Ĝv0k , a subgraph Ĝv0h that has
al paths is selected by applying formula (1), and a Hamilto-
nian path or a disjoint path cover on Ĝv1i is constructed by

connecting obtained disjoint paths p1, · · ·, pal on Ĝv0h and

vertices of subgraphs Ĝv0j , j � h in a manner described as
follows: By the property of cographs, methods for connect-
ing a terminal of a disjoint path to a potential terminal are
classified into the following three cases. Note that each ver-
tex of Ĝ corresponds to a vertex of G.
Case 1: A terminal of a disjoint path included in Gv0h is ad-
jacent to a potential terminal included in Gv0h . (See Fig. 6. In
this case, Gv01 selected by applying formula (1) corresponds
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Fig. 7 Case 2.

Fig. 8 Case 3.

to Gv0h .)
Case 2: Since each potential terminal in Gv0j , j � h, is ad-
jacent to each vertex in Gv0h , we can connect a potential ter-
minal in Gv0j , j � h and a terminal of a disjoint path in Gv0h .
(See Fig. 7.)
Case 3: Even if there is no potential terminal in Gv0h adjacent
to a terminal of a disjoint path, we can connect a potential
terminal in Gv0h to a terminal of a disjoint path indirectly via
a scattering vertex in Gv0j , j � h. Note that, in this case, scat-
tering vertices that have already been used to connect two
disjoint paths in Gv0h cannot be used to connect a potential
terminal and a terminal of a disjoint path. (See Fig. 8.)

In order to explain in detail the above three cases, we
define several technical terminologies related to Ĝ. By find-
ing a Hamiltonian path or a disjoint path cover on Ĝ, we can
tell which subgraph Ĝi includes disjoint paths and which
subgraph Ĝ j includes scattering vertices. Since disjoint
paths on Ĝv0h are constructed based on constructed paths on

Ĝv1i , we call Ĝv0h a P̂-graph o f Ĝv1i and denote it by ĜP
v1i

. (See

Fig. 5 (a). In this case, Ĝv01 is a P̂-graph ĜP
v1i

.) Moreover, a

graph obtained by removing vertices and edges of ĜP
v1i

from

Ĝv1i , is induced only by scattering vertices. Then, we call

such a graph an Ŝ -graph o f Ĝv1i and denote it by ĜS
v1i

. (See

Fig. 5 (a). In this case, Ĝv02 is an Ŝ -graph ĜS
v1i

.)

We next define, on a subgraph Gv1i of an input graph

G, a P-graph GP
v1i

corresponding to a P̂-graph ĜP
v1i

and an S -

graph GS
v1i

corresponding to an Ŝ -graph ĜS
v1i

as follows. Note

that each vertex of Ĝ corresponds to a vertex of G.
Let v0k be the root of T̂C

v0k
corresponding to ĜP

v1i
. Vertex v0k

of cotree T̂C of Ĝ corresponds to vertex v0k of cotree TC of G.
On TC , a subgraph Gv0k corresponding to a subtree TC

v0k
rooted

at v0k is a P-graph GP
v1i

o f Gv1i . (See Figs. 5 (a) (b). In this

case, v01 is the root of TC
v01

corresponding to GP
v1i

.) Moreover, a

graph obtained by removing vertices and edges of GP
v1i

from

Gv1i , is an S -graph GS
v1i

o f Gv1i . (See Fig. 5 (b).) Whether

potential terminals can be connected to distinct terminals of
p1, · · ·, pal or not depends on whether potential terminals
are included in which of P-graph and S -graph. On Gv1i , each
vertex of S -graph GS

v1i
is adjacent to all vertices of P-graph

GP
v1i

by the definition of the cograph. Furthermore, each ter-

minal of p1, · · ·, pal on Gv1i is included in P-graph GP
v1i

. Then,

the above-mentioned three cases where a terminal of p1, · · ·,
pal is connected to a potential terminal is described formally
as follows. Note that each vertex of Ĝ corresponds to a ver-
tex of G, then disjoint paths p1, · · ·, pal on ĜP

v1i
that have been

found, exist on GP
v1i

.

Case 1: The case where, on paths p1, · · ·, pal on GP
v1i

, either

of terminals of paths p1, · · ·, pal has been connected to a
distinct potential terminal in GP

v1i
. (See Figs. 6 (a) (b).)

After finding an STNT on a child subgraph of GP
v1i

, ei-

ther of terminals of paths on GP
v1i

has been connected to a

potential terminal in GP
v1i

.

Case 2: The case where an S -graph GS
v1i

has potential termi-

nals.
Since each vertex in GS

v1i
is adjacent to all vertices in

GP
v1i

, distinct vertices in GS
v1i

can be connected to terminals of

p1, · · ·, pal not connected to a potential terminal in GP
v1i

. (See

Fig. 7.)
Case 3: The case where potential terminals in GP

v1i
that are

not connected to a terminal of p1, · · ·, pal , exist.
Such vertex vp is not adjacent to a terminal of p1, · · ·,

pal , but it is adjacent to all non-terminal vertices in GS
v1i

. Let

vl in GP
v1i

be a terminal not connected to a potential termi-

nal and vs in GS
v1i

be a scattering vertex. vp, vs and vl are

connected indirectly via vs. (See Fig. 8.)
We describe a method of determining whether an

STNT exists or not on a subgraph Gv1i with regard to the
above-mentioned three cases. We construct a Hamiltonian
path or a disjoint path cover on subgraphs by traversing
cotree TC in bottom-up order from leaves to the root. On
each subgraph Gv1i , we first construct a Hamiltonian path or
a disjoint path cover q1, · · · , qk by connecting disjoint paths
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p1, · · · , pl on a child subgraph GP
v1i

of Gv1i and scattering ver-

tices on a child subgraph GS
v1i

of Gv1i . If the number of con-

structed disjoint paths on Gv1i is one, that is, q1 is a Hamil-
tonian path, then q1 is a tree. (See Fig. 6 (a). In this case,
q1 = p1, s1, p2, s2, pal is constructed by aligning three dis-
joint paths p1, p2, pal on GP

v1i
and scattering vertices s1, s2

on GS
v1i

, alternately.) Otherwise, the set of q1, · · · , qk (k > 1)

is a disjoint path cover. Before explaining the case where
the number k of constructed disjoint paths on Gv1i is more
than one, we define several technical terminologies. As de-
scribed later, we construct an STNT by connecting disjoint
paths pi’s where either terminal of pi has been connected
to a distinct potential terminal. Therefore, we need to ob-
tain the number of such disjoint paths pi’s. Thus we have
obtained the number of disjoint paths pi’s constructed by
non-terminal vertices where either terminal of pi has been
connected to a distinct potential terminal in GP

v1i
, because we

have constructed disjoint paths connected to a distinct po-
tential terminal in a child subgraph GP

v1i
of Gv1i by traversing

cotree TC in bottom-up order from leaves to the root. We
call such a disjoint path pi where either terminal of pi has
been connected to a distinct potential terminal a satisfied
path. On the other hand, a non-satisfied path is a disjoint
path pi where neither terminal of pi has been connected to a
distinct potential terminal. In the case where q1 is a Hamil-
tonian path, since q1 is constructed by p1, · · · , pl and scat-
tering vertices, if at least two satisfied paths exists among
p1, · · · , pl, then an STNT exists on Gv1i . (See Fig. 6 (a). p1

and pal are two satisfied paths. Then, an STNT exists on
Gv1i .)

We show that when a Hamiltonian path does not ex-
ist on Gv1i , that is, q1, · · · , qk, k > 1, holds, if the number
of satisfied paths among p1, · · ·, pl is k, then we can con-
struct an STNT on Gv1i as follows: On each subgraph Gv1i ,
we use the number of satisfied paths on its child subgraph
GP
v1i

and the number of constructed disjoint paths on Gv1i . Let

sp(GP
v1i

) be the number of satisfied paths and dp(Gv1i ) be the

number of disjoint paths constructed by non-terminal vertex
in Gv1i . (For example, dp(Gv1i ) = 1, sp(GP

v1i
) = 2 hold in

Fig. 6 (a) and dp(Gv1i ) = 2, sp(GP
v1i

) = 3 hold in Fig. 6 (b).)

The dp(Gv1i ) disjoint paths q1, · · · , qdp(G
v1i

) are constructed by

connecting p1, · · ·, pal on GP
v1i

and scattering vertices in GS
v1i

.

We now assume that p1, · · ·, psp(GP
v1i

) are satisfied paths and

psp(GP
v1i

)+1, · · ·, pal are non-satisfied paths. We first construct

a disjoint path q1 = p1, s1, psp(GP
v1i

)+1, s2, · · ·, pal , sal , p2 by

selecting two satisfied paths p1, p2 among p1, · · ·, psp(GP
v1i

), as

the starting path and the ending path, and by aligning scat-
tering vertices s1, · · ·, sal and non-satisfied paths psp(GP

v1i
)+1,

· · ·, pal , alternately. (As illustrated in Fig. 6 (b), q1 = p1, s1,
psp(GP

v1i
)+1, s2, p2.) A spanning tree Tv1i of Gv1i can be con-

structed by connecting a terminal of surplus satisfied paths
p3, · · ·, psp(GP

v1i
) to a scattering vertex s1 of q1 in GS

v1i
. (As il-

lustrated in Fig. 6 (b), a spanning tree Tv1i can be constructed
by connecting a terminal of surplus satisfied path p3 to a
scattering vertex s1 of q1.) Two terminals of q1 and one
terminal for each of p3, · · ·, psp(GP

v1i
) are leaves of Tv1i . There-

fore, since two terminals of q1 and one terminal for each of
p3, · · ·, psp(GP

v1i
) are connected to a distinct potential terminal,

then the constructed spanning tree Tv1i is an STNT on Gv1i .
In Case 1, if (dp(Gv1i ) + 1) − sp(GP

v1i
) ≤ 0 holds, then

one terminal for each of disjoint paths can be connected
to a distinct potential terminal, that is, we can construct
an STNT on Gv1i . (As illustrated in Fig. 6 (a), dp(Gv1i ) =
1 and sp(GP

v1i
) = 2, then (dp(Gv1i ) + 1) − sp(GP

v1i
) ≤ 0

holds. In Fig. 6 (b), dp(Gv1i ) = 2 and sp(GP
v1i

) = 3, then

(dp(Gv1i ) + 1) − sp(GP
v1i

) ≤ 0 holds.)

In Case 2, when l non-satisfied paths in GP
v1i

exist after

executing the process in Case 1, if l or more potential termi-
nals in GS

v1i
exist, we can connect such terminals of disjoint

paths to distinct potential terminals. Then, we can construct
an STNT on Gv1i . (As illustrated in Fig. 7, three non-satisfied
paths in GP

v1i
exist. However, there are three potential termi-

nals in GS
v1i

. Then an STNT on Gv1i can be constructed by

connecting one terminal of each of three non-satisfied paths
in GP

v1i
to vertex s1, which is only one vertex in the scattering

set, and also connecting the other terminals to three potential
terminals in GS

v1i
.)

When non-satisfied paths exist after executing pro-
cesses in Cases 1 and 2, and if potential terminals not yet
connected to a terminal of disjoint paths exist in GP

v1i
as in

Case 3, each of such vertices can be connected to a ter-
minal by using non-terminal vertices in GS

v1i
. However, we

need to use non-terminal vertices in GS
v1i

for connecting dis-

joint paths on GP
v1i

. If the number dp(Gv1i ) of disjoint paths

constructed by non-terminal vertices on Gv1i is al, we need
al − 1 scattering vertices to construct disjoint paths. Let
nt(GS

v1i
) be the number of non-terminal vertices in GS

v1i
. When

nt(GS
v1i

)−(al−1) > 0 holds, nt(GS
v1i

)−(al−1) scattering vertices

are not used to construct disjoint paths. Such nt(GS
v1i

)−(al−1)

scattering vertices are called surplus scattering vertices and
are denoted by r(GS

v1i
). (Note: The role of surplus scattering

vertices in this paper is different from that in [1] as follows.
As described in Sect. 4.1, the algorithm [1] by Corneil et al.
constructs a disjoint path cover by connecting disjoint paths
and scattering vertices. If the number of disjoint paths is
q, we need q − 1 scattering vertices for constructing a new
disjoint path. If surplus scattering verities exist, then these
are included in inner vertices of disjoint paths. On the other
hand, our algorithm uses surplus scattering vertices for con-
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necting disjoint paths and non-terminal vertices.) In Case
3, we can use surplus scattering vertices to connect a ter-
minal of disjoint paths and a potential terminal in GP

v1i
. (As

illustrated in Fig. 8, a new path P is constructed by align-
ing three paths p1, p2, pal and two scattering vertices, re-
spectively. Two terminals of p1, p2 and pal are non-satisfied
paths, but surplus scattering vertices r(GS

v1i
) = 2 and two po-

tential terminals exist in GP
v1i

. Then an STNT on Gv1i can be

constructed by connecting each terminal of P to a distinct
potential vertex indirectly via a surplus scattering vertex.)

To summarize the above, we examine whether distinct
potential terminals can be connected to each terminal of
non-satisfied paths by the following processing. Let po(GS

v1i
)

be the number of potential terminals in GS
v1i

and po−(GP
v1i

) be

the number of potential terminals in GP
v1i

not connected to a

terminal of disjoint paths.
(1) If S 1(Gv1i ) = (dp(Gv1i )+ 1)− sp(GP

v1i
) ≤ 0 holds, then we

can construct an STNT on Gv1i , since one terminal for each
of non-satisfied paths is connected to a distinct potential ter-
minal.
(2) The case where S 1(Gv1i ) > 0 holds.

S 1(Gv1i ) terminals of disjoint paths not connected to
distinct potential terminals exist. If S 2(Gv1i ) = S 1(Gv1i ) −
po(GS

v1i
) ≤ 0 holds, then we can construct an STNT on Gv1i ,

since one terminal for each of non-satisfied paths is con-
nected to a distinct potential terminal in GS

v1i
.

(3) The case where S 2(Gv1i ) > 0 holds.
S 2(Gv1i ) terminals of disjoint paths not connected to

distinct potential terminals exist. If S 3(Gv1i ) = S 2(Gv1i ) −
min{po−(GP

v1i
), r(GS

v1i
)} ≤ 0 holds, then we can construct an

STNT on Gv1i , since one terminal for each of non-satisfied
paths is connected to a distinct potential terminal indirectly
via a surplus scattering vertex.

Lemma 1: On a subgraph Gv1i corresponding to subtree

TC
v1i

rooted at a label-1 vertex v1i , if at least one of S 1(Gv1i ),

S 2(Gv1i ) and S 3(Gv1i ) is equal to or less than 0, then an STNT
exists on Gv1i , otherwise it does not.

Proof. We find an STNT on a subgraph Gv1i by applying

bottom-up traversal for a cotree TC
v1i

from leaves to root v1i .

Let v01, · · ·, v0k be label-0 vertices that are children of v1i . On
each of subgraphs Gv01 , · · ·, Gv0k corresponding to v01, · · ·, v0k , a
Hamiltonian path or a disjoint path cover has been found and
sp(GP

v1i
), nt(GS

v1i
), dp(GP

v1i
), po(GS

v1i
) and po−(GP

v1i
) have been

calculated. A subgraph Gv0h that has al disjoint paths p1, p2,
· · ·, pal is selected among Gv01 , · · ·, Gv0k by applying formula
(1). Vertices of the other subgraphs Gv0j , j � h are scattering
vertices s1, s2, · · ·, sq. Each vertex in Gv0j , j � h, is adjacent
to all vertices in Gv0h and potential terminals belong to either

P-graph GP
v1i

or S -graph GS
v1i

.

If S 1(Gv1i ) = (dp(Gv1i )+1)− sp(GP
v1i

) ≤ 0 holds, then we

can construct an STNT on Gv1i , since one terminal for each
of non-satisfied paths is connected to a distinct potential ter-
minal.

When S 1(Gv1i ) > 0 holds, S 1(Gv1i ) terminals of disjoint
paths not connected to distinct potential terminals exist. If
S 2(Gv1i ) = S 1(Gv1i ) − po(GS

v1i
) ≤ 0 holds, then we can con-

struct an STNT on Gv1i , since one terminal for each of non-
satisfied paths is connected to a distinct potential terminal in
GS
v1i

.

When S 2(Gv1i ) > 0 holds, S 2(Gv1i ) terminals of disjoint
paths not connected to distinct potential terminals exist. If
S 3(Gv1i ) = S 2(Gv1i ) − min{po−(GP

v1i
), r(GS

v1i
)} ≤ 0 holds, then

we can construct an STNT on Gv1i , since one terminal for
each of non-satisfied paths is connected to a distinct poten-
tial terminal indirectly via a surplus scattering vertex.

We next show that if S 1(Gv1i ), S 2(Gv1i ) and S 3(Gv1i ) are
greater than 0, then no STNT exists on Gv1i . We consider
the case where S 1(Gv1i ) > 0 holds, that is, a terminal of
disjoint paths not connected to a potential terminal exists. A
spanning tree T̂v1i with non-terminal vertices is constructed
by connecting obtained disjoint paths p1, · · ·, pal on GP

v1i
.

We assume that P (= p1, s1, p2, s2 · · · , sal , pal ) is a path not
connected to a potential terminal. (As illustrated in Fig. 9,
P (= p1, s, pal ).) In this case, we show that regardless of the
construction of P, we cannot connect a potential terminal to
a terminal of P.

Let TC
v1P

be a cotree rooted at v1P corresponding to a P-

graph GP
v1i

of Gv1i . There is one-to-one correspondence be-

tween leaves of TC
v1P

and vertices of G. On TC
v1P

, if there is a

label-1 vertex adjacent to leaves v1, · · ·, vk and at least one
leaf among v1, · · ·, vk is a potential terminal, then a terminal
of P can be connected to a potential terminal, contradicting
that P is a path not connected to a potential terminal.

Therefore, each leaf of TC
v1P

adjacent to label-1 vertices

is a non-terminal vertex. However, the leaves of TC
v1P

adjacent

to label-0 vertices may be potential terminals. (See Fig. 9. In

Fig. 9 Connection of a potential terminal and a terminal of a disjoint path
using a scattering vertex.
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this case, such potential terminal is vpo.) Since S 2(Gv1i ) > 0
holds, no potential terminal adjacent to a terminal of P exists
in GS

v1i
. Then, potential terminals belong to P-graph GP

v1P
. To

make a potential terminal vpo and a terminal of P connected,
we need to use a scattering vertex s in GS

v1i
, i.e., as well as

by connecting vpo and P with s by edges. However, since
S 3(Gv1i ) > 0 holds, no surplus scattering vertex exists in
GS
v1i

. (See Fig. 9. Scattering vertex s is used to construct to

p1 and pal .) If we use scattering vertex s in GS
v1i

to connect a

potential terminal in GP
v1P

to a terminal of P, then P is divided

into two paths. The number of leaves of a spanning tree
increases by increasing the number of paths. Therefore, on
Gv1i , we cannot connect a potential terminal to a terminal of
P no matter how we construct a P.

Consequently, when S 1(Gv1i ), S 2(Gv1i ) and S 3(Gv1i ) are
greater than 0, no STNT exists on Gv1i . �

On each subgraph Gv1i , we find S 1(Gv1i ), S 2(Gv1i ) and
S 3(Gv1i ) by applying bottom-up traversal for a cotree TC

from leaves to the root. If at least one of S 1(Gv1i ), S 2(Gv1i )
and S 3(Gv1i ) is equal to or less than 0, then Gv1i has an STNT.
This means that each terminal of disjoint paths connects to
a distinct terminal on Gv1i . Otherwise, S 3(Gv1i ) terminals of
disjoint paths do not connect to distinct terminals on Gv1i .
Finally, if at least one of S 1(G), S 2(G) and S 3(G) is equal
to or less than 0, then G has an STNT, otherwise it does not
have an STNT. In summary, our algorithm is as follows.

Procedure Find Spanning Tree with Non-terminal Set
Step 1. Find two cotrees TC of G and T̂C of Ĝ.
Step 2. By traversing cotree T̂C in bottom-up order from

leaves to the root, we execute the following in-
structions to each subgraph Ĝv1i of Ĝ, correspond-

ing to inner vertices v1i of T̂C .
begin

Find the scattering number s(Ĝv1i ), a P̂-graph

ĜP
v1i

and an Ŝ -graph ĜS
v1i

.

end
Step 3. By traversing cotree TC in bottom-up order from

leaves to the root, we execute the following in-
structions to each subgraph Gv1i of G correspond-

ing to inner vertices v1i of TC .
begin

Find nt(GS
v1i

), po(GS
v1i

) and po−(GP
v1i

).

end
Step 4. By traversing cotree TC in bottom-up order from

leaves to the root, we execute the following in-
structions to each subgraph Gv1i of G correspond-

ing to inner vertices v1i of TC .
begin

Find S 1(Gv1i ), S 2(Gv1i ) and S 3(Gv1i ).
end

Step 5. If at least one of S 1(G), S 2(G) and S 3(G) is equal
to or less than 0, then G has an STNT, otherwise

it does not have an STNT. �

Theorem 3: Procedure Find Spanning Tree with Non-
terminal Set finds an STNT of G in O(n + m) time.

Proof. We first describe the correctness of the procedure.
We find each STNT on Gv1i by traversing a cotree TC in
bottom-up order from leaves to the root. When reaching the
root of TC , we obtain S 1(G), S 2(G) and S 3(G). By Lemma
1, if at least one of S 1(G), S 2(G) and S 3(G) is equal to or
less than 0, then G has an STNT, otherwise it does not.

We next analyze the complexity of the procedure. In
step 1, a cotree of a cograph can be constructed in O(n +m)
time [4], [5]. In step 2, the algorithm for finding a Hamil-
tonian path, if it exists, or disjoint paths on cograph can
be done in O(n + m) time [1]. In step 3, since the num-
ber of the disjoint paths and that of scattering vertices on
each subgraph of Ĝ have been found in step 2 [1], nt(GS

v1i
),

po(GS
v1i

) and po−(GP
v1i

) are calculated in O(1) time on each

internal vertex v1i of TC . Then, step 3 can be done in
O(n + m) time by applying bottom-up traversal for a cotree
TC . Step 4 can be done in O(n + m) time by applying
bottom-up traversal for a cotree TC . Therefore, Procedure
Find Spanning Tree with Non-terminal Set finds an STNT
in O(n + m) time. �

6. The Case Where ̂G Is Not Connected

We finally consider the case where Ĝ is not connected. Since
an input graph G is connected, the root of cotree TC is a
label-1 vertex. Let v01, · · ·, v0k be label-0 vertices that are chil-
dren of the root and Gv01 , · · ·, Gv0k be corresponding subgraphs
on G, respectively. As each vertex of Gv0i is adjacent to all
vertices of each of the other subgraphs Gv0j , j � i, if two
or more subgraphs among Gv01 , · · ·, Gv0k have non-terminal

vertices, then Ĝ is connected. Therefore, when Ĝ is not con-
nected, all non-terminal vertices are included in a subgraph
among Gv01 , · · ·, Gv0k on G. We assume that Gv0h includes all
non-terminal vertices and the other subgraphs include only
potential terminals. (See Fig. 10.) As Ĝ is not connected,
all non-terminal vertices are included in subgraphs Gv11 , · · ·,

Fig. 10 The case where Ĝ is not connected.
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Gv1l corresponding to label-1 vertices v11, · · ·, v1l whose par-

ent is v0h. Subgraphs obtained by removing Gv0h from G are
induced only by potential terminals. Then, we apply Pro-
cedure Find Spanning Tree with Non-terminal Set to each
of Gv11 , · · ·, Gv1l . For each of Gv11 , · · ·, Gv1l , we find the num-
ber of terminals of disjoint paths that are not connected to
a potential terminal. Vertices of the subgraph Gs obtained
by removing Gv0h from G are only potential terminals and
each of these vertices is adjacent to all vertices in Gv0h . (See
Fig. 10.) Then, each distinct potential terminal can be con-
nected to a leaf in Gv0h . If the number of potential terminals
in Gs is equal to or more than that of terminals in Gv0h not
connected to a potential terminal, then G has an STNT, oth-
erwise it does not.

7. Concluding Remarks

In this paper, we first have shown that the problem for find-
ing an STNT is NP-hard even if each edge has the weight
of one on general graphs. We also have shown that if G is
a cograph then finding an STNT of G is linearly solvable
when each edge has the weight of one. We are interested
in finding other classes of graphs in which this problem is
polynomially solvable.
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by applying formula (1). (See Fig. A· 1 (a).) An S -graph
GS
v11

is Gv03 that includes a scattering vertex 7. A new

path 1, 2, 7, 3 is constructed and this subgraph Gv11 is ap-
plicable to Case 2. Then, a potential terminal 6 is con-
nected to a non-terminal vertex 5 that is one terminal of p4.
S 1(Gv11 ) = (dp(Gv11 ) + 1) − sp(GP

v11
) = (3 + 1) − 0 = 4 ≥ 0,

S 2(Gv11 ) = S 1(Gv11 )− po(GS
v11

) = 4−1 = 3 ≥ 0 and S 3(Gv11 ) =

S 2(Gv11 ) − min{po−(GP
v11

), r(GS
v11

)} = 3 − min{0, 0} = 3 ≥ 0.

Therefore, Gv11 has no STNT, since S 1(Gv11 ), S 2(Gv11 ) and
S 3(Gv11 ) are greater than 0.

When the procedure is executed at v12 of TC , a P-graph
GP
v12

is Gv04 that includes 2-disjoint paths p1 = 9 and p2 = 10,

by applying formula (1). (See Fig. A· 1 (b).) An S -graph
GS
v12

is Gv05 that includes two scattering vertices 11 and 12.

A new path 9, 11, 10 is constructed and this subgraph Gv12 is
applicable to Case 3 such that a non-terminal vertex 12 is
a surplus scattering vertex. Then, a potential terminal 8 is
connected to a non-terminal vertex 10 by using the surplus
scattering vertex 12. S 1(Gv12 ) = (dp(Gv12 ) + 1) − sp(GP

v12
) =

(1 + 1) − 0 = 2 ≥ 0, S 2(Gv12 ) = S 1(Gv12 ) − po(GS
v12

) = 2 − 0 =

2 ≥ 0 and S 3(Gv12 ) = S 2(Gv12 ) − min{po−(GP
v12

), r(GS
v12

)} =
2 − min{1, 1} = 1 ≥ 0. Therefore, Gv12 has no STNT, since
S 1(Gv12 ), S 2(Gv12 ) and S 3(Gv12 ) are greater than 0.

When the procedure is executed at root r of TC , a
P-graph GP

r is Gv01 that includes 4-disjoint paths p1 =

1, 2, 7, 3, p2 = 4, p3 = 5, 6 and p4 = 9, 11, 10, 12, 8,
by applying formula (1). (See Fig. A· 1 (c).) An S -graph
GS

r is Gv06 that includes two scattering vertices 13 and 14.

S 1(Gr) = (dp(Gr) + 1) − sp(GP
r ) = (2 + 1) − 2 = 1 ≥ 0,

S 2(Gr) = S 1(Gr) − po(GS
r ) = 1 − 1 = 0 ≤ 0. There-

fore, Gr has no STNT, since S 2(Gr) is less than 0. A
new path 1, 2, 7, 3, 14, 4, 13, 5, 6 is constructed and this sub-
graph Gv12 is applicable to Case 2. Then, a potential ter-
minal 15 is connected to a non-terminal vertex 1 that is
one terminal of the new path. G has two disjoint paths
p1 = 15, 1, 2, 7, 3, 14, 4, 13, 5, 6 and p2 = 9, 11, 10, 12, 8,
and two terminals of p1 are potential terminals and one ter-
minal of p2 is a potential terminal. We can construct an
STNT on G by connecting another terminal 9 of p2 to a ver-
tex 13 of p1.
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