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A Linear Time Algorithm for Finding a Spanning Tree with
Non-Terminal Set Vyr on Cographs

Shin-ichi NAKAYAMA " and Shigeru MASUYAMA ", Members

SUMMARY  Given a graph G = (V, E) where V and E are a vertex and
an edge set, respectively, specified with a subset Vyr of vertices called a
non-terminal set, the spanning tree with non-terminal set Vyr is a con-
nected and acyclic spanning subgraph of G that contains all the vertices of
V where each vertex in a non-terminal set is not a leaf. In the case where
each edge has the weight of a nonnegative integer, the problem of finding
a minimum spanning tree with a non-terminal set Viyr of G was known to
be NP-hard. However, the complexity of finding a spanning tree on general
graphs where each edge has the weight of one was unknown. In this pa-
per, we consider this problem and first show that it is NP-hard even if each
edge has the weight of one on general graphs. We also show that if G is a
cograph then finding a spanning tree with a non-terminal set Vyr of G is
linearly solvable when each edge has the weight of one.

key words: spanning tree, cograph, algorithm

1. Introduction

Consider a graph G = (V, E) and a function w from its edge
set to the set of nonnegative integers. By V and E we denote
the vertex and edge sets of G, respectively. For any subgraph
G; = (V,, E;) of G where V; and E; are the vertex and edge
sets of Gy, let w(G;) = 3 e, w(e) be its weight.

Given a graph G and subset V7 of its vertices called
a non-terminal set, a minimum spanning tree with a non-
terminal set (MSTNT) is a connected and acyclic spanning
subgraph of G that contains all the vertices of V with the
minimum weight where each vertex in the non-terminal set
is not a leaf [8]. Zhang and Yin [8] showed that the problem
for finding an MSTNT is N P-hard and describe an approxi-
mation algorithm for finding an MSTNT on general graphs.
This problem can be applied to the design of computer net-
works where the devices used for relays and those used for
terminals are different.

In this paper, we only consider graphs with w(e) = 1
for each edge. We first prove that, on general graphs, the
problem for finding a spanning tree with a non-terminal
set (STNT) where w(e) = 1 for each edge is also NP-
hard. Therefore, we assume that a given graph always has
a weight of one and that the weight w(e) is omitted unless
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otherwise specified. As finding an STNT on general graphs
is NP-hard, we restrict a given graph to be a cograph. The
class of cographs has been intensively studied since their
definition by Seinsche [7]. Cographs are recursively de-
fined as the class of graphs constructed from a single ver-
tex under the closure of the operations of disjoint union and
join operations [1], [4]. A cograph has a unique tree rep-
resentation, called a cotree, which shows how the cograph
can be recursively constructed. This provides the basis for
fast polynomial time algorithms for problems such as iso-
morphism, colouring, clique detection, clustering, minimum
weight dominating sets, minimum fill-in and Hamiltonic-
ity [1]-[3]. Here we show that for a cograph G, a linear time
(that is, O(|V| + |E|) time) algorithm for finding an STNT of
G exists.

2. Complexity of the STNT Problem

In this section, we prove that the problem for finding an
STNT on general graphs is NP-hard.

In the problem for finding STNT 7 of G = (V,E), V is
divided into two disjoint vertex sets; one is a non-terminal
set Vyr and the other is a potential terminal set Vy in which
each vertex may, but not necessarily be, a leaf of 7.

Theorem 1:  On general graphs, the problem for finding
an STNT is NP-hard.

Proof. We prove this by polynomial-time reduction from the
Hamiltonian path problem that is NP-hard, to our problem.
An instance / of the Hamiltonian path problem is as follows:
Given a graph G = (V, E) where V = {s,v;,--,0,-2,t} and
E c VxV, find a path P from s to ¢ that passes through each
vertex of V — {s, t} exactly once.

We transform an instance / of the Hamiltonian path
problem to an instance I’ of the STNT problem. On an in-
stance [’ of the STNT problem, let s and 7 be potential ter-
minals of G and {vy, - - -, v,_»} be the set V7 of non-terminal
vertices of G. We show that an instance / of the Hamiltonian
path problem has a solution if and only if an instance I’ of
the STNT problem has a solution.

To prove the only-if part, we assume that an instance
I of the Hamiltonian path problem has a solution, that is,
a Hamiltonian path P = s,v,--+,0,-2,¢ exists. This is
obviously a spanning tree of G. Since P is a path, only
s and t are leaves. s and t are potential terminals, then
P = {s,u1,---,0,00,t} is an STNT of G. It means that if /
has a solution, then the I’ of the STNT problem on G has a
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solution.

To prove the if-part, we next assume that, on an in-
stance I’, G has an STNT 7. Since Vyr = {v1, -, U2}
and potential terminals are only s’ and ¢, each vertex in
{vy,---,v,—2} is not a leaf of the STNT. Therefore, the STNT
is a path starting from s to . For the above reasons, P =

{s,---,t} is a Hamiltonian path on G.
Consequently, as the Hamiltonian path problem is NP-
hard, the STNT problem is NP-hard. O

3. Cographs and Cotrees

A cograph can be constructed from isolated vertices by
consecutive application of disjoint union and join opera-
tions [1]. We introduce here a cotree that is a tree where
each of its internal vertices is labeled with either number 0
or 1. On cotree T, we call a vertex labeled 1 and 0 a label-1
and label-0 vertex, respectively. Every cotree TC defines a
cograph G having the leaves of TC as vertices, and in which
the subtree rooted at each vertex v of TC corresponds to the
induced subgraph in G defined by the set of leaves descend-
ing from v. A subgraph corresponding to a subtree of 7
rooted at vertex v is denoted by G,.

o A subtree of TC consisting of a single leaf corresponds
to an induced subgraph of G with a single vertex.

o A subtree of TC rooted at a label-0 vertex v corresponds
to the disjoint union of subgraphs of G defined by the
children of v.

o A subtree of T rooted at a label-1 vertex v corresponds
to the join of subgraphs of G defined by the children
of v; that is, we construct the disjoint union and add
an edge between each pair of two vertices correspond-
ing to leaves in the different subtrees of 7C. (As il-
lustrated in Fig. 2 (a), label-1 vertex v; of cotree 7€ has
two children corresponding to subgraphs Gy with three
isolated vertices 8, 9, 10 and Gug with two isolated ver-
tices 11, 12. Then, the join operation of G,)g and Gug are

executed at label-1 vertex v} of cotree T, that is, we
add edges (8, 11}, (8,12}, {9, 11}, {9, 12}, {10, 11} and
{10,12}.)

In the following, let G = (V, E) be a cograph with a
vertex set V = Vyr U Vr and G = (VNT,E) be a cograph
induced by a non-terminal set Vyr.

Figures 1(a) and (b) illustrate a cograph G and a co-
graph G, respectively. Moreover, Figs.2(a) and (b) illus-
trate a cotree 7€ of G and a cotree 7€ of G, respectively.
On G shown in Fig. 1 (a), vertices 6, 8, 15 are in V; and
other vertices are in Vyr.

G is derived from G by removing potential terminals
and each edge that is adjacent to them. For deriving a cotree
T€ of G from T€ of G, we first remove leaves v,’s corre-
sponding to potential terminals and all edges adjacent to
such leaves v,’s. After this process, we remove vertices
WhOSE descendants have no nog:terminal vertex, so we de-
rive 7. Thus, each vertex v of T¢ corresponds to v of T€.

2575
14 A 12
RN, 11
1 A "/.\\\

© potential terminal
(a) cograph G~ @ non-terminal vertex

(b) cograph G

(Bold lines are edges of
an STNT of G.)

(Bold lines are edges of
a disjoint path cover of G. )
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Fig.2 Cotrees TC of G and TC of G.

4. The Idea on Which the Proposed Algorithm Is Based

Our algorithm first finds a spanning tree 7 on G induced
by non-terminal vertices. Then, in this section, we assume
that a cograph G is induced by a non-terminal set Vyr and
G is connected. A case where G is not connected will be
considered in Sect. 6. L N

We first find a spanning tree 7 on G. As all leaves of 7,
that are non-terminal vertices, must be finally connected to
potential terminals for constructing an STNT of G, it is de-
sirable that the number of leaves of 7 is as few as possible.
(In the following, connecting a vertex v to a vertex u means
that we connect v to u by using an edge {v, u}.) A spanning
tree of ’G:\ with the least number of leaves is a Hamiltonian
path on G. On a cograph G, a linear time algorithm for find-
ing a Hamiltonian path is known [1]. This algorithm finds
the minimum number of disjoint paths that cover all the ver-
tices of G if G has no Hamiltonian path. Therefore, we first
find a Hamiltonian path on 5, if it exists, and regard it as
a spanning tree of G. When no Hamiltonian path exists on
G, we find disjoint paths ¢, - - -, g; that cover all vertices of
G. In this case, as will be described in the next section, a
spanning tree 7 is constructed by connecting one terminal
foreach of ¢;,i = 2,- - -, j to a vertex of g; so that it contains
no cycle. Each leaf of 7 on G needs to be connected to a
distinct potential terminal on G, because it is a non-terminal
vertex. Then, for constructing an STNT on G, we construct
a spanning tree T so as to connect each leaf of 7 to a dis-
tinct potential terminal on G. Moreover, we show that if at



2576

least one of leaves of 7 cannot be connected to a distinct
potential terminal on G, then G has no STNT.

4.1 A Method for Finding a Hamiltonian Path in a Co-
graph

Our algorithm for finding an STNT employs the algorithm
for examining whether a Hamiltonian path exists or not in
a cograph[1]. So, we explain this algorithm proposed by
Corneil et al. [1].

We first define the technical terminology. For a finite
graph G = (V, E), we call s(G) = max(c(G-S)—|S|: S CV
and c¢(G—-S) # 1) the scattering number of G where c(G—S')
denotes the number of connected components of G—S'; a set
S C Viscalled a scattering set of G, if c(G—S)—|S| = s(G),
c(G — S§) # 1 holds and no other set S’ with s(G) exists
such that §” D § which denotes that S is a proper subset
of S’. We call the vertices in the scattering set S scattering
vertices. The minimum number of disjoint paths that cover
the all vertices of G is denoted by 7y(G).

On cographs, the following theorem on relation among
scattering number s(G), Hamiltonian paths, Hamiltonian cy-
cles and the minimum number my(G) of disjoint paths is
known [6].

Theorem 2 ([6]): Let G = (V, E) be a cograph. Then
(1) G has a Hamiltonian path if and only if s(G) < 1,
(2) G has a Hamiltonian cycle if and only if s(G) < 0
and |V| > 3,
(3) mo(G) =

Based on this theorem, Corneil et al.[1] show that
s(G) can be calculated by applying the following bottom-
up traversal for a cotree.

We assign a; = —1, b; = 1 to each leaf i of a cotree.
As for internal vertices of a cotree, two values a,, b, are
assigned to each vertex by the following procedures. We
assume that an internal vertex v has k (> 0) children.

e For a label-1 vertex:

max(1, s(G)). O

k
a, = max (a,- -
i=1

JEL

e For a label-0 vertex:

bU:Zk:bi

i=1

k
ay= ) max(a. 1) (3).
i=1

For a cotree, s(G) can be calculated by bottom-up
traversal from leaves to the root. After calculating s(G), the
value a; of each internal vertex i corresponds to the scatter-
ing number s(G;) of a subgraph G; and the value of the root
corresponds to s(G) of a cograph G.

Figure 3 illustrates the calculation results of the scat-
tering number s(G) of G shown in F1g 1(b). The value
a (= 2) of the root corresponds to s(G) As s(G) = 2, no
Hamiltonian path exists in G and two disjoint paths (e.g.,
Pr=1273144135, P, = 10 11 9 12) can cover all
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Fig.3  Cotree of G.

vertices of G by Theorem 2. Moreover, a scattering set S of
Gis {13, 14)}.

Our algorithm first finds a Hamiltonian path or a dis-
joint path cover on G. In the following, we explain in detail
how to construct a Hamiltonian path or a disjoint path cover
onG.

We find a Hamiltonian path or a disjoint path cover by
applying bottom-up traversal for T€ from leaves to the root.
On a subgraph corresponding to a subtree rooted at a label-1
vertex or a label-0 vertex of TC, we explain how we con-
struct a Hamiltonian path or a disjoint path cover. However,
subgraphs corresponding to subtrees rooted at a label-0 ver-
tices v° are a disjoint union of subgraphs C’Y\U% e 51,; corre-
sponding to subtrees rooted at children v}, - -+, v} of v°, that

is, each structure of 5 Lo 5 does not change after ex-

ecuting the disjoint union at v° Then we describe how to
construct a Hamiltonian path or a disjoint path cover only on
subgraphs corresponding to subtrees rooted at label-1 ver-
tices. . .

A subtree TG of TC rooted at a label-1 vertex v} cor-

responds to a subgraph 5,,_1. On 5U;, a Hamiltonian path, if
it exists, or a disjoint path cover is found as follows. Let

v(l), vg, .- 0 be label-0 vertices that are children of v1 and

G, W05 G 0 .G, W be corresponding subgraphs, respectively.
We assume that each Hamiltonian path or each disjoint path
cover on GU?, e Gvk has been found. (See Fig.4(a).) As
GU?, j = 1,---,k, are subgraphs corresponding to children
of label-1 v}, each vertex of E;‘U[; is adjacent to all vertices
of each of the other subgraphs 509, i # j. When construct-
ing a Hamiltonian path or a disjoint path cover on 5%1, a
subgraph 502 that has a; disjoint paths pi, pa, - -+, pq, is se-
lected among Gv?’ R G,)(k) by applying formula (1), that is,
a subgraph satisfying formula (1) is Gvg- (As illustrated in
Fig. 4 (a), Gv? is selected by applying formula (1).) Vertices
of the other subgraphs Gv?, Jj # h are scattering vertices.
A Hamiltonian path or a disjoint path cover on 51;} is con-

structed by aligning paths pi, ps, - -+, pg in 502 and scatter-
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(a) Hamiltonian Path

(b) Ham//ton/an Path

(The case where a surplus scattering vertex exists.)
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(c) D/Sjomt Path Cover

Fig.4  Construction of a spanning tree.

ing vertices s1, 2, - -+, §4 in the other subgraphs EU(;, j#h
alternately, i.e., align them in the following manner: p, si,
P2, 2, -+ If the number of scattering vertices is a; — 1,
then we can construct a Hamiltonian path H = pi, sy, p»,
82, **, Sq.,» Pa- When the number of scattering vertices is
more than g; — 1, a Hamiltonian path is constructed by align-
ing the vertices of path p; and surplus scattering vertices s,,,
Sani» **+» 8¢ alternately, so that [y, sq;, o, Sqy,,, -+, [, is ob-
tained where [y, - - -, [, are the vertices of p;. (See Fig. 4 (b).)
If the number a’ of scattering vertices is less than a;— 1, each
vertex of 5U; are covered by exactly one of a; — a’ disjoint
paths. (See Fig. 4(c).)

Our algorithm constructs a spanning tree on G by us-
ing a Hamiltonian path or by connecting obtained disjoint
paths. When G has a Hamiltonian path H, H is a spanning
tree on G. If G has no Hamiltonian path, then we construct
a spanning tree of G by connecting obtained disjoint paths
as follows: When we cannot construct a Hamiltonian path,
then the number of scattering vertices is less than a; — 1.
Therefore, G has a new path P = py, s1, p2, $2, =+, g,

Dg+1 and let other paths be py42, - -, pg, On 61)2- Each vertex

of Eug is adjacent to all vertices in the other subgraphs qu,
J

J # h, by the definition of the cograph. Then, as each vertex

of pg+2, -+, Pa, 1s adjacent to all scattering vertices in Gy,
J

J # h, we can construct a spanning tree 7’ by connecting
either end(terminal) of each path of py.», - - -, p,, t0 51. (See
Fig.4(c).)
Example: We explain how to find the minimum disjoint path
cover of G as shown in Fig.1(b). By executing the proce-
dure at v1 of T€ as shown in Fig.2 (b) we find the minimum
disjoint path cover of G . Since G, 20 that includes 4-disjoint
paths p; = 1,2, p» =3, p3 =4 and p4 = 5 satisfies the for-
mula (1), then a scattering vertex is 7. Paths p; = 1,2 and
p2 = 3 are connected by the scattering vertex 7. Therefore,
the minimum disjoint path cover of 5,)} is pj = 1,2,7,3,
p, =4and p; =5.

When we execute the procedure at vé of TC, scatter-
ing vertices are 11, 12, since Evg that includes 2-disjoint

paths p; = 9, p, = 10 satisfies the formula (1). Therefore,
the minimum disjoint path cover 9, 11, 10, 12 of Eu; is con-
structed by aligning p; = 9, p, = 10 and scattering vertices
11, 12 alternately.

When we execute the procedure at root r of TC, as 50?
that includes 4-disjoint paths p; = 1,2,7,3, p» =4, p3 =5
and ps = 9,11, 10, 12 satisfies the formula (1), scattering
vertices are 13, 14 in Evg. Therefore, two paths 9,11, 10, 12
and 1,2,7,3,14,4,13,5 constructed by aligning paths py,
P2, p3 and scattering vertices 14, 13 alternately, are the min-
imum disjoint path cover.

5. A Method for Finding an STNT

By finding a Hamiltonian path or a disjoint path cover on G,
we can tell which subgraph G j includes disjoint paths and
which subgraph G, includes scattering vertices by applying
equations (1)—(4). Finally, we can construct a spanning tree
TonG by connecting obtained disjoint paths ¢, - - -, gx on
a subgraph as described in Sect. 4.1.

However, construction of a disjoint path ¢; for each
subgraph G, has several possibilities depending on how to
connect terminals of disjoint paths py, p2, - -+, ps On a sub-
graph é\vg of G; and scattering vertices sy, ---, §4. (See

Fig.4.) Each leaf of 7 on G needs to be connected to a
distinct potential terminal on G, because it is a non-terminal
vertex. As a spanning tree 7 is constructed by connecting
disjoint paths ¢;’s, terminals of a path g; on G; constructed
by connecting py, - -+, px on Eug may finally become leaves

of T. (See Fig.6.) Then, for constructing an STNT of G,
we construct a disjoint path g; on each subgraph G; such that
one terminal of g; are connected to a distinct potential ter-
minal. We next explain a method for constructing a disjoint
path g; on each subgraph G;.

For constructing a spanning tree T , we find a Hamil-
tonian path or a disjoint path cover by applying bottom-
up traversal for T€ from leaves to the root. Similarly, we
choose one terminal for each of ¢y, - - -, gx and connect them
to a distinct potential terminal by applying bottom-up traver-
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sal for cotree TC. In the following, on a subgraph corre-
sponding to a subtree rooted at a label-1 vertex or a label-0
vertex of TC, we explain how to choose one terminal for
each of ¢y, -+, gx and connect them to a distinct poten-
tial terminal. However, subgraphs corresponding to subtrees
rooted at a label-0 vertices 1° are disjoint union of subgraphs
CHRARS Gvi corresponding to subtrees rooted at children v},

. v,i of v°, that is, each structure of le RN Gv; after ex-

ecuting the disjoint union at 1° does not change. Then, we
describe how to choose one terminal for each of g, - - -, gx
and connect them to a distinct potential terminal on only
subgraphs corresponding to subtrees rooted at label-1 ver-
tices.

There is one-to-one correspondence between the leaves
of T and the vertices of G. We first describe the case where
a label-1 vertex is adjacent to only leaves of TC. As each
pair of vy, -+, v is adjacent by the definition of cographs,
when a label-1 vertex v' is adjacent to leaves vy, ---, v, a
subgraph G, induced by vy, ---, vx is a complete graph.
(As illustrated in Fig. 3, v% corresponds to v' in this case.)
Then, G, has a Hamiltonian path P constructed only by
non-terminal vertices. In this case, since exactly two ter-
minals of P are leaves of the spanning tree, if two or more
potential terminals exist in G,1, then an STNT on G, can be
constructed. If only one potential terminal exists in G,i, no
STNT exists in G,1, but one terminal of P can be connected
to a potential terminal in G 1.

We next describe the case where a label-1 vertex vi1 is
adjacent to at least one label-0 vertex of TC. (As illustrated
in Fig. 3, v%, v% and r correspond to vl.l in this case.)

As described before, we construct a Hamiltonian path,
if it exists, or a disjoint path cover by applying bottom- up
traversal for 7C. We assume that, on 7€, a label-1 vertex v

9, -+, 1) that are label-0 vertices. On G,

corresponding to a subtree T€ rooted at v!, we call 5,)0, 5U0,
v; 1 2

. Euf children subgraphs of 5,);. (See Fig.5(a). In this

has children vl, v

7
Non- satlsﬂed path  Satisfied'path

" S
S-graph 6”11 of Guil

S1 \

_ N
S-graph Gvi1 of Gvil

© potential terminal
@ non-terminal vertex
(b) No Hamiltonian path exists.

P-graph GS-I of Gw.l
Fig.6 Case 1.

case, 5 o and 5 o are children subgraphs of 5 1.) On chil-

dren subgraphs G 0, G 0, a subgraph G W0 that has
a; paths is selected by applylng formula (1), and a "Hamilto-
nian path or a disjoint path cover on G, »1 18 constructed by

connecting obtained disjoint paths pj, ---, p, on EU? and

vertices of subgraphs Euq, Jj # h in a manner described as
follows: By the property ‘of cographs, methods for connect-
ing a terminal of a disjoint path to a potential terminal are
classified into the following three cases. Note that each ver-
tex of G corresponds to a vertex of G.

Case 1: A terminal of a disjoint path included in G 20 is ad-
jacent to a potential terminal included in G, 0. (See Flg 6. In
this case, G W0 selected by applying formula’ (1) corresponds
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grapt iyl v} @ non-terminal vertex

Fig.7 Case 2.

surplus scattermg,
vertices /
;

_ S
S-graph G”il ovail

© potential terminal
@ non-terminal vertex

Fig.8 Case 3.

toG o )

Case2: Since each potential terminal in G, j # h, is ad-
jacent to each vertex in G, we can connect a potential ter-
minal in GUo j#handa ternnnal of a disjoint path in G 0.
(See Fig. 7.)

Case 3: Even if there is no potential terminal in GU2 adjacent
to a terminal of a disjoint path, we can connect a potential
terminal in G W toa terminal of a disjoint path indirectly via
a scattering vertex in Gy, j # h. Note that, in this case, scat-
tering vertices that have already been used to connect two
disjoint paths in Gug cannot be used to connect a potential
terminal and a terminal of a disjoint path. (See Fig. 8.)

In order to explain in detail the above three cases, we
define several technical terminologies related to G. By find-
ing a Hamiltonian path or a disjoint path cover on G, we can
tell which subgraph G; includes disjoint paths and which
subgraph G ; includes scattering vertices. Since disjoint

paths on 5,)2 are constructed based on constructed paths on
(’;\U!l , we call 502 a IA’-graph of 50} and denote it by 65 . (See
Fig.5(a). In this case, 5U? is a F—graph 55 ) Moreover, a
graph obtained by removing vertices and ed'ges of 55 from
EUI, is induced only by scattering vertices. Then, v;/e call
sueh a graph an §-graph of 5 ! and denote it by Ef, (See
Fig. 5 (a). In this case, G 0 is an 3 -graph GS J) I

We next define, on a subgraph G, ! of an input graph
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G, a P-graph G| corresponding to a P-graph 65 and an S -
graph Gf! corresponding to an §-graph 55, as follows. Note

that each vertex of G corresponds to a vertex of G.
Let of be the root of TC corresponding to GP Vertex v

of cotree T€ of G corresponds to vertex Uk of Cotree TC of G.

On T¢, a subgraph GU[Z corresponding to a subtree Tvg rooted
k

at o) is a P-graph G*, of G, (See Figs.5(a) (b). In this
case, 0! is the root of T corresponding to G*,.) Moreover, a
U] l),.
graph obtained by removing vertices and edges of Gﬁ from
G,, is an S-graph Gf_l of G,i. (See Fig.5(b).) Whether
potential terminals can be connected to distinct terminals of
D1, 5 Pag, or not depends on whether potential terminals
are included in which of P-graph and S -graph. On G, each
vertex of S-graph Gfl is adjacent to all vertices of P-graph

Gf! by the definition of the cograph. Furthermore, each ter-

minal of py, - -+, ps, on G, is included in P-graph G‘:,. Then,
the above-mentioned three cases where a terminal of Ply
Dq, 18 connected to a potential terminal is described formally
as follows. Note that each vertex of G corresponds to a ver-

tex of G, then disjoint paths p1, - - -, ps, on 55 that have been
found, exist on Gfl .

Case 1: The case where, on paths py, - -, pg, on GS’ either

of terminals of paths p;, ---, p, has been connected to a
distinct potential terminal in GP . (See Figs. 6 (a) (b).)

After finding an STNT on a child subgraph of G, it ei-

ther of terminals of paths on G5 has been connected to a

potential terminal in G7.

Case 2: The case where an S -graph Gf; has potential termi-

nals.

Since each vertex in G*jl is adjacent to all vertices in
Gfl, distinct vertices in Gfl can be connected to terminals of
D1, Pg, DOt connected to a potential terminal in Gﬁ. (See
Fig.7.)
Case 3: The case where potential terminals in Gﬁ that are
not connected to a terminal of py, - -+, p,,, exist.

Such vertex v), is not adjacent to a terminal of py, - -,
D, but it is adjacent to all non-terminal vertices in Gf, . Let

i

vy in G5 be a terminal not connected to a potential termi-

nal and v in Gfl be a scattering vertex. v,, vy and v; are

connected indireetly via vy. (See Fig. 8.)

We describe a method of determining whether an
STNT exists or not on a subgraph G, with regard to the
above-mentioned three cases. We construct a Hamiltonian
path or a disjoint path cover on subgraphs by traversing
cotree TC in bottom-up order from leaves to the root. On
each subgraph G,1, we first construct a Hamiltonian path or
a disjoint path cover g1, ,q; by connecting disjoint paths
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p1,- -, pron achild subgraph Gfl of G, and scattering ver-

tices on a child subgraph Gf! of G,. If the number of con-

structed disjoint paths on GU'; is one, that is, g is a Hamil-
tonian path, then ¢g; is a tree. (See Fig. 6 (a). In this case,
q1 = P1, S1, P2, 82, Dg, 1s constructed by aligning three dis-
joint paths pi, pa, ps, on 65 and scattering vertices sj, $;

s qi (k> 1)
isa d’isjoint path cover. Before explaining the case where
the number k of constructed disjoint paths on G, is more
than one, we define several technical terminologiés. As de-
scribed later, we construct an STNT by connecting disjoint
paths p;’s where either terminal of p; has been connected
to a distinct potential terminal. Therefore, we need to ob-
tain the number of such disjoint paths p;’s. Thus we have
obtained the number of disjoint paths p;’s constructed by
non-terminal vertices where either terminal of p; has been
connected to a distinct potential terminal in Gﬁ , because we

on Gfl, alternately.) Otherwise, the set of ¢y, - - -

have constructed disjoint paths connected to a distinct po-
tential terminal in a child subgraph Gfl of G, by traversing

cotree T€ in bottom-up order from leaves to the root. We
call such a disjoint path p; where either terminal of p; has
been connected to a distinct potential terminal a satisfied
path. On the other hand, a non-satisfied path is a disjoint
path p; where neither terminal of p; has been connected to a
distinct potential terminal. In the case where ¢; is a Hamil-
tonian path, since g, is constructed by py,-- -, p; and scat-
tering vertices, if at least two satisfied paths exists among
pi.- -+, pi, then an STNT exists on G,1. (See Fig.6(a). p;
and p,, are two satisfied paths. Thenl, an STNT exists on
G,.)

" We show that when a Hamiltonian path does not ex-
ist on G, that is, g1, -+, qx, kK > 1, holds, if the number
of satisfied paths among py, ---, p; is k, then we can con-
struct an STNT on G, as follows: On each subgraph G,
we use the number of satisfied paths on its child subgrap’h
GP and the number of constructed disjoint paths on G, 1. Let
sp(GP ) be the number of satisfied paths and dp(G ) be the
number of disjoint paths constructed by non- termmal vertex
in Gv’l. (For example, dp(GUi) =1, sp(Gﬁ) = 2 hold in
Fig.6(a) and dp(G,1) = 2, sp(Gﬁ) = 3 hold in Fig. 6 (b).)
The d p(GU,; ) disjoint paths gy, - - -, qup(G D are constructed by

connecting py, -+, pg, ON GP and scattermg vertices in GS

We now assume that py, - - -, le,(Gp) are satisfied paths and

Psp(GP)+1> " "5 Pay Ar€ non-satisfied paths. We first construct

a disjoint path ¢; = py, s1, Psp(G” )15 525 s Paps Sap» P2 by
selecting two satisfied paths py, pé among pi, - -+, Pyy(G* )» s
the starting path and the ending path, and by aligning scat-
tering vertices sy, - - -, s, and non-satisfied paths Psp(G”)+1>

-+, Dq;» alternately. (As illustrated in Fig. 6 (b), g1 = pll, S,
PspGP)y+1s 525 p2.) A spanning tree 7, of G, can be con-
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structed by connecting a terminal of surplus satisfied paths
P3s s Pspr,) to a scattering vertex sy of g in Gfl. (As il-

lustrated in F1g 6 (b), a spanning tree 7,1 can be constructed
by connecting a terminal of surplus satisfied path p3 to a
scattering vertex s; of g;.) Two terminals of ¢; and one
terminal for each of ps, - -, p p(GT)) BTe leaves of 7, There-

fore, since two terminals of ¢; and one terminal for each of
P3s s Psp(GP) are connected to a distinct potential terminal,

then the constructed spanning tree 7,1 is an STNT on G ;1.

In Case 1, if (dp(G,) + 1) — sp(G”) < 0 holds, then
one terminal for each of disjoint paths ‘can be connected
to a distinct potential terminal, that is, we can construct
an STNT on G,i. (As illustrated in Fig.6(a), dp(G,) =
I and sp(Gh) = 2, then (dp(Gy) + 1) - sp(G") < 0
holds. Tn Fig.6(b), dp(G,) = 2 and sp(G") = 3, then
(dp(Gy) + 1) — sp(G") < 0 holds.) '

In Case 2, when Il non-satisfied paths in Gﬁ exist after

v
executing the process in Case 1, if / or more potential termi-
nals in Gfl exist, we can connect such terminals of disjoint

paths to distinct potential terminals. Then, we can construct
an STNT on G,;1. (As illustrated in Fig. 7, three non-satisfied

paths in Gf, exist. However, there are three potential termi-

nals in Gfl. Then an STNT on G, can be constructed by
connecting'; one terminal of each of three non-satisfied paths

in Gfl to vertex s;, which is only one vertex in the scattering

set, and also connecting the other terminals to three potential
terminals in Gfl )

When non-satisfied paths exist after executing pro-
cesses in Cases 1 and 2, and if potential terminals not yet
connected to a terminal of disjoint paths exist in G:’I as in

;
Case 3, each of such vertices can be connected to a ter-
minal by using non-terminal vertices in Gf]. However, we

need to use non-terminal vertices in Gf, for connecting dis-
joint paths on Gﬁ. If the number dp(G,) of disjoint paths

constructed by non-terminal vertices on G, is a;, we need
a; — 1 scattering vertices to construct disjoint paths. Let
nt(GS ) be the number of non-terminal vertices in GS . When

Ui

nt(GS )—(a;—1) > 0 holds, nt(GS )—(a;—1) scattering vertices

are not used to construct dls]omt paths. Such nt(GS )—(a;—1)

scattering vertices are called surplus scattering vertices and
are denoted by r(Gf, ). (Note: The role of surplus scattering

vertices in this papelr is different from that in [1] as follows.
As described in Sect. 4.1, the algorithm [1] by Corneil et al.
constructs a disjoint path cover by connecting disjoint paths
and scattering vertices. If the number of disjoint paths is
q, we need g — 1 scattering vertices for constructing a new
disjoint path. If surplus scattering verities exist, then these
are included in inner vertices of disjoint paths. On the other
hand, our algorithm uses surplus scattering vertices for con-
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necting disjoint paths and non-terminal vertices.) In Case
3, we can use surplus scattering vertices to connect a ter-
minal of disjoint paths and a potential terminal in Gfl. (As

illustrated in Fig. 8, a new path P is constructed by 'align-
ing three paths p;, pa, p, and two scattering vertices, re-
spectively. Two terminals of p;, p, and p,, are non-satisfied
paths, but surplus scattering vertices r(GS ) = 2 and two po-

tential terminals exist in GP Then an STNT on G, | can be

constructed by connecting each terminal of P to a distinct
potential vertex indirectly via a surplus scattering vertex.)
To summarize the above, we examine whether distinct
potential terminals can be connected to each terminal of
non-satisfied paths by the following processing. Let po(GS )

be the number of potential terminals in GS and po (GP ) be

the number of potential terminals in GP not connected to a

U

terminal of disjoint paths.

() IfSUGy) = (@p(G) + 1) = sp(GP) < 0 holds, then we
can construct an STNT on G, since one terminal for each
of non-satisfied paths is connelcted to a distinct potential ter-
minal.

(2) The case where S 1(G,1) > 0 holds.

S1(G,1) terminals of disjoint paths not connected to
distinct potential terminals exist. If S 2(GU’;) =S l(Gvil) -
po(Gfl) < 0 holds, then we can construct an STNT on GU)’
since one terminal for each of non-satisfied paths is con-
nected to a distinct potential terminal in Gfl.

(3) The case where S 2(GU’1) > 0 holds.

S2(GU‘_1) terminals of disjoint paths not connected to
distinct potential terminals exist. If S3(G,) = S2(G,) -
min{po~ (GP) r(GS )< : :
STNT on G 1, since one terminal for each of non-satisfied

paths is connected to a distinct potential terminal indirectly
via a surplus scattering vertex.

0 holds, then we can construct an

Lemma1:  On a subgraph G, ! corresponding to subtree
TC rooted at a label-1 vertex v 1f at least one of S 1(G,, )

S2(GU )and S3(G,) is equal to or less than O, then an STNT
exists on G,1, otherwise it does not.

Proof. We find an STNT on a subgraph G, by applying
bottom-up traversal for a cotree TUC! from leaves to root vl.'.

Let v(l), .- vo be label-0 vertices that are children of vl. On
each of subgraphs G - G, 0 corresponding to vl, . 1)2, a

Hamiltonian path or a dlS]Olnt path cover has been found and
sp(Gh), ni(G%,), dp(G"), po(G*)) and po™(G")) have been

calculated. A éubgraph ‘Gvg that has a; disjoint i)aths D1, D2,
-+, Dq, 1 selected among GU?, R Gug by applying formula
(1). Vertices of the other subgraphs G, j # h are scattering
vertices sy, §2, ++, 8¢ ¢
to all vertices in G W© and potential terminals belong to either
P-graph GP orS- graph G,
IfSl(G 1) = (dp(G, )+ 1)—sp(GP) < 0 holds, then we

. Each vertex in G, j # h, is adjacent
J
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can construct an STNT on G, since one terminal for each
of non-satisfied paths is connected to a distinct potential ter-
minal.

When S 1(G,1) > 0 holds, S 1(G,) terminals of disjoint
paths not connected to distinct potential terminals exist. If
52(Gp) = S1(Gy) - po(Gfl) < 0 holds, then we can con-
struct an STNT on G, since one terminal for each of non-
satisfied paths is connected to a distinct potential terminal in
GS.

When S2(G,1) > 0 holds, S2(G,) terminals of disjoint
paths not connected to distinct potential terminals exist. If
$3(G,) = $2(G,1) — min{po™(Gh), 7(G5)} < 0 holds, then
we can construct an STNT on G;_l, since one terminal for
each of non-satisfied paths is connected to a distinct poten-
tial terminal indirectly via a surplus scattering vertex.

We next show that if S 1(G,; ) S2(G,) and S3(G,) are
greater than O, then no STNT exists on G 1 We consider
the case where S1(G,1) > 0 holds, that is, a terminal of
disjoint paths not connected to a potential terminal exists. A
spanning tree ‘7:,)‘; with non-terminal vertices is constructed

by connecting obtained disjoint paths pi, ---, p, on GI‘;.
We assume that P (= pi, 51, p2, 82+, Sq» Dg;) 1S @ path not
connected to a potential terminal. (As illustrated in Fig.9,
P (= p1, 8, pg,)-) In this case, we show that regardless of the
construction of P, we cannot connect a potential terminal to
a terminal of P.

Let TUCl be a cotree rooted at v}, corresponding to a P-

P
graph GP of G, - There is one-to-one correspondence be-
tween leaves of TUC and vertices of G. On T‘f, if there is a

label-1 vertex adJacent to leaves vy, - - -, U and at least one
leaf among vy, - - -, vy is a potential ternnnal, then a terminal
of P can be connected to a potential terminal, contradicting
that P is a path not connected to a potential terminal.
Therefore, each leaf of TUC adjacent to label-1 vertices

is a non-terminal vertex. However, the leaves of TC adjacent

to label-0 vertices may be potential terminals. (See Fig.9. In

© potential terminal
@ non-terminal vertex

Fig.9 Connection of a potential terminal and a terminal of a disjoint path
using a scattering vertex.
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this case, such potential terminal is v,,.) Since S2(G,1) > 0
holds, no potential terminal adjacent to a terminal of P exists
in GS Then, potential terminals belong to P-graph GP To

make a potential terminal v, and a terminal of P connected
we need to use a scattering vertex s in Gu' , 1.e., as well as

by connecting v,, and P with s by edges.l However, since
S$3(G,1) > 0 holds, no surplus scattering vertex exists in

Gfl. (See Fig. 9. Scattering vertex s is used to construct to
p1 and pg,.) If we use scattering vertex s in GS to connect a

potential terminal in GP to a terminal of P, then P is divided

into two paths. The number of leaves of a spanning tree
increases by increasing the number of paths. Therefore, on
G,1, we cannot connect a potential terminal to a terminal of
P no matter how we construct a P.

Consequently, when S 1(G,1), S2(G,1) and S3(G,) are
greater than 0, no STNT exists on G,. ‘ O

On each subgraph GU}, we find S l(GU}), S 2(GU’;) and
S3(G,1) by applying bottom-up traversal for a cotree T
from leaves to the root. If at least one of S 1(G,), S2(G,)
and S3(G,, ) is equal to or less than 0, then G, has an STNT.
This means that each terminal of disjoint paths connects to
a distinct terminal on G,1. Otherwise, S3(G,1) terminals of
disjoint paths do not connect to distinct terminals on G,.
Finally, if at least one of S 1(G), S2(G) and S3(G) is equél
to or less than 0, then G has an STNT, otherwise it does not
have an STNT. In summary, our algorithm is as follows.

Procedure Find_Spanning_Tree_with_Non-terminal_Set
Step 1. Find two cotrees T€ of G and T€ of G.
Step 2. By traversing cotree T€ in bottom-up order from
leaves to the root, we execute the following in-
structions to each subgraph G\U’; of G, correspond-

ing to inner vertices ! of TC.
begin _ _
Find the scattering number s(G,), a P-graph
55 and an S -graph 55, .
end /
Step 3. By traversing cotree T in bottom-up order from
leaves to the root, we execute the following in-
structions to each subgraph G, of G correspond-

ing to inner vertices vl.l of T€.
begin

Find nt(Gfl), po(Gfl) and po‘(Gﬁ).
end ’ ’ '

Step 4. By traversing cotree TC in bottom-up order from
leaves to the root, we execute the following in-
structions to each subgraph G, of G correspond-
ing to inner vertices v; of T€.
begin

Find S 1(G,1), S2(G,) and S3(G,).
end ' ' I

Step 5. Ifatleastone of S 1(G), S 2(G) and S 3(G) is equal

to or less than 0, then G has an STNT, otherwise
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it does not have an STNT. O

Theorem 3: Procedure Find_Spanning_Tree_with_Non-
terminal_Set finds an STNT of G in O(n + m) time.

Proof. We first describe the correctness of the procedure.
We find each STNT on G, by traversing a cotree TC in
bottom-up order from leaves to the root. When reaching the
root of 7€, we obtain S 1(G), S2(G) and S 3(G). By Lemma
1, if at least one of S 1(G), S2(G) and S3(G) is equal to or
less than O, then G has an STNT, otherwise it does not.

We next analyze the complexity of the procedure. In
step 1, a cotree of a cograph can be constructed in O(n + m)
time [4], [5]. In step 2, the algorithm for finding a Hamil-
tonian path, if it exists, or disjoint paths on cograph can
be done in O(n + m) time[1]. In step 3, since the num-
ber of the disjoint paths and that of scattering vertices on
each subgraph of G have been found in step 2[1], nt(Gfl),

po(Gf!) and po‘(Gf!) are calculated in O(1) time on each

internal vertex vl.1 of T¢. Then, step 3 can be done in
O(n + m) time by applying bottom-up traversal for a cotree
TC. Step 4 can be done in O(n + m) time by applying
bottom-up traversal for a cotree T€. Therefore, Procedure
Find_Spanning_Tree_with_Non-terminal_Set finds an STNT
in O(n + m) time. ([l

6. The Case Where G Is Not Connected

We finally consider the case where G is not connected. Since
an input graph G is connected, the root of cotree 7€ is a
label-1 vertex. Let v(l), . 1)2 be label-0 vertices that are chil-
dren of the root and G, 0, G be corresponding subgraphs
on G, respectively. As each vertex of G is adjacent to all
vertices of each of the other subgraphs G o> , ] # i, if two

or more subgraphs among GU(]J, ey Gug have non-terminal

vertices, then G is connected. Therefore, when G is not con-
nected, all non-terminal vertices are included in a subgraph
among Gy, - -, G o on G. We assume that G 0 includes all
non- termlnal vertlces and the other subgraphs "include only
potential terminals. (See Fig.10.) As G is not connected,
all non-terminal vertices are included in subgraphs Gvi’ ‘e,

@ potential terminal
@ non-terminal vertex

Fig.10  The case where G is not connected.
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G, corresponding to label-1 vertices v}, .
1

, v} whose par-
ent is vg. Subgraphs obtained by removing G,,g from G are
induced only by potential terminals. Then, we apply Pro-
cedure Find_Spanning_Tree_with_Non-terminal_Set to each
of GU}, e lel. For each of Gvi’ ey Gull, we find the num-
ber of terminals of disjoint paths that are not connected to
a potential terminal. Vertices of the subgraph G, obtained
by removing sz from G are only potential terminals and
each of these vertices is adjacent to all vertices in Gy. (See
Fig. 10.) Then, each distinct potential terminal can be con-
nected to a leaf in Gp. If the number of potential terminals
in Gy is equal to or more than that of terminals in sz not
connected to a potential terminal, then G has an STNT, oth-
erwise it does not.

7. Concluding Remarks

In this paper, we first have shown that the problem for find-
ing an STNT is NP-hard even if each edge has the weight
of one on general graphs. We also have shown that if G is
a cograph then finding an STNT of G is linearly solvable
when each edge has the weight of one. We are interested
in finding other classes of graphs in which this problem is
polynomially solvable.
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Appendix

We explain in detail how to find an STNT of G by apply-
ing Procedure Find_Spanning_Tree_with_Non-terminal_Set
to the graph as shown in Fig. 1 (a).
When the procedure is executed at v} of T as shown
in Fig.2(a), a P-graph G/, of G, is Gy that includes 4-
1

disjoint paths p; = 1,2, p» = 3, p3 = 4 and py = 5,

’ \ o/ \
| 1
‘s 9 Joedul

P N . .
szl Gy21 © potential terminal
@ non-terminal vertex

(b) When the procedure is executed at v3 of T¢.

(c) When the procedure is executed at root 7 of T€.

Fig.A- 1

An example.
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by applying formula (1). (See Fig. A-1(a).) An S-graph
GS is Go that includes a scattering vertex 7. A new
path 1,2, 7 3 is constructed and this subgraph G, is ap-
plicable to Case 2. Then, a potential terminal 6 is con-

nected to a non-terminal vertex 5 that is one terminal of pj.
SUG,) = dpGy) + D) =sp(Gh) =(3+1)-0=420,

S2(G1):SI(G1)—po(GS):4—1 =320and S3(G,) =
§2(Gy) — min{po™ (GP) r(GS )} = 3 —min{0,0} = 3 > 0.

Therefore Gl has no STNT since S 1(G, ) S2(G, ) and
S3(G, ) are greater than 0.

When the procedure is executed at v2 of T€, a P-graph
G" o isG W that includes 2-disjoint paths p; = 9 and p, = 10,
by applyrng formula (1). (See Fig. A-1(b).) An S-graph
GSl is G, 0 that includes two scattering vertices 11 and 12.

A new path 9,11, 10 is constructed and this subgraph G, ! is
applicable to Case 3 such that a non-terminal vertex 12 is
a surplus scattering vertex. Then, a potential terminal 8 is
connected to a non-terminal vertex 10 by using the surplus
scattering vertex 12. S l(GU;) = (dp(Gv;) +1) - sp(Gf;) =

(1+1)—0=2>0 SZ(G1):Sl(G1)—po(GS)=2—O=
> 0 and $3(G,y) = S2G,;) — min{po" (GP) r(GS ) =

2 -min{l,1} =1 > 0. Therefore G1 has no STNT smce
S1(G, ) S2(G, ) and S3(G, ) are greater than O.

When the procedure 1s executed at root r of TC,
P-graph G? is Go that includes 4-disjoint paths p; =
1,2,7,3, p» = 4, p3 = 5,6 and ps = 9,11,10,12,8,
by applying formula (1). (See Fig. A-1(c).) An S-graph
G is G, that includes two scattering vertices 13 and 14.
SIG,) = @pG) + 1) =sp(G)) =2+1)-2=120,
S2(G,) = S1(G,) = po(G3) = 1 -1 =0 < 0. There-
fore, G, has no STNT, since S2(G,) is less than 0. A
new path 1,2,7,3,14,4,13,5, 6 is constructed and this sub-
graph G, is applicable to Case 2. Then, a potential ter-
minal 15 is connected to a non-terminal vertex 1 that is
one terminal of the new path. G has two disjoint paths
p1 = 15,1,2,7,3,14,4,13,5,6 and p, = 9,11,10,12,8,
and two terminals of p; are potential terminals and one ter-
minal of p, is a potential terminal. We can construct an
STNT on G by connecting another terminal 9 of p; to a ver-
tex 13 of p;.
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