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PAPER

Singular-Spectrum Analysis for Digital Audio Watermarking with
Automatic Parameterization and Parameter Estimation

Jessada KARNJANA†,††a), Nonmember, Masashi UNOKI†, Senior Member,
Pakinee AIMMANEE††, Nonmember, and Chai WUTIWIWATCHAI†††, Member

SUMMARY This paper proposes a blind, inaudible, robust digital-
audio watermarking scheme based on singular-spectrum analysis, which
relates to watermarking techniques based on singular value decomposition.
We decompose a host signal into its oscillatory components and modify
amplitudes of some of those components with respect to a watermark bit
and embedding rule. To improve the sound quality of a watermarked signal
and still maintain robustness, differential evolution is introduced to find op-
timal parameters of the proposed scheme. Test results show that, although
a trade-off between inaudibility and robustness still persists, the difference
in sound quality between the original and the watermarked one is consid-
erably smaller. This improved scheme is robust against many attacks, such
as MP3 and MP4 compression, and band-pass filtering. However, there is
a drawback, i.e., some music-dependent parameters need to be shared be-
tween embedding and extraction processes. To overcome this drawback,
we propose a method for automatic parameter estimation. By incorporat-
ing the estimation method into the framework, those parameters need not
to be shared, and the test results show that it can blindly decode water-
mark bits with an accuracy of 99.99%. This paper not only proposes a new
technique and scheme but also discusses the singular value and its physical
interpretation.
key words: singular-spectrum analysis, singular value decomposition, sin-
gular value, differential evolution, automatic parameter estimation, con-
cavity density function

1. Introduction

The problems of authentication, copyright management,
copy control, and the like of digital multimedia have raised
more and more concern in the digital music industry [1].
Audio watermarking is a scheme of making information im-
perceptible when it is embedded into a host signal. The in-
formation or so called watermark can be used as control se-
quences, identification numbers, additional data, etc. Thus,
there are broad areas of application. For example, as stated
in [2], audio watermarking can be used for at least three
areas: (1) copyright marking and copy control, (2) forensic
watermarking, such as fingerprinting, and (3) annotation and
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added value. The use of audio watermarking for copyright
control was the original goal [2].

In general, for applications such as ownership pro-
tection or information carrier, the ideal audio watermark-
ing scheme must satisfy the following requirements [2]–[4].
(1) Inaudibility: a property that hidden information does not
affect the perceptual quality of the host signal. (2) Robust-
ness: an ability to extract hidden information correctly when
attacks are performed. (3) Blindness: a property of extract-
ing hidden information correctly without the original sig-
nal. (4) Confidentiality: a property of concealing hidden
data. (5) Capacity: quantity of information embedded in the
original signal. Naturally, these requirements conflict with
each other. The high capacity implies low robustness [4].
The high robustness usually affects audio quality. In ad-
dition to proposing a novel watermarking technique, many
researchers on this subject have focused on how to compro-
mise these conflicts, and it has proved to be difficult.

Audio watermarking schemes can be categorized in
many different ways because there are many criteria [5].
Based on deployment of properties of a human auditory sys-
tem, one can categorize audio watermarking into a scheme
that is based on human perceptual model [6] and a scheme
based solely on mathematical manipulation [7], [8]. In
this paper, we propose a new audio watermarking scheme,
based on Singular-Spectrum Analysis (SSA), which relates
to the singular value decomposition-based (SVD-based) wa-
termarking techniques. These techniques rely on a mathe-
matical method of algebraic feature extraction from a matrix
representing an audio signal.

SVD-based audio watermarking, originally proposed
in 2005 [9], derives from the watermarking technique em-
ployed in visual watermarking [10]. It is done by modifying
singular values slightly according to some embedding rules.
It has a lot of advantages [3]–[24], which are due to the prop-
erties of singular values, such as singular values are invariant
under common signal processing, i.e., when a small change
occurs to a signal represented by matrices, its singular val-
ues change unnoticebly. SVD-based schemes can be cate-
gorized in many different ways. For example, the usage of
some information from a watermark in an extraction process
can be used as a criterion. Earlier schemes [9], [11], [13],
[21] used such information. Therefore they are non-blind.
Other schemes [7], [8], [12], [14], [15], [17]–[20], [22]–[24]
do not use the information and are blind [7], [8], [22]–[24] or
non-blind [12], [14], [15], [17]–[20]. It should be noted that
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the robustness of the first category, which employs some in-
formation from the watermark, is likely due to false positive
detection [10]. The position of modified singular values can
be used as a criterion for categorization as well. For exam-
ple, some schemes [12], [14], [15], [18]–[20] modify only
the largest singular value. Other schemes [7], [8], [17], [21],
[22] modify all singular values, and there is a scheme [23]
that modifies only some small singular values.

Most SVD-based schemes claim to have good robust-
ness against various attacks. However, a trade-off between
robustness and inaudibility can be observed. Moreover, to
the best of our knowledge, there has not been much dis-
cussion about the essence or physical meaning of singular
values in publications about SVD-based audio watermark-
ing. The question of which audio feature is exactly modified
when a singular value is modified was left untouched. This
work was inspired by the robustness of SVD-based schemes
and the question of the physical meaning of singular value.
We believe that the answer does not only depend on the do-
main representing a signal, but also on how the matrix repre-
senting the signal is constructed. Knowing the meaning and
its relation with other features could help us to overcome the
conflicts in requirements.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the background of SSA and SSA-based
audio watermarking framework. Section 3 describes a pro-
posed framework which can obtain optimal parameters auto-
matically by incorporating differential evolution. Section 4
explains a method for automatic parameter estimation. Per-
formance evaluation and experimental results are given in
Sect. 5. Remarks and discussions are made in Sect. 6. Sec-
tion 7 is the conclusion of this work.

2. Previously Proposed Framework

Our proposed framework is mainly based on a method called
SSA. In this section, background about SSA, how to embed
information into a host signal, and how to extract it from a
watermarked signal are provided in great detail.

2.1 Singular-Spectrum Analysis (SSA)

SSA is a powerful and useful technique for identifying
and extracting meaningful information, such as oscillatory
components, seasonality components, or trends from a sig-
nal [25]. It has been widely used in various applications
such as extraction of periodicities and finding structures in
time series [26]. SSA can be applied to arbitrary signals
including non-stationary ones because it is model-free. It
decomposes a signal of interest into several additive compo-
nents, where each component represents a simple oscillatory
mode. There are many types of SSA. Our proposed scheme
is based on the basic SSA.

The basic SSA consists of two stages which involve
analysis and synthesis: decomposition and reconstruction.
In our proposed framework, only three sub-steps of the ba-
sic SSA are used. These sub-steps are the embedding step,

singular value decomposition, and Hankelization. The de-
tails of each step are provided in the following subsections.

2.1.1 Embedding Step

An audio segment X = ( f0, f1, . . . , fN−1)T of length N is
mapped to a trajectory matrix X of size L×K.

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f0 f1 . . . fK−1

f1 f2 . . . fK
...

...
. . .

...
fL−1 fL . . . fN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

Each column vector of X is called a lagged vector, and a
lagged vector Xi is defined as Xi = ( fi−1, fi, . . . , fi+L−2)T ,
where i = 1, 2, . . . ,K, and L is a window length for matrix
formation with 2≤ L≤ N. Therefore, the matrix X consists
of K lagged vectors, [X1X2 . . . XK]. Since the lagged vector
Xi is constructed by a one-sample lag of Xi−1, the element
xi, j, which is an element at i-th row and j-th column of X,
is equal to the element xi−1, j+1. From this property, we say
that the trajectory matrix X is a Hankel matrix.

2.1.2 Singular Value Decomposition

SVD is performed on the trajectory matrix X obtained from
the previous step. It factorizes X to a product of three matri-
ces, U, D, and V in the following form.

X = UDVT , (2)

where U and V are orthogonal matrices, and D is a diagonal
matrix whose element is called the singular value. Columns
of U and V, which are Ui and Vi, are sorted in descending
order of corresponding singular values.

Let {√λ1,
√
λ2, . . . ,

√
λd} denote a set of singular val-

ues of the matrix X in descending order, called a singular
spectrum of X, where λi for i = 1, 2, . . . , d is the eigenvalue
of XXT (or XTX) and d = arg maxi(λi > 0). The trajectory
matrix X can be written as

X = X1 + X2 + · · · + Xd, (3)

where Xi =
√
λiUiVT

i . This expansion Eq. (3) is uniquely
defined if and only if all the eigenvalues are distinct. Each
Xi represents a simple oscillatory component of the audio
segment X.

2.1.3 Hankelization

This step is in the reconstruction stage. Each matrix Xi is
mapped to a new signal, called an oscillatory component, of
length N. The Hankelization of matrix Y of dimension L×K
to a signal Y = (g0, g1, . . . , gN−1)T is defined as follows.
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gk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
k + 1

k+1∑
m=1

y∗m,k−m+2 0 ≤ k < L∗ − 1

1
L∗

L∗∑
m=1

y∗m,k−m+2 L∗ − 1 ≤ k < K∗

1
N − k

N−K∗+1∑
m=k−K∗+2

y∗m,k−m+2 K∗ ≤ k < N,

(4)

where L∗ = min(L,K), K∗ = max(L,K), y∗i j = yi j if L < K,
and y∗i j = y ji if L ≥ K.

Fig. 1 Example of using SSA to decompose a signal (top panel) into
additive oscillatory components (last five panels).

Fig. 3 (a) Singular spectrum, (b) its modification after embedding “1”, i.e.,
√
λ21,
√
λ22, . . . ,

and
√
λ49 are set to

√
λ50 + 0.9(

√
λ20 − √λ50), and (c) its modification after embedding “0”, i.e.,√

λ21,
√
λ22, . . . , and

√
λ49 are set to

√
λ50+0.1(

√
λ20− √λ50), given u = 20, l = 50, and ε = 0.1.

2.1.4 Interpretation of Singular Value

Figure 1 shows an example of SSA decomposition of a sig-
nal, when the frame size N is 2450 and the window length L
is 500. The first panel labeled ‘Original’ is an original sig-
nal with 300 samples. The second to sixth panels show the
first five oscillatory components, i.e., X1 to X5. The wave-
form Xi is a Hankelization of matrix Xi, which is

√
λiUiVT

i .
Therefore, each singular value can be interpreted as a scale
factor of an oscillatory component. Since singular values are
sorted in descending order, the lower the component order,
the more contribution to the signal. An example of adding
the first 100 oscillatory components is shown in Fig. 2 (top).
The bottom panel of Fig. 2 shows the difference between the
original and reconstructed signals. When all components are
added up, the original signal is obtained due to linearity. An
example of first 100 singular values is shown in Fig. 3 (a).

2.2 Embedding Process

The embedding process is shown in Fig. 4 (left). First, an au-
dio signal is segmented into several non-overlapping frames.
To hide information, one bit of watermark is embedded into
one frame. Therefore, frame length determines embedding
capacity of a watermarking scheme. Then, a trajectory ma-
trix representing a frame is constructed, and SVD is per-
formed on the matrix. Information hiding is done by mod-
ifying singular values according to certain rule. Modifying
of some singular values means physically that the amplitude
of some oscillatory components are modified.

Fig. 2 Original and reconstructed signals (top). Residual signal or the
difference between original and reconstructed signals (bottom).



2112
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.8 AUGUST 2016

Fig. 4 The embedding (left) and extraction (right) processes.

Fig. 5 Embedding “0” and “1” into the oscillatory component X35.

Given a singular spectrum {√λ1,
√
λ2, . . . ,

√
λd} of an

audio frame, a small number ε ∈ [0, 0.5] and a watermark bit
w ∈ {0, 1}, our proposed embedding rule can be summarized
as follows.

√
λi =

⎧⎪⎪⎨⎪⎪⎩
√
λl + ε(

√
λu −

√
λl), if w = 0√

λl + (1 − ε)(√λu −
√
λl), if w = 1,

(5)

for i = u+1, u+2, . . . , l−1, given that
√
λu is greater than√

λl.
Figure 3 shows an example of a singular spectrum and

its modification after embedding “1” and “0”. Figure 5
shows an example of waveform when embedding “1” and
“0” into the oscillatory component X35.

2.3 Extraction Process

The extraction process is shown in Fig. 4 (right). As in the
embedding process, a watermarked signal is segmented into
several non-overlapping frames, and each frame is mapped
to a trajectory matrix. To extract singular values, SVD is
used. The watermark bit is decoded by determining the me-
dian,

√
λm, of {√λu+1,

√
λu+2, . . . ,

√
λl−1}. If

√
λm is closer

to
√
λu than to

√
λl, the watermark bit is 1. Otherwise, the

watermark bit is 0.

3. Proposed Framework

The previously proposed framework showed its robustness
against many attacks, and its objective evaluation of sound
quality of a watermarked signal was very good, however,

Fig. 6 Differential evolution optimization.

when subjective tests were used for evaluation, some listen-
ers could easily distinguish between some pairs of original
and watermarked signals. Thus, the framework is in need of
improvement. Two improvements have been done. The first
one takes place in the singular-value-modification step, and
the second one takes place in the singular-value-extraction
step.

3.1 Differential Evolution-Based Singular Value Modifi-
cation

The embedding rule described in Sect. 2.2 involves three im-
portant parameters, u, l, and ε. There is degradation in sound
quality of a watermarked signal when a predefined and fixed
parameter set {u, l, ε} is used. Since the singular spectrum
varies from signal to signal, it is reasonable to set the param-
eters from the signal as well. Therefore, in order to reduce
the distortion due to embedding, a new adaptive parameter
set for each signal is required.

To solve such a problem while retaining robustness
properly, differential evolution is used to find optimal pa-
rameters. Differential evolution is a parallel direct search
method that optimizes the problem by iteratively improving
candidate parameters with regard to a cost function. The
following are reasons that differential evolution is select for
this task. First, it is a multi-point optimizer, i.e., we can
mitigate the effect of the starting point problem. Second, it
is a derivative-free approach, i.e., we do not have to worry
about whether the cost function is differentiable. Third, it
has proved to be the fastest search algorithm in its computa-
tional class [27].

The optimization deployed in the improved scheme is
shown in Fig. 6. The cost function is defined as follows.

Cost =

√
α·
(
LSD +

(
1 − Sig

(
SDR
)))2
+ β·BER

2
, (6)

where LSD, Sig(SDR), and BER are the log-spectral dis-
tance, the sigmoid function of signal-to-distortion ratio
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(SDR) given that Sig(·) is a sigmoid function, and the av-
erage bit-error rate, respectively.

LSD is defined as the following formula. Given P(ω)
and P̂(ω) are power spectra of original and watermarked sig-
nals respectively.

LSD =

√√√√√
1

2π

π∫
−π

⎡⎢⎢⎢⎢⎢⎣10 log
P(ω)

P̂(ω)

⎤⎥⎥⎥⎥⎥⎦
2

dω (7)

SDR is the power ratio between a signal and the distor-
tion. Given amplitudes of original and watermarked signals,
Asig(n) and Asyn(n), respectively, SDR is defined as follows.

SDR = 10 log

∑
n

[Asig(n)]2

∑
n

[Asig(n) − Asyn(n)]2
(8)

In short, the term LSD + (1 − Sig(SDR)) in Eq. (6) rep-
resents a cost in terms of objective measures of inaudibility.

BER is the average of BER, number of error bits di-
vided by the total number of embedded bits. Thus, it repre-
sents a cost in terms of robustness. Two user-defined con-
stants α and βwith relationship α+β = 1 control the balance
of inaudibility and robustness, respectively. The differential
evolution optimizer finds the parameters u, l, and ε that min-
imize the cost value. In our experiment, we set the param-
eters for differential evolution as follows: α = β = 0.5, the
maximum iteration is 20, and other constants, such as num-
ber of population and cross over constant are as suggested
in [27]. Some constraints such as the minimum and maxi-
mum values of u and the minimum l−u are set to reduce the
search space.

3.2 Watermark-Bit Extraction by Polynomial Fitting

According to the rule described in Sect. 2.2, the singular
values

√
λu+1 to

√
λl−1 are replaced with the same value√

λl+ ε(
√
λu−
√
λl) or

√
λl+ (1− ε)(√λu−

√
λl), depending

upon the watermark bit. That is, in the embedding process,
we force the singular spectrum on [u+ 1, l− 1] to be flat,
as shown in Figs. 7 (a) and (b). However, when all oscilla-
tory components including the modified ones are combined
to obtain a watermarked frame, the flatness resulting from
rounding up or down of a sequence of singular value is dis-
torted, as shown in Figs. 7 (c) and (d). The distortions form
two patterns. When 0 is embedded, convexness of the singu-
lar spectrum is shown. On the other hand, if 1 is embedded,
concave down of the singular spectrum is shown. We can
use these characteristics to decode a watermark bit. In the
extraction process of the previous framework, only the me-
dian singular value is employed. To get a better result, the
extraction rule is improved by using all information of mod-
ified singular values of [u+1, l−1].

The improved extraction method can be described as
follows. Singular values of [u+1, l−1] are fitted to a degree-
two polynomial, y(x) = ax2 + bx + c where y is a singular

Fig. 7 Example of singular spectra in embedding and extraction pro-
cesses: (a) when embedding “1” and (b) when embedding “0” in the em-
bedding process, (c) singular spectrum of the frame embedded “1” and
(d) singular spectrum of the frame embedded “0” in the extraction process.

Fig. 8 The singular values of [18, 32] are fitted to a quadratic equation
y(x) = ax2+bx+c, where a=−0.0146, b=0.598, and c=3.853. Since the
value of a is negative, the graph is concave. Therefore, the watermark bit
is 1.

value and x is the index of the singular value. The coefficient
a indicates the rate of change of singular values. Therefore,
the sign of the coefficient a can be used to decode a water-
mark bit: minus and plus signs indicate concavity or bit “1”
and “0”, respectively. An example of polynomial fitting is
shown in Fig. 8, where a negative sign of a in the quadratic
equation of the 18th–32rd singular values implies that the
watermark bit “1” is embedded.

4. Automatic Parameter Estimation

The parameter set {u, l, ε}, obtained from differential evolu-
tion described in Sect. 3.1, is music-dependent. Our previ-
ous work [28] assumed that parameters u and l are known
in the extraction process, and proposed using the second
derivative of singular spectrum to automatically estimate
them. However, further investigation shows that the pro-
posed method works well only when u is the singular-
value index selected somewhere in the singular spectrum
where the slope changes rapidly. This paper proposes a new
method for automatic parameter estimation. The extraction
process with automatic parameter estimation is shown in
Fig. 9.

Consider Fig. 10 for the basic concept of the parameter
estimation method. A line segment of length n−m connect-
ing two singular values

√
λm and

√
λn is drawn, where m
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Fig. 9 Extraction process with automatic parameter estimation.

Fig. 10 Singular spectrum of original signal and a line segment connect-
ing
√
λ16 and

√
λ37. Singular values on [17, 36] are under the line segment.

Fig. 11 Singular spectrum of watermarked signal and two line segments.
Line segment #1 connects

√
λ16 and

√
λ37, and line segment #2 connects√

λ21 and
√
λ49. Into this frame, a watermark bit “1” is embedded by forc-

ing
√
λ21 to

√
λ49 toward

√
λ20. The dotted curve represents the original

singular spectrum. It can be seen that almost all of singular values are above
the line segment #2.

and n are indices, and n is greater than m. Note that n−m is
the length of its projection on the index axis. Naturally and
statistically, a singular spectrum is convex upward. That is,
given m and n, most singular values of [m+1, n−1] are un-
der the line segment. However, when a watermark bit “1” is
embedded, for some m and n, there are some singular val-
ues above the line segment, as shown in Fig. 11. As a result,
the number of singular values above given line segment can
be used to detect the concave part of the singular spectrum.
This phenomenal can be used to estimate the parameters u
and l.

Fig. 12 A line segment connecting
√
λ18 and

√
λ42 is used to calculate

the concavity density D18,42 by summing up all differences between singu-
lar values and their associated values on the line segment from index 19 to
index 41. D18,42 in this example is −2.5353. The minus sign implies that
the segment of the singular spectrum on [18, 42] is convex.

Fig. 13 A set of concavity density {D1,31,D2,32, . . . ,D110,140}. Notice
that there is a strong relationship between regions of positive density and
indices of modified singular values.

In this work, we define the concavity density as a mea-
sure of degree of concavity. Given a singular spectrum
{√λ1,

√
λ2, . . . ,

√
λd}, the concavity density Dm,n of singular

values from
√
λm to

√
λn is defined as follows.

Dm,n =

n−1∑
i=m+1

(√
λi −L(i)

)
, (9)

where L(i) is the function defining the line connecting
√
λm

and
√
λn.

L(i) =
√
λm +

√
λm −

√
λn

m − n
(
i −m
)

(10)

Generally, Dm,n is the sum of subtraction between sin-
gular values and the line connecting

√
λm and

√
λn. An

example of concavity density calculation is demonstrated
in Fig. 12. Starting from m = 1, a line segment of length
n−m, or a sequence of singular value that is used to calcu-
late concavity density, is shifted to the right one singular-
value point at a time to determine a set of concavity density
{D1,n,D2,n+1, . . . ,Di,n+i−1, . . . ,Dd−n+1,d}. Figure 13 shows an
example of concavity density curve of the singular spectrum
in Fig. 11 when a line segment has a length of 30. It can
be seen from this example that positive density corresponds
roughly to the modification region of the singular spectrum.
Hence, it is possible that the parameters u and l can be esti-
mated by guidance from the concavity density. Fortunately,
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the proposed extraction rules can decode a watermark bit
without the parameter ε. We do not need to estimate it for
the extraction process.

However, the concavity density depends upon the
choice of the length of line segment, as shown in Fig. 14.
If the length is too short, such as line segments #1 and #2, or
too long such as line segment #3, we may not be able to de-
tect concavity. Figure 15 (a) shows concavity density curves
with different lengths. Therefore, in order to correctly esti-
mate the parameters u and l, we have to choose an appro-
priate length. In this work, we get around the problem by
using the average density at different lengths. The average
density from Fig. 15 (a) is shown in Fig. 15 (b). To refine
the density curve, we introduce a few constraints. First, a
negative-density value is ignored because it implies convex-
ness. Second, a positive-density curve that is narrower than

Fig. 14 The same singular spectrum as illustrated in Fig. 11 with three
line segments. Line segment #1 connects

√
λ21 and

√
λ30, and line seg-

ment #2 connects
√
λ41 and

√
λ50. They are too short. We cannot detect

the concavity of the singular spectrum on [21, 30] and on [41, 50] even
though singular values on such intervals are modified to embed “1”. Line
segment #3 connecting

√
λ19 and

√
λ81 is too long. It is difficult to obtain

the positive concavity density from long segments.

Fig. 15 (a) Concavity density curves when analyzing with four different
lengths. (b) An average of four curves in (a).

1.1·(l− u) is neglected because of the constraint on the min-
imum value of l − u in our differential evolution optimizer.
Then, the indices at rising and falling edges of a refined den-
sity curve, together with an offsetting constant, are used to
estimate the parameters u and l for the given frame. Finally,
the parameters u and l for a music clip are calculated by av-
eraging the estimated parameters u and l from all frames in
the clip.

5. Evaluations

In our experiments, we implemented three models: fixed-
parameter model and two adaptive-parameter models. The
two adaptive-parameter models were partially-blind and
completely-blind. The fixed-parameter model was based on
the previously proposed framework [29], but it had a minor
modification. That is, to increase robustness, one frame was
divided into three equal subsegments where the same water-
mark bit was embedded repeatedly into those three subseg-
ments, and the majority rule was applied in the extraction
process. The extracted watermark bit of the frame is 1 if
at least two-thirds of extracted watermark bits of its subseg-
ments are 1; Otherwise, the extracted watermark bit of this
frame is 0. Parameters for this model were set as follows.
Frame length was 7350, so that the embedding capacity was
6 bps. Sub-frame length N was 2450. The window length
L for SSA was 500. Parameters u, l, and ε were 20, 50, and
0.1, respectively.

Second, the partially-blind model was based on the
proposed framework described in Sect. 3. This model was
partially-blind because it assumed that the parameters u and
l were shared, somehow, between embedding and extraction
processes. This model was similar to [28], but it also divided
one frame into three equal subsegments and used the major-
ity rule as well. The parameters determined by differential
evolution are shown in Table 1.

Third, the completely-blind model was based on the
proposed framework and automatic parameter estimation.
For the current implementation, the subsegment length was
reduced to 816, instead of 2450, because when automatic
parameter estimation was integrated into differential evo-
lution optimization, the experiment was a time-consuming
process. Since the less matrix dimension, the less computa-
tional time, the size of a subsegment was reduced three times
so that, in order to keep the capacity at about 6 bits per sec-
ond, one frame was divided into nine equal subsegments.
The window length L for SSA was reduced to 326. The
parameters determined by differential evolution are shown
in Table 1. In automatic parameter estimation, five lengths
were used: 15, 20, 25, 30, and 35.

Twelve host signals from the RWC music-genre
database [30] (Track No. 01, 07, 13, 28, 37, 49, 54, 57,
64, 85, 91, and 100) were used in our experiments. All
have a sampling rate of 44.1 kHz, 16-bit quantization, and
two channels. A watermark was embedded in one channel
at 6 bits per second. One hundred bits were embedded in
total. Embedding duration was approximately 17 seconds.
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Table 1 The parameters optimized by differential evolution as described in Sect. 3. and the number
of iterations.

#01 #07 #13 #28 #37 #49 #54 #57 #64 #85 #91 #100
u 21 17 39 64 28 70 60 20 20 40 62 61

Partially-blind l 37 33 71 84 50 100 92 28 36 66 90 95
(The second model) ε 0.050 0.025 0.025 0.025 0.100 0.050 0.025 0.025 0.075 0.175 0.075 0.000

No. of iterations 11 11 11 10 11 11 11 12 11 13 11 9
u 74 60 84 92 83 100 53 50 89 56 75 66

Completely-blind l 134 108 144 152 141 154 107 92 145 104 125 114
(The third model) ε 0.000 0.025 0.025 0.000 0.000 0.000 0.000 0.075 0.025 0.000 0.000 0.000

No. of iterations 11 11 9 11 2 11 11 11 3 12 7 11

Table 2 ODGs, LSDs, and SDRs: comparison of the proposed models and the conventional
method [7].

Fixed-parameter Partially-blind Completely-blind Conventional
PEAQ LSD SDR PEAQ LSD SDR PEAQ LSD SDR PEAQ LSD SDR

#01 0.20 0.21 19.86 0.21 0.13 26.28 0.21 0.18 28.44 0.20 0.08 26.50
#07 0.19 0.22 23.65 0.20 0.15 27.38 0.19 0.19 28.48 0.20 0.05 30.39
#13 0.20 0.11 25.35 0.20 0.09 29.84 0.20 0.10 30.52 0.20 0.05 29.71
#28 0.18 0.45 19.75 0.20 0.12 45.49 0.20 0.30 54.54 0.20 0.08 29.01
#37 0.19 0.27 31.04 0.20 0.13 39.50 0.20 0.21 47.79 0.20 0.07 29.19
#49 0.18 0.41 20.33 0.19 0.18 40.20 0.20 0.30 52.24 0.18 0.14 25.45
#54 0.19 0.27 20.60 0.20 0.14 34.14 0.19 0.18 27.88 0.20 0.10 25.68
#57 0.17 0.46 20.54 0.19 0.23 30.94 0.19 0.27 37.20 0.19 0.23 22.60
#64 0.18 0.23 25.45 0.20 0.13 30.93 0.21 0.18 38.17 0.20 0.06 31.08
#85 0.04 0.53 25.44 0.15 0.37 39.78 0.11 0.45 47.11 0.19 0.31 18.99
#91 0.19 0.35 20.24 0.20 0.13 38.65 0.19 0.29 43.30 0.20 0.07 29.00
#100 0.18 0.37 16.35 0.20 0.12 39.92 0.20 0.28 41.19 0.20 0.13 24.27

AV 0.18 0.32 22.38 0.19 0.16 35.25 0.18 0.24 39.74 0.20 0.11 26.82
SD 0.04 0.17 3.92 0.02 0.07 6.12 0.05 0.09 9.53 0.01 0.08 3.61

The first watermark bit was embedded starting from the ini-
tial segment of host signals. We compared our proposed
schemes with a conventional SVD-based scheme [7]. The
scheme [7] was chosen as a reference for two reasons: it is
one of a few blind SVD-based techniques, and its published
results are promising.

5.1 Sound-Quality Tests

To evaluate the sound quality of a watermarked signal, ob-
jective and subjective tests were conducted. For objective
evaluation, three evaluations: the perceptual evaluation of
audio quality (PEAQ), LSD, and SDR were used. PEAQ
measures the degradation of the watermarked signal being
evaluated, compared with the original and covers a scale,
called objective difference grade (ODG), from −4 (worst) to
0 (best). LSD is a distance measure between two spectra,
as defined in Eq. (7). SDR is the power ratio between the
signal and the distortion, as defined in Eq. (8).

We also verify the perfection of SSA as an analysis-
synthesis tool by checking the ODG, LSD, and SDR of syn-
thesis signals, compared to the originals. The results showed
that all ODGs were positive, all LSDs were zero, and all
SDRs were infinity [29]. In other words, the framework of
singular-spectrum analysis is perfect in the sense that the
framework itself does not introduce noise into the system.

5.1.1 Objective Evaluation

The ODG, LSD, and SDR of a watermarked signal, com-
pared between the proposed and conventional schemes, are
shown in Table 2. The results show that ODGs from
all schemes are at the same level. However, LSDs from
adaptive-parameter models drop considerably from 0.32 to
0.16, and to 0.24 for partially-blind and completely-blind
models, respectively. SDRs from adaptive-parameter mod-
els increase significantly as well, i.e., from 22.38 dB to
35.25 dB, and to 39.74 dB. Therefore, the sound quality
of a watermarked signal improves.

5.1.2 Subjective Evaluation

The ABX test was used to evaluate sound quality of a water-
marked signal, subjectively. It is a method of comparing two
choices to identify whether a listener can perceive a differ-
ence between them or not. First, we presented a subject with
two clips, A and B, and then, after presenting the third clip
X, which is randomly selected from either A or B, we asked
the subject to identify X as either A or B. In our experiment,
A was the original signal, and B was the watermarked sig-
nal. The sequence of presenting A and B to participants was
random. We tested 20 audio clips in total. There were 35
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normal-hearing subjects involved in the test. We assumed
a binomial distribution and used it as a statistical analysis
tool. Typically, the 95% confidence level is sufficient for
psychoacoustic experiments, i.e., to reach such a level, 14
out of 20 correct identifications was the criterion indicating
a perceptible difference. The results are shown in Table 3.

As a result, the partially-blind model outperformed the
fixed-parameter model, and we can say that the difference
in sound quality between the original and watermarked sig-
nals obtained from our scheme was almost imperceptible be-
cause the average correct identification from the ABX test
was at the chance level.

In this experiment, we examined only the fixed-
parameter model and the partially-blind model. We did not
subjectively evaluate the completely-blind one. However,
we expect that the completely-blind model will work well
because of two reasons. First, all objective scores from the
completely-blind model were comparable to those from the
partially-blind model. Second, the singular values, which

Table 3 The average, maximum, and minimum correct identification of
the ABX tasks with 20 stimuli for the fixed-parameter and partially-blind,
adaptive-parameter models.

Fixed Adaptive
Average correct identification (%) 73.00 49.78
Maximum correct identification 19 13
Minimum correct identification 9 7

Table 4 BER (%) comparison of fixed-parameter (Fix.), partially-blind (Par.), completely-blind
(Com.), and conventional (Con.) methods when attacks (MP3, MP4, AWGN, Re-sampling, and Band-
pass filtering) were performed.

#01 #07 #13 #28 #37 #49 #54 #57 #64 #85 #91 #100 AV SD
Fix. 0.00 0.33 0.08 0.00 0.00 0.00 0.18 0.51 0.02 0.00 0.18 0.02 0.11 0.16

No Attack Par. 0.00 0.02 0.02 0.00 0.00 0.02 0.08 0.98 0.02 0.18 0.02 0.02 0.11 0.28
Com. 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.02
Con. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fix. 0.08 0.51 12.05 0.00 0.18 0.02 0.98 0.51 0.18 0.00 0.73 0.08 1.28 3.41
MP3 Attack Par. 0.00 0.18 6.08 0.33 0.33 0.18 1.97 0.73 0.08 1.27 2.37 0.51 1.17 1.72

Com. 4.64 5.16 5.71 9.88 11.60 9.08 6.31 6.94 18.90 1.06 4.16 18.90 8.53 5.59
Con. 47.22 98.33 70.56 87.78 82.50 33.06 41.94 33.61 95.83 18.89 74.72 23.61 59.00 29.03

Fix. 0.00 0.33 0.08 0.00 0.00 0.00 0.18 0.51 0.02 0.00 0.18 0.02 0.11 0.16
AWGN Par. 0.00 0.02 0.02 0.00 0.00 0.02 0.08 0.98 0.02 0.18 0.02 0.02 0.11 0.28

Com. 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.02
Con. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fix. 0.00 0.51 6.08 0.00 0.08 0.00 0.33 0.98 0.08 0.00 0.51 0.00 0.71 1.72
MP4 Attack Par. 0.18 0.18 17.54 0.51 0.18 0.00 4.30 2.80 0.33 0.51 3.27 1.97 2.65 4.91

Com. 26.66 7.62 25.28 28.07 41.85 41.85 6.31 12.52 20.11 3.29 25.28 40.24 23.25 13.74
Con. 0.28 0.00 13.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 1.20 4.00

Fix. 0.01 0.41 7.41 0.00 0.18 0.00 0.13 0.25 0.05 0.00 0.08 0.05 0.71 2.11
Re-sampling Par. 0.05 0.02 9.61 0.01 0.25 0.02 0.33 1.78 0.05 0.25 0.61 0.13 1.09 2.73

Com. 53.68 1.32 36.50 36.04 38.20 32.53 0.55 1.46 36.14 0.03 25.83 45.30 25.63 19.48
Con. 3.19 0.42 25.69 0.00 0.00 0.00 0.00 0.00 0.28 0.83 0.14 1.53 2.67 7.31

Fix. 0.08 0.51 30.47 0.02 0.73 0.00 0.51 2.80 0.18 0.02 0.98 0.02 3.03 8.68
BP Filtering Par. 0.73 0.08 35.20 0.18 0.73 0.18 3.27 15.63 0.33 0.18 6.08 0.98 5.30 10.43

Com. 53.28 17.74 59.76 59.76 50.00 54.91 4.16 4.16 67.54 0.62 20.11 51.64 36.97 25.36
Con. 25.83 48.61 47.78 43.61 56.67 21.39 40.56 28.89 62.22 0.83 50.56 30.00 38.08 17.30

were modified by the completely-blind model, were much
smaller than those by the partially-blind model, as shown
in Table 1. Note that the detection method relates to the
results of the objective or subjective evaluations because
in the embedding process, the detection process is simu-
lated by the differential evolution optimization, as shown
in Fig. 6. Hence, this affects optimized parameters and the
sound quality.

5.2 Robustness Tests

Five attacks were performed on watermarked signals:
Gaussian-noise addition with average SNR of 36 dB, re-
sampling with 16 and 22.05 kHz, band-pass filtering with
100–6000 Hz and −12 dB/Oct, MP3 compression with 128
kbps joint stereo, and MP4 compression with 96 kbps.
We represent extraction precision in terms of bit error rate
(BER), and the BER should be lower than 10%.

The results of robustness tests are shown in Table 4.
BERs from the proposed and conventional SVD-based
schemes were compared. The average BERs of fixed pa-
rameter model, partially-blind model, and completely-blind
model were 0.99%, 1.74%, and 15.73% respectively. The
average BER of conventional method was 16.83%. There-
fore, the fixed-parameter and partially-blind models outper-
formed the conventional SVD-based method in robustness.

Because the average BER from the partially-blind
models increased, compared with the fixed-parameter
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model, we can consider the results as a trade-off between
inaudibility and robustness. However, it is not linear. While
the robustness drops very little (i.e., BER increased from
0.99% to 1.74%), the inaudibility improves considerably
(i.e., the average correct identification dropped to chance
level, and all objective scores were better).

When no attack was performed, the BER from the
completely-blind model was the best, compared with the
other two proposed models. Since a watermark bit is ex-
tracted by the polynomial fitting as described in Sect. 3.2,
the BER is highly dependent on the value of u − l. The
greater the value, the easier, extracting the watermark bit.
The values of u− l in the completely-blind model are greater
than those in the other two models. Therefore, it is more
robust under no-attack. However, it was the most fragile
if it was under attacks except for added 36 dB noise and
MP3 compression. The fragility to signal processing of this
model is discussed in the next section.

6. Discussion

All three models that we proposed have their own advan-
tages and disadvantages. The fixed-parameter model is sim-
plest and does not involve in any music-dependent param-
eters. Thus, it can extract hidden information completely
blindly. It is robust. The average BER is just 0.0099 or
0.9919%. However, for some stimuli, distortion in sound
quality occurs. This problem can be resolved by incor-
porating differential evolution into the SSA-based frame-
work in order to determine optimal parameters. If we can
share these parameters between the embedding and extrac-
tion processes, the partially-blind model satisfies inaudibil-
ity and robustness, simultaneously. The third, completely-
blind model was proposed for a scenario in which sharing
parameters is not allowed. Hence, the extraction process
must be able to estimate the parameters by analyzing wa-
termarked signal, only. Without attacks, this model works
well with the average BER of 0.000087, or 0.0087%. Its
fragility to signal processing can be explained after con-
sidering Table 1. The modification region [u, l] suggested
by differential evolution for the completely-blind model is
much lower than that for the partially-blind model. As dis-
cussed in Sect. 2.1.4, the smaller the singular value, the less
contribution to the signal. Thus, the oscillatory component
associated with a small singular value is easily damaged.

There are two factors that may account for the reason
the differential evolution optimization suggested those pa-
rameters. The first one is that the optimization in Fig. 6 is
too simplistic because it includes only the MP3 compres-
sion simulation. In fact, it should include as many attacks
as possible. The second factor involves the concavity den-
sity function since the optimization simulates the extraction
process as illustrated in Fig. 9, i.e., the automatic parameter
estimation affects the optimization significantly. Thus, es-
timating parameters with different methods could result in
different sets of optimal parameters.

However, the current completely-blind model is suit-

able in the application in that robustness against intentional
attack is not required, such as an information carrier appli-
cation [31].

Under no-attack, AWGN-attack, and MP4-attack, the
conventional method shows the best performance. Its ro-
bustness when there is no attack is due to the characteris-
tics of dither-modulation quantization [7]. According to the
extraction rule of the conventional method, which deploys
the Euclidean norm and a predefined quantization step to
decode a watermark bit, robustness can be expected if the
singular values obtained from a watermarked frame are not
much different from those after an attack to the frame. We
found that this condition is true when AWGN and MP4 are
applied to a watermarked frame. Therefore, the conven-
tional method is very robust against AWGN and MP4.

There are two important issues concerning the scope of
this work we would like to discuss in this section as well.
First, since the completely-blind model can decode a wa-
termark blindly, one can analyze the singular spectrum of
a watermarked frame in order to extract the watermark bit.
Therefore, confidentiality of the hidden bit seems reduced
once an attacker knows the frame position. This problem
may be solved by combining encryption techniques with the
proposed SSA-based framework. That is, the watermark in-
formation is encrypted before embedding. However, there
is another problem, i.e., if an attacker analyzes the singular
spectrum in a similar way as the automatic parameter esti-
mation does, then the attacker can intentionally attack the
hidden bit by modifying singular values on some specific
ranges. This issue will be investigated further in our future
work.

Second, we assume the extraction process knows ex-
actly where the frame position is. The frame synchroniza-
tion is beyond the scope of this work. As suggested in [24],
there are two ways to solve the synchronization problem:
binding the watermark with invariant audio features and us-
ing synchronization code, such as a chaotic map [32]. We
will solve this problem as the next issue in our framework.

7. Conclusion

This paper presents the deployment of SSA for digital audio
watermarking and proposes an audio watermarking frame-
work based on it. From our experiment, we discover that it
does not introduce noise into the reconstructed signal. We
improved the inaudibility property of the result by using dif-
ferential evolution to find optimal parameters. Furthermore,
based on analyzing singular spectrum with concavity den-
sity function, the parameters can be estimated automatically.
We present three models and show their advantages and dis-
advantages. The fixed-parameter model and the partially-
blind model are robust against many attacks, especially MP3
and MP4 compression, and the adaptive-parameter models
satisfy inaudibility subjectively and objectively.
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