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PAPER

Latent Attribute Inference of Users in Social Media with Very Small
Labeled Dataset∗

Ding XIAO†a), Member, Rui WANG†, and Lingling WU†, Nonmembers

SUMMARY With the surge of social media platform, users’ profile in-
formation become treasure to enhance social network services. However,
attributes information of most users are not complete, thus it is important to
infer latent attributes of users. Contemporary attribute inference methods
have a basic assumption that there are enough labeled data to train a model.
However, in social media, it is very expensive and difficult to label a large
amount of data. In this paper, we study the latent attribute inference prob-
lem with very small labeled data and propose the SRW-COND solution. In
order to solve the difficulty of small labeled data, SRW-COND firstly ex-
tends labeled data with a simple but effective greedy algorithm. Then SRW-
COND employs a supervised random walk process to effectively utilize the
known attributes information and link structure of users. Experiments on
two real datasets illustrate the effectiveness of SRW-COND.
key words: attribute inference, social network, supervised random walk,
community detection

1. Introduction

Recently, there is a surge of social media, which helps peo-
ple to create, share, and exchange information and ideas in
virtual communities and networks. Many social media plat-
forms have been popular in our daily life, such as Facebook,
Twitter and Weibo. Although users in these platforms are
required to fill their personal information out (e.g., gender,
affiliation and role), a lot of users do not fill out their profile
attributes or only some of them. However, the attributes of
users are very important in many applications. For example,
sales person find the target customer through the affiliation
attribute of users [1], and the identity of users can be deter-
mined by their attributes [2].

Many efforts have been made to infer the latent at-
tributes of users [3]–[7]. Some of them consider it as a clas-
sification problem and train a classifier on labeled dataset.
Some of them utilize the network structure to infer attribute
according to the principle of homophily or social influ-
ence [8]. [9] utilize locations of a user’s friends to predict
the user’s geographical location. These methods all have a
basic assumption that we have a big enough labeled dataset
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to train a model. However, this is not always the case, es-
pecially in social media. The user information in social me-
dia is very sparse and highly fragmented. It is not only ex-
pensive but also difficult to label these data even by manual
work. For example, there are only 179 authenticated users
among more than 30K unlabeled users in China Mobile in
Beijing. Can we infer the attributes of unlabeled users from
such a very small number of labeled users?

In this paper, we study the attribute inference prob-
lem with very small labeled data and propose the Super-
vised Random Walk based on CONDuctance method (SRW-
COND). The basic idea of SRW-COND is that it extends the
small number of labeled data (i.e., seed nodes) with a simple
but effective method, and then infers latent features through
utilizing the structure and attributes information of users. In
the labeled data extension phase, SRW-COND employs a
greedy algorithm to automatically extend dense seed com-
munity with high accuracy and low time cost. In the attribute
inference phase, SRW-COND propagates the seed informa-
tion along link structure with varying propagating probabil-
ity decided by node attributes information. Experiments on
two real datasets verify that SRW-COND can achieve bet-
ter performances in inferring users’ latent attributes under
very small labeled data, compared with other well estab-
lished methods.

The rest of the paper is organized as follows. Section 2
briefly surveys related work. In Sect. 3, we describe the
model of SRW-COND. We proceed by describing experi-
mental evaluation in Sect. 4 and conclude in Sect. 5.

2. Related Work

Approaches for attribute inference can be roughly grouped
into the following two categories.
Feature-based methods extract feature vector from node
content or network structure to train a classifier, e.g.,
SVM [3], [10], GBDT [11], Naive Bayes [12]. All these
work concentrate on feature extraction and their main con-
tributions lie in finding the effective features. For exam-
ple, Pennacchiotti et al. used available and unstructured on-
line data generated by individuals to infer demographic at-
tributes such as age, ethnicity, and political orientation for
individual and groups of users [11]. Zamal et al. extended
n-gram features to user’ neighborhood and assessed the im-
pact of different subsets of neighborhood to the inference of
three attributes: gender, political orientation, and age [3]. In
this kind of methods, they usually need a great amount of
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labeled data.
Link-based methods utilize network structure to determine
the unknown attributes of users. Roth et al. inferred the la-
tent attributes of user u’s friends by ranking the users in u’s
egocentric network according to an interaction-based met-
ric [13]. Zheleva et al. proposed an entropy-based method to
reduce the large number of potential groups in order to im-
prove the attribute accuracy [14]. Mislove et al. studied user
attribute inference in university social networks by applying
community detection [5]. These methods may have less sat-
isfying performances because of only considering the struc-
tural information but ignoring easily available attributes in-
formation of users.

Backstorm and Leskovec proposed a Supervised Ran-
dom Walk (SRW) framework to predict links in social net-
works [15]. SRW naturally combines network structure and
link attributes and achieves satisfying performances in link
prediction. But its goal is to predict links which differs
from our attribute inference problem and there is a limited-
labeled-data constraint in our problem setting. Recently,
Zeng et al. studied the user’s affiliation information infer-
ence problem and developed a supervised label propagation
model which naturally incorporates the rich features of so-
cial activities among users [1]. Different from their method,
our method is more generally applied on any user attribute
inference and it focuses more on the difficulty of the lack of
labeled data.

3. Problem Definition and Method

In this section, we first present the problem formulation, and
then introduce SRW-COND.

3.1 Problem Definition

This study tries to discover the missing value of a target at-
tribute of users. Without loss of generality, we infer whether
users have a certain value on the target attribute. In the prob-
lem setting, we know the social network and some other
attributes of users (note that these attribute values may be
incomplete). The users having the certain value on the tar-
get attribute are positive examples. In real applications, the
amount of these labeled data is usually very small. The
problem is how can we infer whether other users have the
same certain value on the target attribute with these very
small labeled data. Figure 1 illustrates a toy example of the
attribute inference problem. In Fig. 1, the colored boxes rep-
resent the target attributes. And the ellipses represent the
values of attributes. The symbols (+), (−) and ? in the el-
lipses denote the positive, negative and unknown examples
respectively.

Next, we formulate the attribute inference problem.
Given a social graph G = (V, E, X), where V is the set of
nodes, E is the set of edges, and X is an |V | × d attribute ma-
trix associated with nodes in V . xi j in X denotes the value
of the jth attribute of node i. We only know that some nodes
have certain value of the target attribute (i.e., positive ex-

Fig. 1 A toy example of the attribute inference problem

amples, called VLP ) and some nodes have not (i.e., nega-
tive examples, called VLN ). Attribute values of other nodes
are unknown (called VU). Notice that VL = VLP + VLN . It
is obvious that V = VL + VU . There is a constraint that
|VL| << |VU |. The problem we are trying to solve here is
that given the network and VL, we infer users in VU whether
they have the same value of the target attribute with users in
VLP . However, in real applications, it is much more easier to
gain positive examples than negative examples. For exam-
ple, we gain positive examples in Sina Weibo dataset simply
by specifying the users’ affiliation to be “China Mobile” and
then crawling through the Sina Weibo API. So we focus on
the case where VL = VLP for the rest of the paper.

3.2 Basic Idea

For the attribute inference problem, a simple solution is to
consider it as a binary classification problem and train a clas-
sifier with the labeled data. However, the labeled dataset is
very small, which is not enough to effectively train a classi-
fier. In order to tackle the lack of labeled data, a basic idea is
to extend the positive examples with a simple but effective
method. Here we design a greedy algorithm to automat-
ically extend dense seed set (i.e., positive examples) with
high accuracy and low time cost. We may use seed set to
refer to the set of positive examples for the rest of the paper.

For the extended positive examples, we can still ap-
ply the binary classification model, but it also needs to label
the negative examples. Moreover, it is more promising to
improve the prediction precision through effectively utiliz-
ing the social network structure and attributes information
of users together. Inspired by the idea of supervised ran-
dom walk [15], we propose a random walk based method
to propagate the seed information along link structure with
varying propagating probability which decided by attributes
information of nodes.

3.3 Extension of Labeled Data

As a basic step of SRW-COND, the extension method needs
to satisfy the following two requirements.

• It is simple. As a preprocessing step, the extension pro-
cess cannot require much time and space cost.

• It is accurate. In order to avoid the cascade propagation
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of wrong seeds information, the extended seeds should
not be many but very accurate. That is, the extension
process pays more attention to the precision, not the
recall.

Inspired by the community based attribute infer-
ence [5], we design a greedy algorithm called Ave-Cond. to
extend positive examples to form a dense community. That
is, we add unlabeled nodes into the seed set to make their
connection denser. The widely used Conductance C [16],
shown in Eq. (1), is applied to evaluate the density of com-
munities. For each step, an unlabeled node with the maximal
increase of Conductance is added to the seed set. In order to
prevent from adding negative examples, we design an adap-
tive and strict stop criterion, as shown in Eq. (2). With the
increase of seed nodes, the Conductance increases, while
the increase rate drops. Equation (2) evaluates the average
increase rate. If the average increase rate of the last half
phase drop too large (drop half), the node addition will be
halted. We use VL

ext to denote set A when the extension is
over, that is, the extended set. The extension process of la-
beled data is shown in Algorithm 1.

C(A, B) =
|EAB|

min(|EA|, |EB|) (1)

C(t) −C(�t/2�)

t − �t/2� <
1
2
× C(�t/2�) −C(0)

�t/2� (2)

Cnorm(A, B) =
|EAA|

|EAA| + |EAB| −
|EA| · |EA|

|EA| · |EA| + |EA| · |EB|
(3)

In this paper, A is the extending labeled set and A is initial-
ized with positive examples VLP . B = V\A. |EAB| is the
number of edges between A and B. |EA| = |EAB| + |EAA| and
|EAA| is the number of edges within A. |EB| = |EAB| + |EBB|
and |EBB| is the number of edges within B. t denotes the
iteration times. C(t), C(�t/2�) and C0 represents the value of
Conductance after t, �t/2� and 0 iterations respectively. The
symbol � � denotes round down operation.

The similar idea has been applied in user attribute infer-
ence [5], whose idea is to group users with the same attribute
into a dense community through the Normalized Conduc-
tance criterion. The Normalized Conductance is shown in
Eq. (3). In order to satisfy the high precision requirement,
our method is mainly different from their algorithm in the
following two aspects.

• We employ the Conductance criterion instead of the
Normalized Conductance criterion for node selection.

• We use the new stop criterion as shown in Eq. (2).

The experiments show that our method can extend
smaller positive examples with much higher accuracy. We
think the reason lies in that we use different criteria for
the node selection and the halt condition respectively (i.e.
Eq. (1) and Eq. (2)). Although Normalized Conductance
helps to prevent oversize communities through introducing
a penalty factor, it may sacrifice the community structure

characteristics. Note that we only need to find a small num-
ber of seed nodes, so in this condition, Conductance is better
to find the good nodes with significant community structure
characteristics, compared to Normalized Conductance. In
addition, we employ a stricter halt condition (i.e. Eq. (2)),
which only extends a small number of accurate seed nodes.
The details can be seen in Sect. 4.3.2.

Algorithm 1 Extension of Labeled Data
Input: seed set VL, network graph G = (V, E, X)
Output: extended seed set VL

ext
A← VL

B← V\A
while equation (2) is not satisfied do

argmaxb C(A ∪ {b}, B \ {b})
B← B \ {b}
A← A ∪ {b}

end while
VL

ext ← A

3.4 Inference of Missing Attributes

According to homophily theory [17], we know that people
usually form a community with others who are similar to
them. So one way to infer the missing attributes is to find
users who are similar to the seed set users with expectation
that they would share the same target attribute value. Ran-
dom walk with restart at extended seeds set VL

ext is able to
measure the similarity of other nodes with extended seed set
VL

ext, and the stationary distribution of the walk process as-
signs each node a score (i.e. PageRank score pT ) denoting
the closeness. So we can sort the nodes according to the de-
scending order of the PageRank score, and the top k users
are inferred to have the same target attribute value with seed
users. The walk process could be written as Eq. (4):

pT = (1 − α) · pT Q + α · 1(v ∈ VL
ext) (4)

α is the restart probability. pT is a vector of visiting proba-
bilities of all nodes. Q is the transition probability matrix of
nodes in the graph.

The random walk with restart takes advantage of the
network structure, but ignores the impact of user attributes.
In order to achieve better performances, we need to make
full use of user attributes and network structure together. In-
spired by Backstorm and Leskvec’s work [15], the walk pro-
cess has a varying walk probability associated with node at-
tributes, instead of a stationary walk probability decided by
node degree (which is a measurement completely decided
by network structure). Following this idea, we redesign the
transition matrix Q. First, we construct the feature vector
Xe(u, v) of edge (u, v) from node attributes. For example, in
Sina Weibo, we can construct edge features like these, how
many times user u has @ user v from users’ tweets, and how
many common tags from users’ tag attribute. For each edge
feature, we assign a feature weight to denote its importance.
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Then, the weight auv of edge (u, v) can be represented as a
function of the feature vector Xe(u, v) and the feature weight
vector ω as follows: auv = fω(ωT Xe(u, v)). In this paper, fω
is the Sigmoid function as in Eq. (5):

fω(x) =
1

1 + e−x
(5)

And thus we can define the following transition probability
matrix as in Eq. (6):

Quv =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

auv∑
i∈N(u)

aui
(u, v) ∈ E

0 otherwise

(6)

Quv is the uth row and vth column item in transition matrix.
auv and aui is the edge weight of edge (u, v) and edge (u, i) re-
spectively. N(u) denotes the neighbors of user u. According
to the above representation, the transition matrix is a func-
tion of feature weight vector ω (i.e., Q(ω)), instead of a con-
stant decided by network structure. As shown in Eq. (4), the
rank result is decided by transition matrix Q. Thus, we can
adjust the transition matrix by changing the feature weight
vector ω in order to rank the nodes in extended seed set
VL

ext higher. To achieve that, we can bias the random walk
probability on those seed nodes by learning the parameters
of function fω(ωT Xe(u, v)). Because the random walker is
more likely to traverse edges with high strength and the ran-
dom walker jumps back at VL

ext with probability of α, the
nodes connected with VL

ext through edges of high strength
would rank higher. In this way, we can naturally combine
the user attributes with the network structural information.
Eventually, the task to infer the missing value of the target
attribute is switched to find the optimal feature weight vec-
tor. Please note that our work just employ the idea of Super-
vised Random Walk in [15], but they are totally different.
Firstly, they solve different problems. Link prediction prob-
lem was solved in [15], while our work aims to solve the
attribute inference problem. Secondly, different optimiza-
tion objectives and optimization methods are designed for
these two different problems.

3.5 The Optimization Function and Its Solution

Now, the question is how to estimate the weight parameters
ω through an optimization objective. Note that the visit-
ing probability pT denotes the likelihood of user sharing the
same target attribute value with seed users. So the “good
result” is that the visiting probability of user u (denoted as
pu) should be relatively high if u is a positive example. A
handful of objective functions expressing this need could be
an option. Equation (7) gives one example. The impact of
different choices of objective functions will be studied in the
experiment section.

J(ω) =

∑
u∈VL

ext

pu

∑
v∈V

pv
(7)

We use gradient ascent to maximize the objective function.
Thus, we need to obtain the derivative of objective function
with respect to ω as follow:

∂J(ω)
∂ω

=

∑
u∈VL

ext

∂pu

∂ω
·∑
v∈V

pv− ∑
u∈VL

ext

pu ·∑
v∈V

∂pv
∂ω

( ∑
v∈V

pv
)2 (8)

pu and pv represent the visiting probability of user u and
v respectively. ∂pu

∂ω
and ∂pv

∂ω
denote the derivative of pu and

pv with respect to ω respectively. So we need to establish
the connection between the parameters ω and the random
walk scores p. The visiting probability pu can be written as
Eq. (9):

pu =
∑

j

p jQ ju (9)

According to Eq. (9), we can deduce ∂pu

∂ω
as follow:

∂pu

∂ω
=
∑

j

∂p j

∂ω
Qju +

∑

j

p j
∂Qju

∂ω
(10)

If (u, v) ∈ E, ∂Q ju

∂ω
can be written as Eq. (11):

∂Qju

∂ω
=

∂ fω(ωT Xe( j,u))
∂ω

(
∑

i∈N( j)
fω(ωT Xe( j, i)))

(
∑

i∈N( j)
fω(ωT Xe( j, i)))2

−
fω(ωT Xe( j, u))(

∑
i∈N( j)

∂ fω(ωT Xe( j,i))
∂ω

)

(
∑

i∈N( j)
fω(ωT Xe( j, i)))2

(11)

Xe( j, u) and Xe( j, i) denote the feature vector of edge
( j, u) and edge ( j, i) respectively. fω(ωT Xe( j, u)) and
fω(ωT Xe( j, i)) represent the edge weight of edge ( j, u) and
edge ( j, i) respectively. N( j) denotes the neighbors of user
j. So far we have described how to compute ∂p

∂ω
. Then we

use an iterative power-iterator like algorithm proposed by
Backstrom et al. [15] to compute the random walk visiting
probability vector pT and its derivative ∂p

∂ω
. And the pseudo

code of gradient ascent is shown in Algorithm 2. While the

Algorithm 2 Gradient Ascent
Input: training instances, learning rate λ
Output: the optimal ω

for each k = 1, . . . , ‖ω‖ do
ω(0)

k = 0
end for
t = 1
while J(ω) has not converged do

compute pT and ∂p
∂ω according to Alg.3

for each k = 1, . . . , ‖ω‖ do
ω(t)

k = ω
(t−1)
k + λ × ∂J(ω)

∂ω
end for
t = t + 1

end while
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Algorithm 3 Derivatives of the Random Walk
Input: parameter ω
Output: the PageRank scores p and derivatives ∂p

∂ω
for each u ∈ V do

p(0)
u =

1
|V |

end for
for each u ∈ V and k = 1, . . . , ‖ω‖ do
∂p(0)

u
∂ωk
= 0

end for
compute transition matrix Q with ω
t = 1
while p has not converged do

for each u ∈ V do
p(t)

u =
∑
j

p(t−1)
j Q ju

end for
t = t + 1

end while
t = 1
for each k = 1, . . . , ‖ω‖ do

while ∂p
∂ω has not converged do

for each u ∈ V do
compute ∂p(t)

∂ω according to (10)
end for
t = t + 1

end while
end for

iterative process to compute the derivatives of the random
walk can be summarized by Algorithm 3.

4. Experiments

In this section we evaluate our method on two real datasets:
Sina Weibo dataset and the Telecom dataset.

4.1 Datasets

Sina Weibo Dataset is crawled from the most popular
Chinese social network platform Sina Weibo (http://weibo.
com/). This dataset includes 34,199 users and 691,522 links
among them. We also crawl profile information of these
users, including user name, location, tags and 200 lasted
tweets. We manually labeled these data and there are 5323
positive examples (whose affiliation is CMCC) as ground
truth.
Telecom Dataset comes from the first big data contest in
China (http://www.bigcloudsys.com/ccf2013/de-tail2.html).
This dataset provides the call and message records of users.
There is an edge between two users only if they have mes-
saged each other. There are 54,487 users and 304,998 links
in the network. We have known that 43,231 positive exam-
ples (provided by the big data contest committee) as ground
truth. That is, the role of these users is student. Table 1
shows the basic statistics of these two datasets.

Table 1 Statistics of datasets.

Datasets Users Edges Average Degrees Positive Examples
Sina Weibo Dataset 34,199 691,522 20.22 5323

Telecom Dataset 54,487 304,998 5.59 43,231

4.2 Baseline Methods

In this section, we compare the performances of SRW-
COND with the following four representative methods.
SVM. We consider the attribute inference as a binary clas-
sification. We use weka’s implementation of SVM in our
experiments. The features for the classifier are derived from
tweet messages and network structure. We have tried differ-
ent kernels of SVM and we only show the results of SVM
with a linear kernel because it wins over others.
Random Walk with Restart (RWR) [18]. This method
propagates seed nodes’ information to other nodes with
fixed propagation probability.
Supervised Random Walk (SRW) [15]. This method prop-
agates seed nodes’ information to other nodes with vary-
ing propagation probability. This method is simplified from
SRW-COND by removing the seed extension phase for the
purpose of a clear illustration of the impact of the first phase.
Norm-Cond. [5]. Norm-Cond. is a community detection
like method for attribute inference, which greedily extends
seed nodes with Normalized Conductance. This method
serves as a benchmark for other methods that can be applied
in the situation of small labeled data.

4.3 Experimental Results

4.3.1 Effectiveness Study of SRW-COND

These experiments validate effectiveness of SRW-COND
through randomly selecting a very small proportion of posi-
tive examples (varying from 1% to 10%) as training set. The
same restart probability 0.5 is used for SRW-COND, RWR,
and SRW. Other parameters are set as suggested in the liter-
als. The experiments are repeated 50 times and the F1 score
is used to validate the performances of these models. Fig-
ure 2 shows the average results. The results show that SRW-
COND always achieves best performances on all conditions.
SVM simply combines structural and attribute information,
so it has bad performance. Because of only considering the
network structure, Norm-Cond. also performs badly. SRW

Fig. 2 Accuracy comparison of different algorithms.
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Table 2 Objective functions.

Proportional Function
(PROP)

Production Function
(PROD)

Exponential Function
(EXPO)

SquareError Function
(SQUA)

∑
u∈VL

ext

pu

∑
v∈V

pv

∏
u∈VL

ext

pu

∑
u∈VL

ext

pβu

and β = −1

(pv − pu)2 if pu < pv
u ∈ VL

ext , v ∈ VLN

Fig. 3 Accuracy comparison of labeled data extension.

can get a good performance, but it is not so good as SRW-
COND due to the lack of enough labeled data. Comparing
the results on these two datasets, we can find that the perfor-
mances of almost all methods on Telecom dataset are better
than that on Sina Weibo dataset. We think the reason lies in
that the task in Telecom is relatively easy. In other words,
the task that infers the affiliation of a user in Sina Weibo
dataset is more difficult than the task that infers whether
a user is a student in Telecom dataset. We know that the
roles of users in Telecom dataset are very limited, and the
students have significant communication patterns. We can
also find that, with the decrease of the percentage of labeled
data, the superiority of SRW-COND tends to be more sig-
nificant, which further show the benefits of SRW-COND on
very small labeled data.

4.3.2 Effectiveness Study of Labeled Data Extension

Since the extension of labeled data is a critical step of
SRW-COND, these experiments will validate its effective-
ness of the extension through observing the number of right
and wrong nodes generated by Ave-Cond. and Norm-Cond..
The experiments are repeated 50 times and the average re-
sults are shown in Fig. 3. We can see that Ave-Cond. ob-
tains a small number of nodes with high accuracy, compar-
ing with Norm-Cond. getting a large number of nodes with
low accuracy. We believe the reasons lie in the following
two aspects. Firstly, Ave-Cond. uses Conductance instead
of Normalized Conductance as in Norm-Cond., which more
effectively guarantees the quality of added nodes. Secondly,
The stopping criterion of Ave-Cond. is stricter, which makes
Ave-Cond. only extend a small number of nodes with high
accuracy.

4.3.3 Impact of Optimization Objectives

These experiments illustrate the impact of optimization ob-
jectives. Same parameters are set as above experiments ex-
cept the optimization objects. The objective functions are

Fig. 4 Effect of objective functions.

Fig. 5 Effect of restart probability alpha.

shown in Table 2. The results are shown in Fig. 4. We can
see that different loss functions have subtle influence on the
performances of our method on both datasets. The square
error function slightly wins over other methods, because it
incorporates the information of negative examples. Overall,
SRW-COND with different functions significantly outper-
forms the baseline RWR.

4.3.4 Effect of Restart Probability

To illustrate how the different restart probabilities affect the
performance of SRW-COND, we observe its performances
with varying restart probabilities under the 10% of labeled
data as training data. Figure 5 illustrates how AUC (Area
under ROC Curve) change by differing α from 0.1 to 0.9.
The results show that SRW-COND consistently has good
performances when α ∈ [0.4, 0.7] on both datasets. Because
in this case, the random walk process is able to make full
use of labeled users as well as the global network structure.
Finally, we set α to 0.5 in the experiments.

5. Conclusions

In this paper, we studied the attribute inference of users un-
der very small labeled data and proposed the SRW-COND
solution. The SRW-COND firstly employs a simple but ef-
fective greedy algorithm to extend seed set with high ac-
curacy. Then it adapts a supervised random walk process
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to make full use of network structure and attributes infor-
mation of users. Experiments on Sina Weibo dataset and
Telecom dataset demonstrate that, under small training set,
SRW-COND can significantly outperform other well estab-
lished methods.
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