
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016
1485

PAPER

D-Paxos: Building Hierarchical Replicated State Machine for
Cloud Environments

Fagui LIU†, Nonmember and Yingyi YANG†a), Member

SUMMARY We present a hierarchical replicated state machine (H-
RSM) and its corresponding consensus protocol D-Paxos for replication
across multiple data centers in the cloud. Our H-RSM is based on the idea
of parallel processing and aims to improve resource utilization. We de-
tail D-Paxos and theoretically prove that D-Paxos implements an H-RSM.
With batching and logical pipelining, D-Paxos efficiently utilizes the idle
time caused by high-latency message transmission in a wide-area network
and available bandwidth in a local-area network. Experiments show that
D-Paxos provides higher throughput and better scalability than other Paxos
variants for replication across multiple data centers. To predict the optimal
batch sizes when D-Paxos reaches its maximum throughput, an analytical
model is developed theoretically and validated experimentally.
key words: replication, replicated state machine, consensus protocol,
batching, logical pipelining

1. Introduction

Replication is necessary if cloud storage systems are to guar-
antee fault tolerance and to increase the level of availabil-
ity. In planet-scale services and applications, it is insuffi-
cient to provide fault tolerance with redundant replicas on
commodity machines within a single data center. For ex-
ample, tolerance to the outage of a single data center due
to problems such as network partitions or facility-wide out-
ages, is now considered essential for big-data applications
which process massive datasets across geographically dis-
tributed data centers. Many industrial cloud storage sys-
tems, such as Google’s Spanner [1], Yahoo!’s PNUTS [2]
and Facebook’s Cassandra [3], are deployed worldwide and
replicate data across multiple continents to serve a very large
number of clients nowadays. However, replication at wide
scale is known to be very expensive in terms of performance.

To achieve fault-tolerant and highly available cloud
storage services across multiple data centers, the replicated
state machine (RSM) approach [4] is widely used. Paxos [5]
is one of the best known protocols for implementing a RSM.
Despite their simplicity, traditional RSM and Paxos are still
not ideal for replication among servers distributed across
multiple data centers, each holding a large number of re-
dundant replicas. This is due to two main problems. The
first is the high latency of a wide-area network (WAN).
Paxos’s performance is affected by many factors, such as

Manuscript received January 20, 2016.
Manuscript publicized March 22, 2016.
†The authors are with the School of Computer Science and En-

gineering, South China University of Technology (SCUT), Higher
Education Mega Centre, Panyu District, Guangzhou, 510006,
China.

a) E-mail: yangyingyi10@126.com (Corresponding author)
DOI: 10.1587/transinf.2016EDP7036

network bandwidth and latency, especially when it is ex-
ecuted among multiple data centers. Due to the high la-
tency of wide-area channels, the unique leader in Paxos
must spend a great deal of time idle waiting for responses
from a quorum of acceptors during execution among data
centers. The second problem is the unbalanced link depen-
dency pattern. When executing Paxos among data centers,
only replicas that are located on the same data center as the
leader communicate with it exclusively via a low-latency
local-area network (LAN), whereas those located on other
data centers rely mainly on a higher-latency wide-area net-
work to establish a connection to the leader, which leaves
the local-area network within every other data centers idle
for most of the time.

To mitigate the problems mentioned above, we define
a hierarchical replicated state machine (H-RSM) and design
a corresponding protocol D-Paxos (‘D’ stands for delega-
tor) to improve the utilization of idle resources. The H-
RSM is designed based on the idea of parallel processing
and aims to improve the resource utilization. It provides
consistency guarantees similar to the one-copy serializabil-
ity used in databases. To execute D-Paxos among multiple
data centers, a distinguished replica server called delega-
tor is elected for H-RSM in each data center. The advan-
tages that D-Paxos improves resource utilization and pro-
vides high throughput mainly consist in two aspects. On one
hand, all delegators generate pre-ordered sequences of re-
quests by efficiently utilizing idle local-area bandwidth. Se-
quences are then proposed as batches to improve the overall
throughput among data centers (batching). On the other, all
delegators totally order sequences of requests pre-ordered
in a round-robin manner (logical pipelining), which further
improves the throughput and balances the workload among
data centers.

The contributions of this paper are as follows: (1) We
design an H-RSM and its corresponding consensus pro-
tocol D-Paxos for replication among servers distributed
across multiple data centers. We also theoretically prove
that D-Paxos satisfies the safety and liveness properties of
our H-RSM. (2) We develop an analytical model for D-
Paxos, which provides a good approximation to the op-
timal batch sizes for pre-ordered requests when D-Paxos
reaches its maximum throughput. (3) We validate the an-
alytical model experimentally and present the experimen-
tal evaluation to show performance advantages compared
to other Paxos variants for replication among servers dis-
tributed across multiple data centers.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

1486
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

The rest of paper is organized as follows. Section 2
presents related definitions and introduces our H-RSM. Sec-
tion 3 reviews Paxos and Multi-Paxos. In Sect. 4, D-Paxos
is detailed and related proofs are given. Section 5 presents
our analytical model of D-Paxos for predicting how many
requests must be pre-ordered to reach D-Paxos’s maximum
throughput. The experimental evaluation is given in Sect. 6
along with the validation of the analytical model. Section 7
presents related work; and Sect. 8 concludes the paper.

2. A Hierarchical Replication State Machine

2.1 System Model

We model a cloud-based system as m(m ∈ N,m ≥ 3)
data centers interconnected by a wide area network, each
of which is composed of a set of servers and a set of clients.
The wide-area network among data centers is modeled as a
set of links pairwise and independent connecting data cen-
ters, and the local-area network among servers within the
same data center is modeled as a set of links shared among
them. The communication between data centers is usually
latency-unbounded, while the communication within each
data center is bandwidth-bound.

We assume that the replicas and clients in each data
center run on separate servers and are connected through a
LAN. Servers in each data center only receive requests from
clients located in the same data center, and those clients in
turn only connect and send the requests to the nearby servers
in the same data center. This is reasonable, since clients
always seek for lower-latency responses.

2.2 Definition

An H-RSM is a RSM that provides efficient use of resources
and good overall performance. If the task for totally order-
ing all requests in a RSM can be partitioned into subtasks for
partially ordering some requests in parallel and if the former
is more costly than the latter, then a possible solution is to
partition the task among all replicas (the servers) into par-
allel subtasks among some of replicas and then combine all
resulting sequences partially ordered into a totally ordered
one in some way. Note that, parts of replicas can imple-
ment a local RSM (by executing a local consensus protocol,
or local protocol for short, to pre-order some requests and
to form pre-ordered sequences of requests). Local RSMs
can be viewed as logical entities and further implement a
global RSM (by executing a global consensus protocol, or
global protocol for short, which totally orders sequences of
requests pre-ordered from local RSMs). In this way, when
waiting for messages from other local RSMs during execut-
ing a global protocol, a local RSM can keep pre-ordering
requests instead of idle waiting, which increases resource
utilization.

On the basis of the above idea, all servers can be di-
vided into g(g ∈ N, g ≥ 3) components.

Definition 1. A component is a set of servers which imple-
ment a local replicated state machine and a logical entity
that involves in the implementation of a global replicated
state machine. Let S be the complete set of all servers, a
component Ci(Ci ⊆ S, i ∈ {1, . . . , g}) is a subset composed
of ni(3 ≤ ni ≤ |S|) servers in S.

According to our system model and definition 1, all
data centers can be considered as non-overlapping compo-
nents. Let Di = Ci(|Di| ≥ 3, i ∈ {1, . . . ,m}) be a set of all
servers within a data center, we have

⋃
Di = S, Di ∩ D j =

∅,
∑

(i = 1)m = |Di| = |S|(i � j, i, j ∈ {1, . . . ,m}). Therefore,
we refer to ‘data center’ as ‘component’ hereafter.

In an H-RSM, a global consensus protocol is required
for local RSMs to implement a global RSM. For executing
such a global protocol, there are two points to notice:

First of all, a local RSM is an agent performing some
role in a global protocol, like the concept used in ordinary
Paxos [5]. However, a global protocol is actually executed
by some physical object(s) (e.g. servers or a component
composed of multiple servers). Therefore, we have

Definition 2. In an H-RSM, physical object(s) on behalf of a
local RSM to participant a global protocol is (are) referred
to as delegator(s).

Secondly, instead of any single request from some
client, pre-ordered sequences of requests generated in the
execution of local protocol are proposed in global protocol.
In this paper, a finite, non-empty and pre-ordered sequence
of requests is denoted as 〈r1, . . . , rk〉, with ri, i ∈ {1, . . . , k}
stands for the ith request issued by some client, where
k(k ∈ N) is the number of elements. An empty sequence is
denoted as 〈〉. In this paper, we do not consider commutable
requests and the history with commutable requests. Instead,
we check for duplicate requests by recording committed re-
quests.

To precisely specify actions performed by a component
in an H-RSM, we introduce some related definitions as fol-
lows.

Definition 3. A server is correct if it does not crash. All
correct servers eventually agree on a unique request and
this request must have been proposed. A server that is not
correct is faulty.

Definition 4. A quorum refers to a set of participants
(servers or components) that is large enough to ensure the
liveness of a (local or global) consensus protocol.

Definition 5. A component is correct if there exist a quorum
of servers within the component that are correct. Otherwise,
it is faulty.

Definition 6. A component proposes a proposal, which
means a delegator(s) elected on behalf of this component
proposes a proposal to other components.

Definition 7. A component accepts a proposal, which

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1487

means a delegator(s) acting on behalf of this component re-
ceives a proposal sent by another component and accepts it
if it does not violate any of the safety properties of the global
protocol.

Definition 8. Once a component learns a sequence agreed
upon by the components, delegator(s) in this component
then broadcasts the sequence to all servers within the same
component, each of which eventually commit this sequence
in the predetermined order.

2.3 Properties

Consensus is a fundamental coordination problem that re-
quires a group of agents to agree on a common value, based
on values proposed. In our H-RSM, consensus is divided
into local consensus and global consensus. Here, we refer
to a server in a local consensus or a component in a global
consensus as an agent and refer to a request in a local con-
sensus or a sequence of requests in a global consensus as a
value. Each agent in a consensus starts with an initial value
to propose and decides on some proposed value. A local
or global consensus implementation satisfies the following
four properties.

Termination: Every correct agent eventually decides
some value.

Validity: If all agents propose the same value v, then
every correct agent decides v.

Integrity: Every correct agent decides at most one
value.

Agreement: If a correct agent decides value v, then
every correct agent decides v.

In an H-RSM, a server submits requests, a component
submits pre-ordered sequences of requests, and each server
eventually commits a totally ordered sequence of requests
that are submitted by the servers. An H-RSM implementa-
tion should satisfy the liveness properties H-RSM Validity
and H-RSM Agreement, and the safety properties H-RSM
Integrity and H-RSM Total Order.

H-RSM Validity: If a correct server in a correct com-
ponent submits a request r, then all correct servers in all
components will eventually commit r.

H-RSM Agreement: If a correct server in a correct
component commits a request r, then all correct servers in
all correct components will eventually commit request r as
well.

H-RSM Integrity: Any given request r is committed
by each correct server in each correct component at most
once, and only if r was previously submitted.

H-RSM Total Order: If two correct servers p and q
from any correct component both commit request r1 and r2,
then server p commits request r1 before r2 if and only if
server q commits request r1 before r2.

3. Paxos and Multi-Paxos in a Nutshell

Paxos and Multi-Paxos are efficient consensus protocols

commonly used for replicated state machines. Both of them
are proved to satisfy the safety properties Validity, Integrity
and Agreement and the liveness property Termination [5].
In this section, we briefly describe Paxos and Multi-Paxos.

Paxos requires 2 f+1 replicas to tolerate f faults. Paxos
is usually described in terms of three roles: proposers that
can propose values, acceptors that choose a single value and
learners that learn what value has been decided. A single
replica can execute multiple roles simultaneously. The exe-
cution of a Paxos instance proceeds in a sequence of rounds.
For each round, one replica among the proposers plays the
role of coordinator of the round. To propose a value, pro-
posers send the value to the coordinator. The coordinator
tries to get the others to agree on a value proposed by it. The
round may succeed, in which case the value proposed is de-
cided, or it may fail, in which case some other replica (or
the same) starts a new round. Rounds are numbered with in-
creasing numbers, with higher-numbered rounds supersed-
ing lower-numbered rounds.

Each round consists of two phases. In the first, the
coordinator sends a PREPARE message to the acceptors
(Phase 1a message) asking them to abandon all lower num-
bered rounds and to reply with the last value they accepted
and the round number where they accepted it, or null if they
did not accept any value (Phase 1b message). The acceptors
answer to this message only if they have not participated in
any higher numbered round. Once the coordinator receives
a majority of replies, it enters the second phase. The coordi-
nator chooses a value to propose based on the messages re-
ceived from the acceptors. If some Phase 1b messages con-
tain a value, the coordinator takes the value associated with
the highest round number. Otherwise, it is free to choose
any value. Once the value is chosen, the coordinator pro-
poses this value with an ACCEPT message sent to all ac-
ceptors (Phase 2a message). The acceptors will once again
answer only if they have not participated in a higher num-
bered round, in which case they send a Phase 2b message
to the coordinator, informing it that they have accepted the
proposal. Once receiving a quorum of Phase 2b messages
from acceptors, the coordinator knows that a value has been
decided and sends the decision to the learners.

Multi-Paxos is based on the observation that when ex-
ecuting a series of Paxos instances, the coordinator can ex-
ecute Phase 1 for an arbitrary number of instances using a
single prepare phase [6]. Afterwards, it only needs to exe-
cute Phase 2 of each instance, therefore reducing the num-
ber of communication delays for instances by almost half.
In our implementation of D-Paxos, Multi-Paxos advances
through a series of views, which play a similar role as rounds
in a Paxos instance. A delegator elected in a component acts
as the local coordinator. Once a new pre-ordering phase
begins, the delegator becomes the local coordinator to co-
ordinate a new view with a view number, which is higher
than any view number previously observed by the coordina-
tor. The coordinator then executes Phase 1 for the specified
number of instances that, according to the local knowledge
of the coordinator, were not yet decided. Unlike the PRE-

1488
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

PARE message used in Paxos, the PREPARE message used
in Multi-Paxos contains the view number and the list of k
instances numbers with which instances do not know the de-
cision. Once receiving such a message, an acceptor answers
with a Phase 1b message for k instances of Paxos. For every
instance, the Phase 1b message contains the last value it ac-
cepted and the corresponding view number, or null if it has
not accepted any value for this instance. After completing
the Phase 1, the local coordinator can then execute Phase 2
for k instances simultaneously. In this way, Multi-Paxos can
actually improve the utilization of resources in a pipelining
manner.

4. D-Paxos

In this section, we detail D-Paxos, a protocol which is de-
signed to implement our H-RSM. Its core idea is to improve
the utilization of idle time and available local-area band-
width by ingeniously using batching and logical pipelining,
which leads to better throughput.

4.1 Assumptions

To ensure the correct execution of D-Paxos, further assump-
tions are needed.

Benign failure We assume that all servers in the sys-
tem may fail by crashing and can later recover their states
through stable storage that survives crashes. Servers never
exhibit Byzantine behaviors [7] even if they have failed, that
is, all failures are benign.

Partial synchrony Servers communicate via exchang-
ing messages in bidirectional channels. Message interac-
tions are unreliable: messages can be lost or duplicated, but
they are not corrupted. There is no upper bound on message
transmission delays. There are bounds on relative process
speeds and on message transmission times, but these bounds
are not known and they hold only after some unknown but
finite time.

The FLP impossibility result [8] asserts that it is not
possible to solve the consensus problem in asynchronous
systems when even a single process can fail. Like many
other asynchronous consensus protocol, D-Paxos utilizes a
failure detector to circumvent the impossibility result. To
satisfy H-RSM Validity property (see the proof of Lemma 4
in Sect. 4.4 for more detail), D-Paxos requires a failure de-
tector of eventually perfect class
P, which is allowed to
be implemented under partial synchrony assumption. For
brevity, we simply adopt two properties completeness and
accuracy† introduced in [9] to give an informal definition of

P as below.

Definition 9. A failure detector of eventually perfect class

P is a failure detector which satisfies Strong Complete-
ness and Eventual Strong Accuracy. That is to say, a fail-
ure detector of class
P guarantees that eventually every

†Completeness characterizes the failure detector’s capability
of suspecting incorrect processes, while accuracy characterizes the
failure detector’s capability of not suspecting correct processes.

server that crashes is permanently suspected by every cor-
rect server and there is a time after which correct servers
are not suspected by any correct server.

4.2 The Execution of D-Paxos

To describe D-Paxos more precisely, we number all m com-
ponents from 1 to m. As mentioned in Sect. 2.2, delegators
are physical objects on behalf of a local RSM to participant a
global protocol. Before the execution of D-Paxos, an initial-
ization should has been completed within each component.

Initialization: A distinguished server is elected
(through, e.g. a leader election) to be a delegator within each
component.

These delegators elected play important roles in the ex-
ecution of D-Paxos. The logical relationships among com-
ponents and servers are shown in Fig. 1.

Intuitively, D-Paxos consists of two phases, local pre-
ordering phase (also known as pre-ordering phase) and
global total ordering phase (also known as total ordering
phase), which are used for implementing a local RSM and
a global RSM respectively. Although their relationships ap-
pear to be intuitive, all participants in D-Paxos are required
to follow some rules, which are critical for D-Paxos to sat-
isfy the safety and liveness properties of an H-RSM.

Rule 1. Each delegator elected from each component
has three roles. First, it acts as a local coordinator, which
executes a specified number (say k) of instances of local
protocol (also referred to as local instances) in each pre-
ordering phase. Second, the elected delegator acts as a
global acceptor, which participates instances of global pro-
tocol (also referred to as global instances) in total ordering
phases. Last, it acts as a global leader in a round-robin man-
ner, which coordinates global instances among delegators
in total ordering phases. A bounded number of global in-
stances p × m + i is assigned to delegator di, where p ∈ N
and di ∈ Di, i ∈ {1, . . . ,m}. Once a delegator becomes the
global leader of global instances assigned to it, all other del-
egators become global acceptors in those global instances.

Rule 2. Once a delegator has become the global leader
and initiated a global instance, all delegators agree that the
leader is the default one for this instance and start from the
state in which the leader had run Phase 1 (just like the one

Fig. 1 Logical relationships among components and servers.

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1489

in ordinary Paxos) for some initial round r; that is, they
promise not to accept any proposal for any round smaller
than r.

Rule 3. Two types of proposals are defined for global
instances. One is the finite, non-empty and pre-ordered se-
quence of requests 〈r1, . . . , rk〉 and the other is the empty
sequence 〈〉 which means a proposal that leaves the state un-
changed and that generates no response. Only the default
delegator who is assigned to a global instance can propose a
pre-ordered sequence of requests or an empty sequence 〈〉 (a
global instance can be skipped by its default delegator with
an empty sequence 〈〉 if there is not any request pre-ordered
and buffered) in that global instance, while others can only
propose an empty sequence 〈〉.

Based on the above rules, the execution of each D-
Paxos instance proceeds in two phases:

Pre-ordering phase within each component: (1) Each
delegator, working as a local coordinator, continuously re-
ceives requests from clients. (2) Each delegator executes
multiple local instances (here we use Multi-Paxos [5], which
means it simultaneously coordinates k instances of Phase 2
of the ordinary Paxos). The resulting pre-ordered sequence
is written to a local stable storage and used as a proposal for
the next global instance that the delegator will coordinate.

Total ordering phase among components: (1) By
Rule 1, the delegator turns to be the global leader. (2) By
Rules 2 and 3, the global leader proposes a proposal by send-
ing a GLOBAL ACCEPT message with the pre-ordered se-
quence of requests obtained in its pre-ordering phase to all
other components and waiting for GLOBAL ACCEPTED
messages from a quorum of global acceptors. (3) Once
receiving a proposal from the global leader, a global ac-
ceptor records the sequence into the stable storage and
checks whether the following constraints are satisfied: this
component has not yet accepted any proposal with greater
round number for this instance and the delegator who
forwarded the proposal with a LOCAL FORWARD mes-
sage to all servers within this component has received
LOCAL REPLY messages from a quorum of servers. If
these constraints are satisfied, the global acceptor sends
a GLOBAL ACCEPTED message back to the global
leader; otherwise, it does nothing. (4) Once receiving
GLOBAL ACCEPTED messages from a quorum of global
acceptors, the global leader learns that the proposal has been
chosen and notifies all other components by broadcasting a
GLOBAL LEARN message. All delegators which learn the
result notify all other servers in their component by broad-
casting a local LOCAL LEARN message.

From rules 2, 3 and the description of a total ordering
phase, the global protocol is actually the Phase 2 of ordinary
Paxos in which its proposals and actions are restricted. That
is to say, a global instance is a special case of an instance
of Phase 2 of ordinary Paxos. Therefore, a global instance
has the same quorum size as an ordinary Paxos instance,
namely, a majority (�m

2 � + 1) of delegators.

4.3 Failure Detection and Failover

In this section, we consider how to detect and handle failures
happened in both two phases of D-Paxos.

In D-Paxos, the failure detection relies on a failure de-
tector of class
P, which is strictly stronger than the weak-
est failure detector Ω [10]. Informally, it guarantees that all
faulty servers and eventually only faulty servers are sus-
pected. As described earlier, the execution of a D-Paxos
instance proceeds in two phases, i.e. the pre-ordering phase
and the total ordering phase. The pre-ordering phase is exe-
cuted before the total ordering phase. Since there are differ-
ences between these two phases in terms of execution con-
ditions (mainly the message latency), it would not be ap-
propriate to implement a failure detector of class
P among
servers distributed across multiple components. Actually,
two failure detectors for participants involved in these two
phases are implemented by a similar design idea but with
slight differences and set with different parameters due to
their execution conditions. As a consequence, failure de-
tectors of eventually perfect class
P (which is required for
D-Paxos to satisfy H-RSM Validity, see Sect. 4.4 for more
detail) are used in both phases, even though the weakest fail-
ure detector Ω is enough for the pre-ordering phase.

We take the implementation for delegators in total or-
dering phase as an example to briefly describe the algorithm
we use to implement a failure detector of class
P. In this
case, a faulty delegator in effect means a faulty component.
This is because a faulty delegator can be replaced through
a re-election mechanism for its component, which is dis-
cussed later. A component fails in case more than a ma-
jority of servers in this component fail. A faulty compo-
nent should be detected with a failure detector. However, a
failure detector can only be implemented among delegators,
since they participate in global instances on behalf of com-
ponents. For simplicity, we implement a failure detector of
class
P based on the heartbeat, ring-based algorithm pre-
sented in [11]. In this algorithm, each delegator di periodi-
cally sends a heartbeat message to its successor in the ring.
Every delegator also waits for periodical heartbeats from its
predecessor in the ring. If delegator di does not receive such
a heartbeat on a specific time-out interval, it suspects that
its predecessor has crashed, include this predecessor in its
local list of suspected delegators Ldi , and set its predecessor
to it current predecessor’s predecessor. If delegator di later
on receives a heartbeat message from a delegator dj it is
erroneously suspecting, delegator di correct its local list of
suspected delegators Ldi , increments the time-out interval,
and changes the perception of its correct predecessor in the
ring to d j. Besides its local list of suspected delegators Ldi ,
every delegators di has a global list Gdi , which provides the
properties of eventually perfect class
P. Delegators prop-
agate the global lists around the ring. Whenever di includes
a delegator d j in its Ldi , it also includes d j in Gdi . Finally,
each time di receives a heartbeat message from its supposed
correct predecessor in the ring, it builds a new global list of

1490
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

suspected delegators by merging the global list carried by
the heartbeat with its own local list Ldi . Delegator di also
sets its supposed correct successor in the ring to its near-
est delegator following the ring but not belonging to its new
global list.

With a failure detector of eventually perfect class
P,
a delegator re-election mechanism can be implemented in a
component. When a delegator fails or is falsely suspected
during the pre-ordering phase, such a delegator re-election
mechanism prevents the liveness of local instances from be-
ing affected. In total ordering phase, a delegator re-election
mechanism can also provide fault tolerance for components.
Therefore, a delegator re-election mechanism is very im-
portant for D-Paxos. In D-Paxos, using the algorithm for
eventually perfect failure detector class
P described above
makes the implementation of a delegator re-election mech-
anism more easier. Specifically, all servers in a component
Ci are arranged in a logical ring. With the implementation
of a failure detector of class
P, each correct server can re-
ceive the set of suspected servers returned by the failure de-
tector. Consequently, it can also get the set of non-suspected
servers, which is just the complement of the set of suspected
servers. On this basis, each server applies a same deter-
ministic function delegator to the set of non-suspected
servers to choose one from it, eventually all correct servers
will permanently agree on the same correct server. Since
all servers in a component are arranged in a logical ring,
function delegator can simply choose the server with the
lowest numbered to be the distinguished one. Because dele-
gators participate in global instances, they should be known
to each other. In our implementation, each server maintains
a local list which records the related information about del-
egators of components. Whenever a server is elected to be a
delegator, it is responsible for updating the list and inform-
ing all other servers of the update.

With the implementation of the failure detector of class

P and the delegator re-election mechanism, we specify the
following failover mechanism for faulty delegators.

Failover mechanism 1. If a delegator fails or is falsely
suspected, a new delegator is re-elected from the same com-
ponent where the previous one locates and it restores the
state by inquiring for other servers about the state and re-
ceiving responses from them.

A component can handle a delegator failure by failover
mechanism 1. However, a component cannot commit re-
quests in case more than a quorum of servers within this
component failed, e.g. due to power outage, or falsely sus-
pected, e.g. due to a temporary network breakdown. Once
a component failure did happen, other delegators cannot
commit requests even if instances which they coordinate to
choose those requests succeeded. The protocol is blocked.
As a consequence, we provide a solution as follows.

Failover mechanism 2. If a component fails, an-
other component is permitted to finish those global instances
which are assigned to the failed component. The dele-
gator from that alternative component acts as the alterna-
tive leader and requires responses from other delegators

by sending a GLOBAL PREPARE message. If it receives
GLOBAL PROMISE messages from a quorum of delega-
tors and gets a non-empty, pre-ordered sequence of requests,
it proposes a proposal with this sequence. Otherwise, it pro-
poses a proposal with empty sequence 〈〉 by Rule 3.

Based on failover mechanism 2, in a global instance i,
only the non-empty, pre-ordered sequence of requests pro-
posed by the default delegator can be chosen, any other non-
empty, pre-ordered sequence cannot be proposed and cho-
sen. In other words, the decision for a global instance i is
either a non-empty, pre-ordered sequence of requests pro-
posed by the default delegator or an empty sequence 〈〉.

Besides the cases in which a component failure did
happen, the cases in which a component is falsely suspected
should also be handled. Accordingly, we specify another
failover mechanism as follows.

Failover mechanism 3. In case a component is falsely
suspected, if it proposes a pre-ordered sequence h � 〈〉 to
global instance i and learns that 〈〉 is chosen, then it is per-
mitted to propose h again.

4.4 Proof

We show that D-Paxos with above failover mechanisms im-
plements consensus and satisfies the requirements of an H-
RSM.

Theorem 1. Assuming a failure detector of eventually per-
fect class
P, D-Paxos implements consensus.

Proof. In the pre-ordering phase, the safety properties of lo-
cal protocol Multi-Paxos obviously can be guaranteed. With
a failure detector of class
P, a failure detector stronger than
Ω, the failed delegator will be detected and a new delegator
will be elected by failover mechanism 1 and takes over to
coordinate local instances for its component, once the pre-
vious delegator has failed. So the liveness properties of the
local protocol Multi-Paxos are not affected. This phase does
not involve committing a request. Therefore, the safety and
liveness properties of the global protocol are not affected ei-
ther.

In the total ordering phase, once a delegator takes turns
to be a global leader, it proposes the pre-ordered sequence
achieved in its pre-ordering phase. The global protocol
starts from a specific (and safe) state. In case the delega-
tor fails, with failure detector
P and failover mechanism
1, the global protocol still makes progress. In the worst
case, when the component fails, with failure detector
P
and failover mechanisms 2 and 3, the safety and liveness
properties of the global protocol are not affected. Since the
global protocol is actually the Phase 2 of ordinary Paxos
with its proposals and actions restricted, it obviously im-
plements consensus. Therefore, D-Paxos implements con-
sensus and satisfies the following properties: Termination,
Validity, Integrity and Agreement. �

Lemma 1. D-Paxos satisfies H-RSM Agreement.

Proof. If a request r is committed by a correct server p,

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1491

then (1) component C where p locates must commit a pre-
ordered sequence h of requests containing r; (2) the pre-
ordered sequence h must have been decided by C in some
global instance i; (3) component C must have learned all
global instances smaller than i; and (4) component C does
not learn h in any global instance smaller than i. For any
given correct component Q, the Termination property of
consensus guarantees that Q will eventually learn all in-
stances smaller than or equal to i as well. By the Agreement
property of consensus, the pre-ordered sequence h is learned
in global instance i and h has never been learned in instances
smaller than i. Therefore, once all instances smaller than or
equal to i are learned and committed by component Q, all
servers in Q will commit pre-ordered sequence h containing
r, which happens eventually. �

Lemma 2. D-Paxos satisfies H-RSM Integrity.

Proof. As mentioned in Sect. 2.2, a committed request is
recorded and then used for duplicates checking. If a request
r is committed by a correct server p, then a pre-ordered se-
quence h containing r is committed by component C con-
taining p. The pre-ordered sequence h of requests must have
been chosen in some global instance i. The Validity prop-
erty of consensus guarantees that h was proposed by some
component Q in instance i. Since request r is an element of
h, request r must have been proposed by the delegator from
component Q in some local instance. �

Lemma 3. D-Paxos satisfies H-RSM Total Order.

Proof. Given that two correct servers p and q from two cor-
rect components Cp and Cq respectively, both of which com-
mit request r1 and r2, we show that the lemma holds in two
cases.

If request r1 and r2 belong to the same pre-ordered
sequence h of requests, then component Cp and Cq must
commit requests in the same order as they appear in the se-
quence. Therefore, the lemma holds in this case.

If request r1 and r2 respectively belong to different
pre-ordered sequences, assuming request r1 belongs to pre-
ordered sequence h1 and request r2 belongs to pre-ordered
sequence h2. If component Cp commits r1 before r2, that is,
component Cp commits h1 before h2, then there must exist
global instances i1 and i2(i1 < i2) such that (1) component
Cp has learned all instances smaller than or equal to i2;
(2) component Cp learns h1 in i1 and does not learn h1 in
instances smaller than i1; and (3) component Cp learns h2 in
i2 and does not learn h2 in instances smaller than i2. If com-
ponent Cq commits r2 before r1, which means Cq commit
h2 before h1, then there must exist global instances j1 and
j2(j1 < j2) such that (1) component Cq has learned all in-
stances smaller than or equal to j2; (2) component Cq learns
h2 in j1 and does not learn h2 in instances smaller than j1;
and (3) component Cq learns h1 in j2 and does not learn h1

in instance smaller than j2. Without loss of generality, we
assume i2 ≤ j2. Since component Cp learns h1 in i1, by the
Agreement property of consensus, component Cq must also

learn h1 in i1. Since i1 < i2 ≤ j2, this contradicts with Cq

does not learn h1 in any instance smaller than j2. Therefore,
the lemma holds in this case. �

Lemma 4. Assuming a failure detector of eventually perfect
class
P, D-Paxos satisfies H-RSM Validity.

Proof. Given that a correct server p from correct component
Cp submits a request r, the failure detector
P guarantees
that request r will eventually be placed in certain position in
a pre-ordered sequence h of requests, then pre-ordered se-
quence h will be proposed to a global instance i. After that,
(1) If component Cp are not falsely suspected, all correct
components will eventually propose sequences to global in-
stances smaller than i, and all non-faulty components will
eventually learn sequences decided for those instances. For
those global instances which are assigned to faulty compo-
nents, they will be handled by failover mechanism 2, and all
non-faulty components will eventually learn sequences de-
cided. So request r will eventually be decided in i. (2) If
component Cp is falsely suspected, e.g. transient network
partition, the failure detector
P guarantees that eventu-
ally all faulty servers and only faulty servers are suspected.
Therefore, component Cp will recover, say, at time t. By
failover mechanism 3, component Cp will continue to sub-
mit the pre-ordered sequence h upon false suspicion until h
is chosen. If the pre-ordered sequence h hasn’t been chosen
by t, by case (1), the pre-ordered sequence h will be cho-
sen once component Cp re-proposes h after t. Therefore,
D-Paxos satisfies H-RSM Validity. �

Theorem 2. Assuming a failure detector of eventually per-
fect class
P, D-Paxos implements hierarchical replicated
state machines.

Proof. From Lemma 1 to Lemma 4. �

D-Paxos does not necessarily guarantee the sequential
consistency. As one of consistency models used in the do-
main of concurrent computing, sequential consistency re-
quires that the result of any execution is the same as if the
operations of all the processors were executed in some se-
quential order, and the operations of each individual proces-
sor appear in this sequence in the order specified by its pro-
gram [12]. Using D-Paxos, the execution order of requests
at all correct server is not necessarily the same as the order
in which those requests are issued. D-Paxos only guaran-
tees that all requests ordered are executed by every correct
server in the same order, as proved earlier. In terms of cor-
rectness, one-copy serializability used in database protocols
adapts to replicated scenarios. The basis for correctness is
data dependencies. Sequential consistency allows to read
old values under some conditions. In this respect, one-copy
serializability has similarities with sequential consistency,
but strictly speaking, the two consistency criteria are dif-
ferent [13]. In some sense, D-Paxos provides consistency
guarantees similar to one-copy serializability.

1492
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

5. The Size of Pre-Ordered Batch of Requests

Both batching and pipelining are effective optimizations for
improving system’s performance by making full use of the
resources. When replicating data across multiple data cen-
ters in the cloud, a replicated system’s throughput will be
improved as long as idle resources in data centers are ef-
fectively used. D-Paxos achieves this goal with batching
(by utilizing LAN bandwidth available to coordinate local
instances in pre-ordering phases and to form pre-ordered
batches of requests that are used for global instances) and
logical pipelining (by coordinating multiple global instances
in a round-robin manner and amortizing workload over del-
egators).

In D-Paxos, although a delegator coordinates not only
global instances but also local instances, the workload for
coordination is shared among delegators through rotating
leader scheme. Due to high wide-area latency, a delega-
tor actually coordinates several local instances to form its
pre-ordered batches of requests as long as it is idle waiting
for messages for global instances. Therefore, delegators’
workloads are dominated by local instances. For replication
among servers distributed multiple components, D-Paxos
may reach its maximum throughput due to high wide-area
latency before delegators saturate other resources (e.g. CPU
or bandwidth), which is demonstrated by our measurement
results for a particular setting shown in Sect. 6. Therefore, it
is critical to coordinate a moderate number of local instances
to form a large enough pre-ordered batch of requests in each
pre-ordering phase. In this section, in the case of latency
bounded, we only consider how large a pre-ordered batch
of requests should be formed (i.e. how many local instances
should be coordinated) by a delegator in order to gain the
potentially maximum throughput.

5.1 Parameters

For simplicity, we only concern about the settings where all
components have the same number of servers and focus on
the best case, that is, all delegators execute local instances
and global instances at approximately the same rate, in the
case of no message loss and failures. We assume that there is
no other application competing for bandwidth and CPU time
and mechanisms internal to the protocol, such as delega-
tor re-election, should have a minimal impact on D-Paxos’s
performance. In the system we concern, the wide-area net-
work latency is the main potential bottleneck which affects
D-Paxos’s throughput. As mentioned earlier, the local pro-
tocol is Multi-Paxos whereas the global protocol is actually
the Phase 2 of ordinary Paxos with its proposals and actions
restricted, therefore, both phases in D-Paxos have similar
message pattern to that of Phase 2 of ordinary Paxos.

To better understand the relationship among D-Paxos’s
performance and related properties (e.g. latency, request
sizes, the number of components and replicas) and how
batch sizes impact D-Paxos’s throughput, we develop an an-

Table 1 Parameters.

Parameter Description
m Number of components
n Number of replicas per component
Lw One-way delay between components
Ll One-way delay between replicas in each component
Bw Wide-area network bandwidth available
Bl Local-area network bandwidth available
k Size of a pre-ordered batch (sequence) of requests

S global accept
Size of GLOBAL ACCEPT message in total ordering
phase

S global accepted
Size of GLOBAL ACCEPTED message in total
ordering phase

S global learn
Size of GLOBAL LEARN message in total ordering
phase

S local accept
Size of LOCAL ACCEPT message in pre-ordering
phase

S local f orward
Size of LOCAL FORWARD message used for
forwarding a global proposal

S local learn
Size of LOCAL LEARN message used for forwarding
global decision

S local ack
Size of LOCAL ACCEPTED, LOCAL REPLY and
LOCAL CONFIRM message

S req Size of a request

alytical model. The parameters used in the rest of this paper
are shown in Table 1. Note that, all payloads or data used
in D-Paxos are capsulated in protocol messages. Since the
protocol header is relatively much smaller than the payload,
we simply use the payload to indicate the size of a pro-
tocol message. Taking a LOCAL ACCEPT message used
in pre-ordering phase for example, we have S local accept =

S req + h, where h is the size of the protocol headers. Since
h
 S req, we assume that S local accept ≈ S req for simplicity
and readability. Besides, since sizes S local accept, S local reply

and S local con f irm of acknowledge messages which are prop-
agated within components are similar, we just use S ack to
denote their sizes.

5.2 Quantitative Analytical Model

To get the optimal number k of batch size, we consider
how many requests can a delegator orders (i.e. how many
Phase 2 instances of ordinary Paxos can be executed in par-
allel when executing Multi-Paxos) in its interval between
the time when it turns to be a global leader in case of sta-
ble network and components with equal processing capac-
ity. Let the time spent by a global leader in sending out
a proposal (i.e. a pre-ordered batch of requests) in the to-
tal ordering phase of a D-Paxos instance be T WAN

ma j , the time
spent by a global acceptor to receive a proposal be T WAN

receive
and the one-way latency from a global leader to a global
acceptor be Lw. A delegator can enter into pre-ordering
phase of the next D-Paxos instance assigned to it and act
as a local coordinator once it has proposed its global pro-
posal in total ordering phase of the current D-Paxos in-
stance. A potential leader can end its current pre-ordering
phase of the current D-Paxos instance and start its next total
ordering phase once it receives its predecessor’s proposal.
There are m rotations in a rotating cycle. Therefore, the ro-

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1493

tating cycle of this potential leader can be represented as
(m − 1) × (T WAN

receive + T WAN
ma j) +m × Lw. We notice that, during

this period of time, if the delegator (i.e. this potential leader)
can receive enough requests, it can stay busy and takes full
advantage of resources to prepare a large enough batch for
its next global instance. However, besides working as a lo-
cal coordinator to coordinate local instances in pre-ordering
phase of current D-Paxos instance (the time spent is denoted
as T LAN

inst) and send out the resulting sequence as a proposal in
subsequent total ordering phase (the time spent is T WAN

ma j), the
delegator also need to act as a global acceptor to accept pro-
posals from other global leaders in global instances assigned
to other delegators (the time spent is denoted as T WAN

accept) and
forward results learned to all other replicas within its com-
ponent (the time spent is denoted as T WAN

decide). The message
pattern during this interval is shown in Fig. 2.

From the description above and Fig. 2, we get

(m − 1) × (T WAN
receive + T WAN

ma j) + m × Lw

= k × T LAN
inst + T WAN

ma j + (m − 1) × T WAN
accept + m × T WAN

decide

(1)

Here we consider T WAN
ma j , T WAN

receive, T LAN
inst , T WAN

accept and
T WAN

decide respectively.
Once a delegator becomes the next global leader, it pro-

poses its batch (k requests) as a proposal. Wide-area net-
works latency Lw(Lw � Ll) is the main bottleneck. The
inter-component section of the connection between the del-
egators will likely be different for each pair of delegators,
so that after leaving the component, the messages from a

Fig. 2 Message pattern when a delegator acts as a local coordinator,
a global leader or a global acceptor.

Fig. 3 Message pattern when a delegator (a) as a local coordinator coordinates an instance, (b) as a
global acceptor accepts a global proposal, and (c) as a global acceptor learns the decision.

delegator will follow independent paths to other delega-
tors. Every message sent by the delegator uses a separate
logical channel of bandwidth Bw in this case. With pro-
posals of the same size, we can obtain the time T WAN

ma j re-
quired for a global leader to propose a global proposal with
GLOBAL ACCEPT message in total ordering phase and the
time T WAN

receive required for a global acceptor to receive such a
global proposal is

T WAN
ma j = T WAN

receive =
S global accept

Bw
=

k × S req

Bw
(2)

When a delegator acts as a local coordinator, it coor-
dinates Multi-Paxos instances in a LAN. In this case, the
delegator has a total bandwidth of Bl to share among all
other replicas in the same component [14]. As mentioned
above, Phase 2 instances of ordinary Paxos are the dominant
workload for Multi-Paxos instances. With the assumption
that there is no delay from the time an acceptor receives a
message until it answers, the time for one Phase 2 instance
is the time from the sending of the first LOCAL ACCEPT
message to the reception of enough LOCAL ACCEPTED
messages. To finish an instance, the local coordinator must
receive a majority of LOCAL ACCEPTED messages. This
happens only if the LOCAL ACCEPT message was re-
ceived by a majority of local acceptors. Since the local
coordinator in Multi-Paxos coordinates multiple Phase 2 in-
stances simultaneously and all instances have the same mes-
sage pattern (see Fig. 3 (a)), it behaves similarly to the ex-
ecution of instances with pipelining. In this scenario, the
only exception is that the local coordinator caches all pre-
ordered requests to a queue so as to form a batch rather than
informing the client of the result. According to Fig. 3 (a) and
analysis above, we have the time k × T LAN

inst required for a lo-
cal coordinator to per-order k local instances in pre-ordering
phase is

k × T LAN
inst = k ×

⌊n
2

⌋
× S local accept

Bl
+ 2 × Ll +

S local ack

Bl

=

⌊n
2

⌋
× k × S req

Bl
+ 2 × Ll +

S local ack

Bl
(3)

After receiving a global proposal from a global leader,
a global acceptor will determine on whether it accepts
the proposal or not. As mentioned in Sect. 4.2, the deci-
sion is made according to replies from a quorum of repli-

1494
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

cas within its component. In this way, a new delegator
can restore the state by inquiring for other replicas about
the state in case the previous delegator fails. Therefore,
the time T WAN

accept required for a global acceptor to accept
a global proposal includes the time used by a global ac-
ceptor for receiving the GLOBAL ACCEPT message and
sending the GLOBAL ACCEPTED message back and the
time used by a global acceptor for broadcasting the proposal
with LOCAL FORWARD messages and collecting LO-
CAL REPLY messages from a majority of replicas within
its component (see Eq. (4)). The message pattern is shown
in Fig. 3 (b). The time T WAN

accept required for a global acceptor
to accept a global proposal in total ordering phase is given
in Eq. (4).

T WAN
accept =

S global accept

Bw
+

⌊n
2

⌋
× S local f orward

Bl
+ 2 × Ll

+
S local ack

Bl
+

S global accepted

Bw

=
k × S req

Bw
+

⌊n
2

⌋
× k × S req

Bl

+ 2 × Ll +
S local ack

Bl
+

S global accepted

Bw
(4)

Once receiving GLOBAL ACCEPTED messages from
a quorum of global acceptors, the global leader learns that its
proposal for a D-Paxos instance has been chosen. Besides
broadcasting a GLOBAL LEARN message to other delega-
tors, it also broadcast a LOCAL LEARN message to inform
all replicas within its component of the decision. After re-
ceiving a global GLOBAL LEARN message from a global
leader, a global acceptor learns the decision and simply for-
ward the decision with a LOCAL LEARN message to all
other replicas within its component. All replicas which re-
ceive a LOCAL LEARN message will acknowledge it with
a LOCAL CONFIRM message. The message pattern is
shown in Fig. 3 (c). Regardless of its role, a delegator should
handle the same number of messages in both cases. There-
fore, the time T LAN

decide required for a global leader or an ac-
ceptor to learn a decision of a D-Paxos instance is given by
Eq. (5).

T WAN
decide =

S global learn

Bw
+

⌊n
2

⌋
× S local learn

Bl
+ 2 × Ll

+
S local ack

Bl

=
k × S req

Bw
+

⌊n
2

⌋
× k × S req

Bl
+ 2 × Ll

+
S local ack

Bl
(5)

Introducing Eqs. (2), (3), (4), (5) into Eq. (1), we ob-
tain the calculation formula for the optimal number k of
batch size. Since sizes of acknowledge messages S ack and
S global accepted are much smaller compared to sizes of mes-
sages carrying request load, such as S global accept, they would
be negligible. By simplifying the resulting formula, we

present the approximate formula as below in Eq. (6).

k ≈
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lw − 4 × Ll

(n
Bl
+ 2

m×Bw
) × S req

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

6. Experimental Study

In this section, we study the performance of D-Paxos ex-
perimentally and validate our analytical model obtained. To
facilitate performance evaluation, we put enough pressure
on these protocols, which is achieved by providing adequate
client requests and constructing a simple service adopting
these protocols. The simple service receives requests and
simply replies, but without state changed.

In order to study D-Paxos’s performance improvement
for replication among servers distributed across multiple
components, we compare it with Multi-Paxos and Men-
cius [15], an efficient consensus protocol for WANs, in terms
of throughput, latency, scalability and fault tolerance in the
same settings. Note that neither Multi-Paxos nor Mencius
is designed to implement a H-RSM. When running among
servers distributed across multiple data centers, there is no
concept of ‘component’ for both of them. However, for
comparison’s sake, we still refer to ‘data center’ as ‘compo-
nent’ in the discussion involving Multi-Paxos and Mencius.

6.1 Experimental Settings

We run our experiments over Emulab [16]. Emulab pro-
vides an experimentation facility that integrates different ex-
perimental environments: emulation, simulation and live-
Internet into a common framework. The integration brings
the control and ease of use usually associated with simula-
tion to emulation and live network experimentation without
sacrificing realism.

To run our experiments over Emulab, we specified a
network topology desired via an ns script first. The virtual
topology includes links and LANs, with associated charac-
teristics such as bandwidth, latency. The ns specification
is then parsed into an intermediate representation that is
stored in a database and later allocated and loaded onto hard-
ware. Mechanisms such as interposing Dummynet nodes
can be used to regulate bandwidth, latency in our experi-
ments. During experiment execution, Emulab provides in-
terfaces and tools for experiment control and interaction.

Appropriate settings are emulated for specific experi-
mental purposes. Due to limited conditions, up to five com-
ponents are emulated and each of them is composed of 10 to
15 replicas. Nevertheless, we believe such settings are suf-
ficient for evaluating our D-Paxos. An extra server in each
component is used to simulate multiple clients sending re-
quests to this component. All servers within the same com-
ponent are connected by an emulated local-area network
with 0.25 ms delay and 920 Mb/s of effective bandwidth
while all components are connected by an emulated wide-
area network with 150 ms delay and 9.45 Mb/s of effective

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1495

bandwidth. In each experiment, the time-out interval �s and
�d for failure detectors implemented separately for servers
in a component and for delegators among components are
set to 2 ms and 900 ms respectively.

In a setting, where five components are built and each
of them is composed of 10 replicas, the optimal size k
for pre-ordered batches is about 2,200 with request size of
256 B (the minimum size used in our experiments), which
is far less than the limits of the delegator’s ability to process
256 B requests (the test under the same setting indicates that
a delegator is capability of processing more than 5,000 re-
quests/second). Therefore, CPU is not the main bottleneck
in our experiments.

6.2 Throughput and Latency

In this section, we study D-Paxos’s improvement in through-
put and latency compared to Multi-Paxos and Mencius. Ex-
periments with request sizes of 4 KB, 1 KB and 256 B were
run on three components, each of which has 10 replicas.

As shown in Fig. 4 (a), no matter what request size
adopted, D-Paxos outperforms the others with respect to
the throughput. With 256 B requests and batch size of
930, the peak throughput of D-Paxos reaches around 2,300
requests/second, which is about 3.5 times and 1.25 times
higher than Multi-Paxos (660 requests/second) and Mencius
(1,830 requests/second) respectively. Multi-Paxos has the
lowest throughput. Although many instances can be exe-
cuted simultaneously in Multi-Paxos, the unique leader is
the bottleneck, which leads to unbalanced link dependency.
By making all replicas sharing coordination workload of
instances, Mencius presents higher throughput. However,
more coordinators mean more messages transmitted simul-
taneously in the whole system, which restricts Mencius to
achieve a better possible performance. In contrast, only del-
egators in D-Paxos involve in both global instances and local

Fig. 4 (a) Peak throughput and (b) average latency of Multi-Paxos, Mencius and D-Paxos for request
sizes of 4 KB, 1 KB and 256 B, in the experimental setting where three components are emulated and
each one consists of 10 replicas. Each result in the figure represents the average of 10 measured values.

instances, which decreases the number of messages and the
amount of data transmitted over networks and reduces the
potential uncertainty about the time spent in making a deci-
sion. Delegators efficiently exploit idle time left by inher-
ent higher latency among data centers to pre-order requests
and form batches, which improves the throughput through
batching in total ordering phases. Moreover, the rotating
leader scheme, a logical pipelining manner, is used to fur-
ther improve D-Paxos’s throughput.

Figure 4 (b) shows the average latency of Multi-Paxos,
Mencius and D-Paxos for ordering 1,000 requests respec-
tively. Since the leader is unique in Multi-Paxos, client re-
quests from other components should be sent to this unique
leader over wide-area networks, which results in an ad-
ditional round trip delay for committing those requests.
Therefore, Multi-Paxos has the highest latency. In Mencius,
every replica is given a chance to coordinate instances as a
leader. Client requests can be handled by replicas locally,
rather than being forwarded to a unique leader which may
far away from them. Therefore, Mencius has lower average
latency. In D-Paxos, requests from each component can be
coordinated directly by the corresponding delegator due to
rotating leader scheme, rather than being sent to a remote
leader. Moreover, each pre-ordering phase is executed by
a delegator when total ordering phases are executed, there
is no extra latency caused. In contrast, batches formed in
pre-ordering phases can be used for improving D-Paxos’s
throughput and decreasing latency. Therefore, we can see
that D-Paxos has the lowest latency.

6.3 Scalability

High scalability is one of pursuing goals to cloud storage
systems. Systems’ fault tolerance is expected to be im-
proved by scaling data centers or replicas without signif-
icant impact on performance. We evaluated the scalabil-

1496
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Fig. 5 (a) Peak throughput of Multi-Paxos, Mencius and D-Paxos for request size of 4 KB in different
settings. (b) Pre-ordered batch sizes of D-Paxos for request sizes of 4 KB, 1 KB and 256 B, when
reaching maximum throughput in different settings. Each result in the figure represents the average of
10 measured values.

ity of Multi-Paxos, Mencius and D-Paxos by running them
with 4 KB requests in different settings. As we can see
in Fig. 5 (a), all protocols are negatively affected by the in-
crease in the total number of replicas (i.e. either by increas-
ing the number of replicas per component (n) from 10 to 15
or by increasing the number of components (m) from three
to five). This is reasonable, because the increase in the num-
ber of replicas leads to larger quorums and thus causes re-
duced performance of each leader-centric instance in each
protocol. Note that increasing the number of replicas per
component has more negative impact on performance. The
reason is subtle. Taking Mencius for instance, increasing the
number of replicas per component causes more contention
for LAN bandwidth shared among all replicas in each com-
ponent, resulting in reduced throughput. Whereas increas-
ing the number of components increases the available WAN
bandwidth among components, which in turn offsets the im-
pact caused by the increase in the total number of replicas.

Among all protocols, D-Paxos is the least affected one
by the increase in the number of components. To better un-
derstand its reason, we present the experimental results for
different pre-ordered batch sizes when D-Paxos reaches the
maximum throughput in different settings. We run the ex-
periments with request sizes of 4 KB, 1 KB and 256 B. As
shown in Fig. 5 (b), regardless of request sizes, if the num-
ber of components m remains unchanged while the num-
ber of replicas n per component increases, the number of
requests which can be pre-ordered in a pre-ordering phase
decreases. This can be explained by the fact that more
messages are required in pre-ordering phase with increasing
number of replicas, which negatively impacts the batch size
formed and thus D-Paxos’s throughput. On the other hand,
if the number of replicas per component remains unchanged
while the number of components increases, the number of
requests which can be pre-ordered in pre-ordering phase in-
creases. The increase in the number of components means

Table 2 Comparison of analytical and experimental results of the
optimal batch size k for different settings.

Setting(m, n) Sreq(Bytes) Model(predictions) Experiments
4K 58 57-59

3 × 10 1K 234 230-236
256 937 923-947
4K 54 54-55

3 × 15 1K 219 216-222
256 878 864-888
4K 89 88-90

5 × 10 1K 358 352-362
256 1434 1410-1451

more delegators involve in total ordering phase, resulting
in an extended rotation cycle. If the number of repli-
cas is unchanged, an extended rotation cycle leads to a
longer pre-ordering phase and a larger batch formed in each
component, which offsets the impact caused by the increase
in the total number of replicas. From another point of view,
since delegators take turns to coordinate global instances, it
can also be regarded as the increase of the logical pipelin-
ing window size. As a consequence, D-Paxos outperforms
Multi-Paxos and Coordinated Paxos in scalability.

6.4 The Effect of Request Sizes and Batch Sizes

To validate the analytical model obtained in Sect. 5.2 and
give an insight into the effect of request sizes and batch sizes
on throughput, we run D-Paxos in different settings and
study the changes of pre-ordered batch sizes and throughput
as the request size increases. Table 2 shows a summary of
the analytical and experimental results of the optimal batch
sizes for different request sizes when D-Paxos reaches max-
imum throughput in different settings.

Table 2 shows that, in all cases the prediction for opti-
mal batch size k is inside the range where the experiments
reach maximum throughput, indicating that the model pro-

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1497

Fig. 6 Throughput with increasing pre-ordered batch sizes for request sizes of 4KB, 1KB and 256B
in different settings.

vides a good approximation. In any experimental setting,
the smaller request size D-Paxos uses, the larger optimal
batch size it forms when reaching maximum throughput.
This is because the time left for each delegator to pre-order
and process requests of different sizes is stable if the rotation
cycle is relatively stable. The smaller the request size, the
shorter the instance latency and the more the requests can
be pre-ordered. Consequently, the throughput in requests
per second is higher with smaller request size. As shown in
Fig. 6, in the setting where three components are emulated
and each of them is composed of 10 replicas, the maximum
throughput in requests per second for request size of 4 KB
is about 140 requests/second, whereas that for request size
of 256 B is about 2,300 requests/second.

Figure 6 also shows the throughput with increasing pre-
ordered batch sizes for request sizes of 4 KB, 1 KB and
256 B in different settings. In all cases, all curves show sim-
ilar trends. With smaller batch sizes, the idle time and the
available link bandwidth caused by high wide-area latency
are underutilized. Thus, gradually increasing batch size will
make better use of resources and the throughput increases
accordingly. After reaching its maximum, the throughput
will be stable, even if further increasing the batch size. The
reason is that the idle time due to wide-area latency has been
fully taken advantage of, the increased batch size also result
in the growth of time spent in receiving, sending and han-
dling messages, which offsets the performance improvement
brought by batching and logical pipelining. We also notice
that curves for five components change slowly than those
for three components before D-Paxos reaches the maximum
throughput with request sizes of 4 KB, 1 KB and 256 B.
This can be explained by the fact that the rotation cycle is
extended as the number of delegators involved in D-Paxos
grows and the time left for pre-ordering requests is extended
accordingly. With the same request size and the same batch
size specified, more time left due to more delegators in-
volved leads to lower throughput in requests per second.

6.5 The Effect of Failures

In this section, we compare the effect of failures on Multi-
Paxos, Mencius and D-Paxos and discuss how many crashes
of replicas each protocol can tolerate. In this set of experi-
ments, D-Paxos is run with 4 KB requests in a setting where
five components are emulated and each of them is composed
of 10 replicas. In each experiment, we run one of these three
protocols over a period of time and see how failures affect
it. Specifically, each experiment is run for 120 seconds,
with the first 20 seconds ignored before the system becomes
stable. About 60 seconds into each experiment, we crash
the relevant server or component and observe the change
of the throughput. Note that, since suspicion happened and
relevant failover mechanisms were invoked quickly, which
makes it very difficult to see what happened in each case.
Therefore, the failure report is deliberately delayed for an-
other 10 seconds so that we can see what occurs during the
interval when the crash happens.

We first examine how Multi-Paxos and Mencius be-
have under failure. In Multi-Paxos, we discuss respectively
how a crashed leader or a crashed non-leader replica affects
the throughput. Figures 7 (a) and 7 (b) show the results we
measured in both cases. As shown in Fig. 7 (a), the through-
put quickly drops to zero when the leader crashes. Since
there is only one leader in Multi-Paxos, throughput remains
zero for 10 seconds until the failure is detected and a new
leader is elected. The new leader then starts recovering
previously unfinished instances and Multi-Paxos’s through-
put goes back to the level before the failure happens. Fig-
ure 7 (b) shows the throughput observed when a non-leader
replica crashes. As we can see, a failed non-leader replica
has little or no effect on throughput. This is because Multi-
Paxos, just like Paxos, requires 2 f + 1 replicas to tolerate f
faults [5]. Any single faulty, non-leader replica won’t hinder
from forming a quorum to make progress. As for Mencius,
every replica has the opportunity to coordinate instances as
a leader. All replicas in Mencius are equivalent. In this case,
we discuss how a faulty replica affects Mencius’s through-

1498
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Fig. 7 Throughput of Multi-Paxos and Mencius under failure.

Fig. 8 Throughput of D-Paxos under failure.

put. As shown in Fig. 7 (c), the throughput quickly drops to
zero when a replica crashes. When the failure detector re-
ports the failure, a sharp spike is observed. This is because
all other replicas are still able to make progress and learn in-
stances they coordinate during the period the failure remains
unreported. However, they cannot commit these instances
because they have to wait for the decision of the missing in-
stances coordinated by the faulty replica. The cumulative
sequences due to the failure can be committed, resulting in
a sharp spike of roughly 1,000 requests. Finally, Mencius’s
throughput quickly recovers.

We now discuss how failures affect D-Paxos’s through-
put. Because D-Paxos implements our H-RSM, replica or-
ganization in D-Paxos is different from that in Multi-Paxos
and Mencius. In this scenario, experiments for D-Paxos are
run for evaluating (1) the effect of a crashed component,
(2) the effect of a crashed delegator in a component, and
(3) the effect of a crashed replica in a component. The re-
sults in these cases are shown in Fig. 8.

Figure 8 (a) shows the instantaneous throughput when
a component fails as a whole. The throughput is roughly
120 requests/second in the beginning. It quickly drops to 0
when a component fails, because the crash leads to a gap

in the total ordered sequence and thus no more subsequent
sequences can be committed by replicas in other compo-
nents. About 10 seconds later, some delegator notices the
crash and reacts by failover mechanism 2. All sequences
delayed due to the gap now can be committed, which results
in a sharp spike of roughly 1,200 requests. The throughput
level returns to normal subsequently. The resultant curve in
Fig. 8 (b) is similar to that in Fig. 8 (a). When a crash occurs,
the failed delegator cannot proceed to coordinate global in-
stances, which also result in a gap in the total ordered se-
quence. The overall throughput quickly drops to 0 because
replicas in other components cannot commit their sequences
at the moment. When the failure is reported, a re-election is
initiated within the component by failover mechanism 1 and
a new delegator is elected. The component is then recovered
and proceeds to handle the requests. There are nine replicas
left in the component after recovery. It has little effect on
the overall throughput, because any quorum required for lo-
cal instances and global instances to make progress is not
affected by any single faulty replica. The result in Fig. 8 (c)
also shows that a single replica failure does not prevent all
other replicas from committing subsequent requests and has
no or little effect on the overall throughput of D-Paxos.

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1499

To summarize, Multi-Paxos temporarily stalls only
when the leader fails. Mencius temporarily stalls when any
of the replicas crashes, while D-Paxos temporarily when any
of delegators or components crashes.

Finally, we analyze how many crashes of replicas each
protocol can tolerate. In the setting where all components
are composed of the same number of replicas, the total num-
ber of replicas is m × n, where m is the number of compo-
nents and n is the number of replicas per component. As
mentioned earlier, Multi-Paxos requires 2 f + 1 replicas to
tolerate f faults. That is to say, Multi-Paxos can toler-
ate �m×n

2 � − 1 crashes in this setting. Mencius is a vari-
ant of Paxos. In Mencius, any single instance coordinated
by a server is actually a Paxos instance with its proposals
and actions restricted. Therefore, Mencius can also tolerate
�m×n

2 � − 1 crashes.
Compared to that of Multi-Paxos and Mencius, the

analysis of D-Paxos’s fault tolerance is more complicated.
This is because that the execution of a D-Paxos instance, es-
pecially its total ordering phase, involves interaction among
servers both from components and within each components.
According to the description of D-Paxos in Sect. 4.2, a
global instance requires that at least a quorum (�m

2 � in this
case) of components are correct. In other words, at most
�m

2 � − 1 components can be faulty. According to definition 5
introduced in Sect. 2.2, a component is correct if there exist
a quorum (� n

2 � in this case) of replicas within the component
that are correct. Otherwise, it is faulty. Therefore, a compo-
nent is correct even it has � n

2 � − 1 crashed replicas. Based
on the above description, we discuss how many crashes of
replicas D-Paxos can tolerate, under the condition that its
liveness is guaranteed. In the base case, (1) there are �m

2 �
correct components and �m

2 �−1 faulty ones, (2) every correct
component has � n

2 � − 1 faulty replicas, and (3) every faulty
component has n faulty replicas. In this case, D-Paxos can
tolerate total �m

2 � × (� n
2 � − 1)+ (�m

2 � − 1)× n replica crashes.
In the worst case, (1) there are �m

2 � correct components and
�m

2 � − 1 faulty ones, (2) every correct component has n cor-
rect replicas, and (3) every faulty component has � n

2 � faulty
replicas. In this case, D-Paxos can tolerate (�m

2 � − 1) × � n
2 �

replica crashes at most.
Taking the setting we used in this set of experiments for

example, Multi-Paxos and Mencius can tolerate � 5×10
2 �−1 =

24 replica crashes. As for D-Paxos, it can tolerates total
� 5

2 � × (� 10
2 � − 1)+ (� 5

2 � − 1)× 10 = 32 replica crashes at best
and, at worst, tolerate (� 5

2 � − 1) × � 10
2 � = 10 replica crashes.

Thus it can be seen that D-Paxos has better fault tol-
erance compared to that of Multi-Paxos and Mencius at its
best, but has much worse fault tolerance at its worst. The
uncertainty of D-Paxos’s fault tolerance is due to its organi-
zation of replicas. Besides that, the fact that D-Paxos cannot
tolerate as many crashes as Multi-Paxos and Mencius at its
worst is the drawback in compensation for its high perfor-
mance.

7. Related Work

Our H-RSM draws inspiration from the scalable agreement
protocol presented by Kapritsos et al. [17]. Scalable agree-
ment protocol is not a specific protocol dependent upon a
particular failure model. Instead, it is a generic strategy. In
its architecture, multiple overlapping ordering clusters and
independent execution clusters are employed to improve the
overall scalability and to balance loads. All partial orders
generated by each ordering clusters should be combined into
a single total order for requests before being committed to
execution clusters.

Given related definitions and properties of H-RSM, D-
Paxos, a consensus protocol for replication across multiple
data centers in the cloud, is proved to implement H-RSM.
Unlike the scalable agreement protocol with overlapping
virtual clusters, D-Paxos distributes pre-ordering clusters
over non-overlapping data centers geographically dispersed.
All partial orders for requests are combined and executed
by all replicas in the system. Specifically, D-Paxos con-
centrates on how to tackle challenges caused by high trans-
mission latency and the unbalanced link dependency among
data centers by efficiently utilizing idle time and available
bandwidth. In addition, D-Paxos provides better fault toler-
ance with its failover mechanisms.

Mencius [15] is a multi-leader state machine replica-
tion protocol for WANs. It has high throughput under high
client load and low latency under low client load. From clus-
ter partition point of view, Mencius can be regarded as a
specific case of scalable agreement protocol with its M-N
configuration being set to M = N ≥ 3. From optimization
point of view, it can be regarded as a logical extension of
pipelining [14]. However, Mencius is not designed for repli-
cation across multiple data centers, each of which has a large
number of redundant replicas.

Many state-of-the-art cloud storage systems, such as
Megastore [18] and Spanner [1] and some commit protocols,
such as MDCC [19], use Multi-Paxos [5] as an important op-
timization to achieve high throughput. Multi-Paxos allows
the leader to execute Phase 2 of several instances in parallel.
The execution of Multi-Paxos requires the leader to be rel-
atively stable, that is, the leader won’t be replaced in a long
enough period of time. In D-Paxos, a delegator is elected in
each data center, which can be used as a stable coordinator
to coordinate Multi-Paxos instances in pre-ordering phases.
Despite of a unique coordinator in each data center, D-Paxos
use logical pipelining (i.e. rotating leader scheme) among
delegators for further improving throughput and balancing
load.

Multi-Ring Paxos [20] uses multiple instances of Ring
Paxos [21] to order all requests in which those instances
have an interest and thus scale throughput without sacrific-
ing response time. Multi-Ring Paxos behaves similarly to
D-Paxos, because learners subscribing to multiple groups
of Ring Paxos instances should also combine multiple pre-
ordered sequences of requests from them. However, Ring

1500
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.6 JUNE 2016

Paxos use techniques, e.g. IP multicast, that are only avail-
able on a LAN. Therefore, Multi-Ring Paxos does not ap-
ply to replication across multiple data centers in the cloud.
Besides, neither batching nor pipelining is adopted in Multi-
Ring Paxos.

Steward [22] is a hierarchical replicated state machine
architecture for WAN. A group of servers in a site is con-
verted into a logical entity that works as a single participant
in a wide-area protocol. However, the logical entity is not
achieved through state machine replication approach. Con-
sequently, requests from a site are transmitted directly to the
upper WAN protocol rather than being pre-ordered within
the site. Steward can withstand Byzantine failure but sub-
ject to a single site compromise.

8. Conclusion

In a wide-area cloud environment where data is replicated
across multiple data centers, an efficient way to improve
the throughput is to make full use of idle resources (such
as idle time and available bandwidth). In this paper, we
defined an H-RSM based on the idea of parallel process-
ing. D-Paxos was designed for replication among replicas
distributed across multiple data centers. We proved that D-
Paxos implemented consensus and satisfied the safety and
liveness properties of our H-RSM, so that it can be used to
implement an H-RSM.

D-Paxos provides high throughput with batching (del-
egators can pre-order requests by effectively utilizing idle
time and available bandwidth to form pre-ordered batches
and propose batches in global instances) and logical pipelin-
ing (delegators can utilize more wide-area bandwidth pro-
vided by components and share coordination load by us-
ing a rotating-leader scheme). Our experimental results also
demonstrate that D-Paxos has better throughput and scala-
bility than other Paxos variants for replication across mul-
tiple components. D-Paxos provides good fault tolerance,
even to the outage of a single component due to network
partitions, facility-wide outages, etc.

The way in which we build our H-RSM upon two sep-
arate levels provides a good deal of flexibility to customize
D-Paxos’s local protocol and global protocol for matching
environment change. Our future work includes evaluating
our D-Paxos’s performance on a real world platform and in-
troducing more parameters so as to provide a more general
analytical model and improves its prediction accuracy.

Acknowledgments

We would like to thank the anonymous reviewers whose
comments and suggestions have dramatically improved the
quality of the paper. This work was partially supported
by the Second Batch of Strategic Emerging Industrial Core
Technology Research Project in Guangdong Province un-
der Grant No.2012A010701005, the Key Lab of cloud
computing and big data in Guangzhou under Grant No.
SITGZ[2013]268-6, Engineering and Technology Research

Center of Guangdong Province for Big Data Intelligent
Processing under Grant No. GDDST[2013]1513-1-11, Key
Project of the Combination of “Production, Education and
Research” supported by Guangdong province and Ministry
of Education, under Grant No.2012B091000109 and Sci-
ence and Technology Program in Guangzhou, China (In-
ternational Science and Technology Cooperation Program)
under Grant No. 2012J5100018.

References

[1] J.C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford, “Spanner: Google’s glob-
ally distributed database,” ACM Trans. Comput. Syst., vol.31, no.3,
pp.251–264, 2013.

[2] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s hosted data serving platform,” Proc. VLDB En-
dow., vol.1, no.2, pp.1277–1288, 2008.

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” ACM SIGOPS Oper. Syst. Rev. (ACM), vol.44,
no.2, pp.35–40, 2010.

[4] F.B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol.22, no.4,
pp.299–319, 1990.

[5] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol.32,
no.4, pp.18–25, 2001.

[6] J. Kończak, N. Santos, T. Żurkowski, et al., “JPaxos: State machine
replication based on the Paxos protocol,” Tech. Rep., EPFL-RE-
PORT-167765, Faculté Informatique et Communications, Switzer-
land, 2011.

[7] L. Lamport, “Byzantizing Paxos by refinement,” Distributed Com-
puting, Lect. Notes Comput. Sci., vol.6950, pp.211–224, Springer
Verlag, Berlin, Heidelberg, 2011.

[8] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. Assoc. Comput.
Mach., vol.32, no.2, pp.374–382, 1985.

[9] T.D. Chandra and S. Toueg, “Unreliable failure detectors for reli-
able distributed systems,” J. Assoc. Comput. Mach., vol.43, no.2,
pp.225–267, 1993.

[10] T.D. Chandra, V. Hadzilacos, and S. Toueg, “Weakest failure detec-
tor for solving consensus,” J. Assoc. Comput. Mach., vol.43, no.4,
pp.685–722, 1996.

[11] M. Larrea, A. Lafuente, I. Soraluze, R. Cortiñas, and J. Wieland,
“Designing efficient algorithms for the eventually perfect failure de-
tector class,” J. Software, vol.2, no.4, pp.1–11, 2007.

[12] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Comput., vol.C-28,
no.9, pp.690–691, 1979.

[13] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G.
Alonso, “Understanding replication in databases and distributed sys-
tems,” 2000 Proc. Int. Conf. on Distributed Computing Systems,
pp.464–474, IEEE Computer Society, Washington, DC, USA, 2000.

[14] N. Santos and A. Schiper, “Optimizing Paxos with batching and
pipelining,” Theor. Comput. Sci., vol.496, pp.170–183, 2013.

[15] Y. Mao, F.P. Junqueira, and K. Marzullo, “Mencius: Building ef-
ficient replicated state machines for WANs,” Proc. 7th USENIX
Symp. on Oper. Syst. Des. Implement., pp.369–384, USENIX As-
sociation, Berkeley, 2008.

[16] M. Hibler, R. Ricci, L. Stoller, et al., “Large-scale virtualization
in the Emulab network testbed,” 2008 USENIX Annu. Tech. Conf.,
pp.113–128, USENIX Association, Berkeley, 2008.

http://dx.doi.org/10.1145/2518037.2491245
http://dx.doi.org/10.14778/1454159.1454167
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/98163.98167
http://www.cs.utexas.edu/users/lorenzo/corsi/cs380d/papers/paxos-simple.pdf
http://infoscience.epfl.ch/record/167765/files/2011%20JPaxos%20Technical%20Report_1.pdf
http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/226643.226647
http://dx.doi.org/10.1145/234533.234549
http://dx.doi.org/10.4304/jsw.2.4.1-11
http://dx.doi.org/10.1109/tc.1979.1675439
http://dx.doi.org/10.1109/icdcs.2000.840959
http://dx.doi.org/10.1016/j.tcs.2012.10.002
http://dl.acm.org/citation.cfm?id=1855767
http://dl.acm.org/citation.cfm?id=1404023

LIU and YANG: D-PAXOS FOR BUILDING H-RSM
1501

[17] M. Kapritsos and F.P. Junqueira, “Scalable agreement: Toward or-
dering as a service,” Proc. Sixth Work. on Hot Top. Syst. Depend-
ability, pp.1–8, USENIX Association, Berkeley, 2010.

[18] J. Baker, C. Bond, J.C. Corbett, et al., “Megastore: Providing
scalable, highly available storage for interactive services,” Proc.
CIDR 2011, 5th Bienn. Conf. Innovative Data Syst. Res. (CIDR),
pp.223–234, 2011.

[19] T. Kraska, G. Pang, M.J. Franklin, S. Madden, and A. Fekete,
“MDCC: Multi-data center consistency,” Proc. 8th ACM European
Conf. on Computer Syst., EuroSys 2013, pp.113–126, Association
for Computing Machinery, New York, 2013.

[20] P.J. Marandi, M. Primi, and F. Pedone, “Multi-ring Paxos,” Proc. Int.
Conf. Dependable Syst. Networks, pp.1–12, IEEE Computer Soci-
ety, Washington, 2012.

[21] P.J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos:
A high-throughput atomic broadcast protocol,” Proc. Int. Conf. De-
pendable Syst. Networks, pp.527–536, IEEE Computer Society,
Washington, 2010.

[22] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Steward: Scaling Byzantine fault-tolerant
replication to wide area networks,” IEEE Trans. Dependable Secure
Comput., vol.7, no.1, pp.80–93, 2010.

Fagui Liu was born in 1963. She re-
ceived her M.A. degree from Beihang Uni-
versity (BUUA) and Ph.D. degree from South
China University of Technology (SCUT). Cur-
rently she is a professor at the School of Com-
puter Science and Engineering, South China
University of Technology. She has worked in
computer systems and software engineering for
over 25 years both in industry and academia.
Her recent research interests include cloud com-
puting and big data, cloud-based software fac-

tory.

Yingyi Yang was born in 1982. He re-
ceived his B.S. and M.A. degrees from Univer-
sity of Electronic Science and Technology of
China (UESTC). Currently he is a Ph.D. can-
didate at the School of Computer Science and
Engineering, South China University of Tech-
nology (SCUT). He is a member of The Institute
of Electronics, Information and Communication
Engineers (IEICE). His current research inter-
ests include cloud computing, distributed com-
puting, replicated cloud storages, big data and

consensus protocols.

http://dl.acm.org/citation.cfm?id=1924910
https://www.researchgate.net/publication/220988133_Megastore_Providing_Scalable_Highly_Available_Storage_for_Interactive_Services
http://dx.doi.org/10.1145/2465351.2465363
http://dx.doi.org/10.1109/dsn.2012.6263916
http://dx.doi.org/10.1109/dsn.2010.5544272
http://dx.doi.org/10.1109/tdsc.2008.53

