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SUMMARY Light-field image processing has been widely employed
in many areas, from mobile devices to manufacturing applications. The
fundamental process to extract the usable information requires significant
computation with high-resolution raw image data. A graphics processing
unit (GPU) is used to exploit the data parallelism as in general image pro-
cessing applications. However, the sparse memory access pattern of the ap-
plications reduced the performance of GPU devices for both systematic and
algorithmic reasons. Thus, we propose an optimization technique which re-
designs the memory access pattern of the applications to alleviate the mem-
ory bottleneck of rendering application and to increase the data reusability
for depth extraction application. We evaluated our optimized implementa-
tions with the state-of-the-art algorithm implementations on several GPUs
where all implementations were optimally configured for each specific de-
vice. Our proposed optimization increased the performance of rendering
application on GTX-780 GPU by 30% and depth extraction application on
GTX-780 and GTX-980 GPUs by 82% and 18%, respectively, compared
with the original implementations.

key words: light-field image processing, GPU optimization, GPU archi-
tecture

1. Introduction

Light-field is a concept of using the direction of light to-
gether with its intensity. Using light ray direction, we
can extract depth and additional side views of objects, and
change the focus plane or extend the depth of field of an
image. These features provide many applications in both
multiple fields and scales. Industrial fabrication uses a sin-
gle depth camera, instead of a multiple camera system, to
detect product defects [1]. Smartphones can produce a post-
processed shallow depth of field on an image, giving the
impression of a photograph taken by a digital camera [2].
Recent light-field camera modules shrink the size of a sys-
tem down to the hand-held scale using a lens array rather
than a multiple camera system [3]. A lens array, which is
attached to an image sensor, scatters the light or the image
data from the camera lens to multiple micro-images in one
capture as a raw image. The optical diffraction effect on
the multiple micro-images manipulates such additional in-
formation as the depth of objects.

The computation between spatial micro-images has
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been accelerated by a GPU as conventional image pro-
cessing [4]. The single-instruction multiple-thread (SIMT)
mechanism of GPU was used to conceal the latency of mem-
ory in intensive computation. However, a sparse memory
access pattern does not work well with the multiple memory
layers and multi-threading mechanism of SIMT. Therefore,
attentive optimization that addresses both computation and
memory loads is essential.

Since architecture design of GPUs has been gradually
improved, the optimization patterns for specific applications
are different among the various architectures [5]. Moreover,
the fragmentation specifications of on-the-shelf GPU de-
vices also drastically affect computation and memory ma-
nipulation, which hampered the single optimization pattern
from working well on every device. Therefore, to fully max-
imize the performance of each GPU device, the optimal con-
figuration and an optimization technique must be carefully
chosen for individual devices.

The following are the main contributions of this re-
search.

e We analyzed the original algorithm of rendering and
depth extraction applications, particularly their mem-
ory access patterns, and proposed optimized mem-
ory access patterns that completely facilitate the SIMT
mechanism of GPU devices.

e We indicated the optimal implementation of several
GPU devices and showed various results due to differ-
ences in architectures as well as fragmentation within
the same architecture.

The rest of this paper is organized as follows. We in-
troduce the related work and some basic GPU optimization
ideas in Sect.2. Then we explain the background of light-
field applications and their implementations and the capa-
bilities of their optimization in Sect. 3. Next, we introduce
the details of our optimization method in Sect. 4. In Sect. 5,
we describe the evaluation method and its results and then
discuss the benefits to other research. Finally, we conclude
this research in Sect. 6.

2. Related Work

Since optimization is the most important part of all appli-
cation implementation, its fundamental idea is provided by
manufacturers of GPU devices [6], [7]. However, in more
specific cases, some of the optimization methods have been
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found by optimizing the particular applications. In cone-
beam back-projection application optimization [8], synchro-
nizing all the threads at the end of each loop reduced the
stray load instructions. A warp speculative method, which
reduces warp divergence, was applied in stencil application
optimization [9]. This method, which corresponds to the
loop collapsing method [10], was also explored as an exten-
sible API[11]. We included these two techniques in both our
implementation and our optimal configuration explorations.

Lee et al.[12] summarized the optimization strategies
by classifying them with computation-bound or memory-
bound applications on the previous generation of GPUs.
However, as was previously mentioned about the effect of
variant architecture [5], these strategies must be adapted
and reevaluated in each GPU architecture. A heuristic
automatic-tuning framework [13] reduced the development
time of configuration space exploration, but only for sparse
matrix multiplication applications.

3. Background

The various lens array-based light-field camera sys-
tems [14]-[16] have different optical configurations and ma-
nipulation algorithms. In this work, we use the rectangular
lens-array light-field input data and algorithms [16].

3.1 Light-Field Image Rendering and Depth Extraction

The lens array attached at the front of the image sensor scat-
ters a conventional image to multiple micro-images. The
scattered micro-images are placed in the spatial area, where
only a partial area of the micro-image (called a patch) is used
for a rendering iterative. The resolution size of the patch in-
dicates the focus plane of the resulting image. A small patch
produces back focus, and a large patch produces front focus
(Fig. 1(a),(b)). However, to regenerate all of the information
from the conventional raw images and to produce a realistic

a) Rendered result at 9-pixel patch size b) Rendered result at 11-pixel patch size

<«— Micro-image size (75 pixels)
=» Patch size (11 pixels)

"

Range = Range = 1

c) Example of 11 pixels patch size rendering by weighted blending
a main micro-image ( []) and 24 corresponding micro-images ([[],I)

Fig.1 The resolution of patch size indicates the focus plane of the re-
sulting images. The small patch size produces back focusing (a) and large
patch produces front focusing (b). Multiple micro-images are weighted
blended together to make a realistic blur effect (c).
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Algorithm 1 Light-field rendering kernel
D : micro-image size (pixel), M: patch size (pixel)
{nx,ny} = {x,y}/D
{nxi, nyi} = {x, y}%D
center = (D-M)/2 //shift offset to the center of micro-image
lim = |(ID/M] - 1)/2] //range limit of corresponding micro-images
> pixel ={0,0,0}; Y weight = 0;
for {i,j} = {—lim, —lim} to {lim, lim} do
//traversing corresponding micro-images
{fx, fy} = {nx, ny}«D+{nxi, nyi} + {center, center} + {i, j}*M
{wfx,wfy} = {nxi,nyi} + {center, center} + {i, j}*M
pixel = input[fx, fy]
weight = weight_maplwfx, wfy]
> pixel += pixel = weight
> weight += weight
end for
output[x,y] = ), pixel/ Y, weight

blur effect, the data from the corresponding micro-images
have to be weighted blended with the data from the main
micro-image (Fig. 1(c)). Each micro-image has its own co-
ordinates relative to the main micro-image on a micro-image
plane. The data at the center of the main micro-image
will appear in the corresponding micro-images at a position
gradually shifting away from the center, the distance of each
shift being the patch size times the relative coordinate of the
micro-image. As an example with an 11-pixel patch size
rendering, the man’s eye in Fig. 1(b) shifts gradually away
from the center toward the border of the micro-image and
then disappears. The number of micro-image steps through
which the eye’s image shifts until disappearing indicates the
range limit of the corresponding micro-images. In this case
the range is limited to 2. Calculating in all directions, this
rendering extracts the data from a total of 25 micro-images.
The weight value of each pixel is defined by its position in
relation to its own micro-image, which was pre-calculated
by Gaussian distribution as a 75x75 pixels weight map. By
shifting the weight value to a position away from the center
position of the micro-images, we can change the perspective
view of a rendered image, as with a 3D object.

The rendering kernel is designed by an aspect of the
render output position per GPU thread (Algorithm 1). The
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a) Depth extraction result b) Normalized pixel locations when extracting an 11-pixel
patch size depth map by traversing through the range of
patch sizes from 7 to 14 pixels.

Fig.2  a) Depth extraction result is illustrated by patch size that renders
the best clarity resulting image for each location. b) Multiple iterations of
patch sizes are conducted to find the resulting patch size. In each patch size
iteration, the target pixel location are normalized in both horizontal and
vertical axes to match with the area covered by the patch size.
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coordinates of each pixel are translated to the location
of the micro-images (nx,ny) and their relative positions
(nxi,nyi). Then iteration traverses through all the corre-
sponding micro-images ranged by (-lim,-lim) to (lim,lim). In
each loop iteration, the coordinates of both input and weight
data are calculated, loaded and accumulated for averaging.

As shown in Fig. 1(a) and (b), the sharp in-focused ob-
ject in the rendered image is only produced by blending
identical data, and the blurred area are results from dissim-
ilar data. Depth information is extracted using an inverted
method of rendering, instead of blending the data from mul-
tiple corresponding micro-images. These data are compared
to find the least sum-of-absolute difference (SAD) for each
location, which indicates the most proper patch size and thus
the depth of objects. The grayscale depth map (Fig. 2(a)) is
illustrated by the resulting patch size that renders the best
clarity in the resulting image for each location. Figure 2(b)
shows a memory access example for depth extraction with
an 11-pixel output patch size. The horizontal and vertical
coordinates of the input pixel from both the main and corre-
sponding micro-images must be normalized to the traversing
patch size. For a larger patch size (14 pixels), the pixel co-
ordinates are scattered to cover a whole area of interest and
are redundantly read with a smaller patch size (7 pixels) by
the same thread or by multiple threads. We extend the depth
extraction implementation from the rendering algorithm by
adding a patch size traversing iteration at the outermost loop
to keep the low register usage of the kernel.

3.2 Overview of GPU SIMT Model and Original Algo-
rithm Implementation

The SIMT converges the context switching of multi-
threading and single-instruction multiple-data to obscure the
memory latency. Developer defined both the amounts of the
application threads and the size of a thread block. The 32
threads in a thread block are each automatically grouped
into a warp. All threads in a warp simultaneously execute
the same instruction in order to reduce the instruction load-
ing and to coalesce the loading memory address. The co-
alesced loading reduces the number of transactions and in-
creases the memory bandwidth utilization.

Figure 3 shows the memory hierarchy of the Kepler

Stream multi processor (SM)
’ Registers ‘
" Shared Read-only /
L1 ca‘che | _memory texture memory
; A
32 Bytes | 128 Bytes | 32 Bytes
’ L2 cache
| 32 Bytes 4128 Bytes

’ Global memory ‘

Fig.3 Memory hierarchy of Kepler architecture GPU device, where
numbers indicate cache line size when memory transaction is associated
with specific memory units.
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architecture GPU device. The global memory and the L2
caches are shared among multiple stream multi processors
(SMs). The L1 cache and the shared memory share the same
memory space and can be configured to match the appli-
cation requirements. The read-only memory unit, which is
also used by texture unit accessing, has its own memory up
to 48 KB. The registers act as a gateway for the applica-
tion to utilize these memory units. Both register and shared
memory must be well configured to increase the eligible
warps and occupancy of a GPU. By default, the global mem-
ory is serviced by a 128-byte cache-line to the L2 cache,
and then the L1 cache fetches the data at the same cache-
line size. However, the light-field application memory ac-
cess is too sparse and does not fully utilize this cache-line
size. Therefore, the original algorithm utilized the texture
unit to access the memory with a 32-byte cache-line but with
a slightly more latency. The global memory store transac-
tion is serviced with a 32-byte cache-line directly to the L2
cache.

3.3 General Optimizations for Original Algorithm

The original implementation can applied these general opti-
mizations as follows.

Vectorizing the input data reduces the cache line miss
rate by inserting a blank byte to the data of each pixel
(Fig.4(a)). The loading addresses are always at a quad-
byte granularity and have less chance of misalignment than
a triple-bytes input pattern, where the loading address can
be determined at any byte address. With vectorized data, we
can efficiently use the SAD SIMD video instruction (vab-
sdiff4), which compares the SAD value of quad-byte-value
and then adds to the destination value. This assembly in-
struction can be directly inserted into the C++ code by the
function of the Parallel Thread Execution ISA [17].

Vectorizing the output data (ResVect) reduces the in-
structions that compute the resulting coordinates. Addition-
ally, we can merge the triple store transactions for each RGB
channel into a single quad-byte transaction by adding an ad-
ditional instruction for the blank fourth value. This can be
identified using the NVIDIA profiler or a disassembler.

The GPU application can apply a loop-unrolling tech-

0 memory address 128

rlafb]| [rlalb| [rlalb| |rlalb| |rlalb

NN NNV OO NN Essential data

a) Vectorized input data
) P DL2 cache line
0 memory address 128

rgbrgbrgbrgbrgbrgbr

RO O NONN NONNN
b) Not vectorized input data

Fig.4  Vectorized input data (a) have less chance of misaligned loading
at L2 caches than the non-vectorized data (b).
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nique by trading-off the increased amount of concurrent
memory accesses and instruction level parallelism with the
cost of additional registers per thread [18]. For both applica-
tions, we examined this technique by pre-defining the range
limit to 2. Although the compiler detected the constant loop
index, it used a predication instead of unrolling the loop. We
also applied the macro-unrolling command and found per-
formance degradation due to the register starvation. Thus,
we did not apply the loop unrolling in the original imple-
mentations.

Since the divide instruction throughput of the GPU is
low, we attempted to replace it with the multiply instruction
and a set of pre-defined inversed value of dividers (DivAs-
Mul). However, this technique costs more memory band-
width since all of the inversed values of possible dividers
(sums of the weight) have to be loaded.

The synchronization at the end of each loop technique
(SyncAtFin) keeps all the threads in a thread block to load
the input data simultaneously, but it also increases the syn-
chronization time.

4. Proposed Optimization Implementation
4.1 Memory Access Pattern Optimization

Figure 5 compares the original implementation and the pro-
posed optimization. The Input and Output figures illustrate
the implementations’ thread blocks arrangement and how
they access the input data. The Memory access pattern fig-
ures illustrate more detail of the access pattern at raw image
data, where a grid-block illustrates for a micro-image, the
numbered n blocks illustrate the memory location load by
instruction n, and the white-block and pattern-block illus-
trate the loading from different warp.

Since the original implementation assigned the thread
blocks on the basis of the output back to the input, the con-
tiguous pixel computation threads are grouped into the same
thread block to achieve a long line of results; and multi-
ple thread blocks are horizontally assigned. A thread block
is then divided into multiple warps, as shown in Fig. 5(a),
where 128 threads are divided into four warps. In the case
of a 11-pixel patch size, a warp contains nearly three of the
11-pixel groups (11+11+10 pixels) that have to load the data
from three micro-images per load instruction execution (See
arrows labeled warp 0 and warp 1). Thus, each loading
is split into three separated memory request (white-blocks
numbered 0), which do not efficiently use the cache line at
either 128 bytes of the default L2 cache line or 32 bytes of
the read-only/texture memory. Although the following load
instruction (white-blocks numbered 1,2,3) or load instruc-
tions from other warps (numbered patterned-blocks) can use
the excess loaded data, the number of memory transactions
remains high.

Therefore, we proposed an optimization implementa-
tion method by assigning the thread block on the basis of the
input to the output (Fig. 5(b)). In the same case of 11-pixel
patch size, the corresponding micro-images are at the range
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a) Memory access pattern of the original implementation
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b) Memory access pattern of the proposed optimization

Fig.5 Comparison of original implementation (a) and proposed opti-
mization implementation (b).

limit of 2, which produces a total of 11 x 5 = 55 pixels per
row. By assigning a pixel computation per thread, a thread
block is 55 threads wide. Each thread block is assigned to
a group of specific rows of input and a range of horizontal
processing micro-image width. The multiple thread block
can be assigned to another row of the same micro-image for
vertical parallelism or assigned to the same row but to a dif-
ferent micro-image for horizontal parallelism. The white,
gray, and dark-gray blocks in the Input figure show the spe-
cific rows for thread blocks 1,2,3 in the Output figure.

A thread block loads a line of 55 pixels from each ver-
tical corresponding micro-image (blocks numbered 0,1) and
progresses to the next horizontal micro-image (blocks num-
bered 5,6). Since the corresponding pixels remain scattered
on the horizontal corresponding micro-images, each step of
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Micro-image =

75x75 pixels , gap between two iterations = 2.5 pixelx
P 14-pixel iteration = 70x70 pixels
e

tb_0

w\/ tb_n = row of pixels loaded by thread block n

Traversing from large (14-pixel) to small (7-pixel) patch sizes

Fig.6  Data reusability in depth extraction optimization implementa-
tions.

the horizontal progression does not gather all of the essential
information for all of the threads. Therefore, a thread block
manipulates the loaded pixels and stores them in the local
memory as a buffer or writes back if all data from the cor-
responding pixels are accumulated as a short line of results.
This method ensures that a line of pixels is always loaded
by a coalescing loading.

For depth extraction, the loaded data has both spa-
tial locality from the redundant read when conducting the
small patch size iteration (Fig. 2(b)) and the temporal local-
ity among the thread blocks as shown in Fig. 6. Traversing
patch size to find the least SAD value generates the multiple
iterations. The 14-pixel iteration with corresponding micro-
images at a range limit of 2 covers the area of (14x5)x(14x5)
pixels, which includes the (13x5)x(13x5) area used by the
13-pixel iteration and give an 86% chance of reusability.
Since the gap between two areas used by these iterations
is 2.5 pixels, the rows of pixels accessed by thread blocks
2,3,4 at the iteration of the 14-pixel patch size will be ac-
cessed and reused by thread blocks 0,1,2 in the next iteration
of the 13-pixel patch size. However, the original algorithm
traverses the patch size at the outermost loop; therefore, the
loaded cache line is expected to have already been replaced
before it is reused. In our method, we iterated the travers-
ing from large to small patch size before progressing to the
next vertical corresponding micro-images. Thus, the pixels
used in the next patch size iteration are expected to have
already been loaded by the previous iteration of the other
thread block.

4.2 Local Memory Management Scheme

Due to the major role of the local memory in each thread
block, we proposed two memory management schemes for
our optimization as shown in Fig.7. The threads are clas-
sified into five groups (t0,t1,.. . ,t4) based on their thread ID
and patch size.

The thread synchronization scheme (Sync.) (Fig.7(a))
uses shared memory to store the temporal values. Each
thread loads the fixed relative pixel location (0,1,..,4) based
on its own group. The loaded data are manipulated and
stored in the shared memory as partial results, and then the
target shared memory pointers are shifted left for the next
horizontal progression (micro-image 2). The fifth thread
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Fig.7  Proposed local memory management schemes.

group (t4), which loads the pixel from the right-most pixel
location, writes back the result and flushes the target shared
memory (square block). While t4 is writing the result, the
other thread groups are held by the synchronization to avoid
a race condition in the shared memory. However, this spec-
ified write-back thread group (t4) makes a warp divergence
that forces the GPU to serialize the instruction stream, and
the synchronization point delays the other threads.

To reduce these problems, we proposed another opti-
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mization scheme without thread synchronization (NoSync.)
(Fig.7(b)). This scheme allows all the threads to write back
the results at the same time without warp divergence or syn-
chronization. In contrast with Sync., NoSync. threads do
not shift the target local memory; instead they shift the rel-
ative loading pixel locations. Thus, each thread has its own
privileged local memory, which can be implemented by ei-
ther register or shared memory. To simultaneously con-
duct writing back from all the threads, we doubled the lo-
cal memory in order to buffer the finished value. At micro-
image 1, t4 loads the data from location 4 that fulfill the
block, and then it changes the target local memory to an-
other location but still retains its privileged. At micro-image
2, all groups shift the pixel loading location, where t4 loads
data from location 0 and stores them in the empty local
memory. When micro-image 6 is reached, tl - t4 have al-
ready changed the target local memory, and only tO still
stores the result on the left side of the local memory. Finally,
at Micro-image 7, all the groups have changed the target lo-
cal memory. They simultaneously store the values and write
back the buffered values that have already been completed.

The NoSync. implementation has high register pres-
sure due to the doubled local memory size and more pro-
gram control flow registers. Therefore, we implemented
the local memory by shared memory instead of registers to
alleviate this pressure. We evaluated both the default and
read-only/texture memory accesses, and both methods are
allocated with pitch value for the best access latency in the
row order. The memory pointers in the default memory ac-
cess are decorated with the __restrict__ keyword to let the
compiler reduce the sub-instructions without concern for the
data dependency and also to let it enable the direct access to
read-only memory for capable devices. However, this opti-
mization costs more registers per thread, which affects the
device occupancy. To increase the parallelism, we increased
the horizontal dimension of thread blocks by shortening the
range of the micro-images of each thread. However, each
non-zero thread block has to collect the corresponding data
from the four corresponding micro-images to the left before
it reads the data from its initial micro-image. These different
execution paths among the thread-blocks are written sepa-
rately on the source file to reduce the thread divergence and
the unessential conditional instruction. We found that syn-
chronizing all the threads after the initialization phase also
significantly improved the performance.

5. Evaluation

To evaluate our proposed optimization, we configured both
the original and our proposed implementations at the most
optimal configurations. For the original algorithm imple-
mentation, we made a configuration space exploration to
find the most optimal configuration for each GPU device.
For the proposed optimization implementation, we manu-
ally tuned the performance, especially at the register, at the
shared memory and at the loop unrolling.

The compiler and environmental setup are provided in
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Table 1. We used the cudaEvent library to measure the ex-
ecution times by acquiring the times before and after the
kernel call. The data transaction time from the host to the
device and vice-versa was not included. We also invoked
a dummy kernel to mask an initialization delay of the ref-
erence API before starting the cudaEvent, and then we re-
peated the kernel and averaged the execution times.

We used two sample applications included in CUDA
SDK[19] to measure the reference values of memory band-
width on each GPU device. The bandwidthTest application
measures the peak value (100%), and the transpose appli-
cation provides a read-then-write only kernel value (Simple
copy) and the value of the most optimized matrix transpose
kernel (Matrix transpose).

5.1 Different Setup Configuration of Several GPU Devices

We evaluated the performance improvement on the GPU de-
vices from both Maxwell [20] and Kepler architectures as
described in Table 2. GTX-650Ti-boost and GTX-670 can
use the registers up to 63 registers per thread. Tegra-K1 is a
mobile system-on-chip, which includes a GPU and a CPU.
The GPU shares the same memory space with CPU and has
fewer texture addressing units.

GTX-980 is a Maxwell architecture GPU that provides
dedicated 96-KB shared memory, simpler warp schedulers
and increased number of active blocks per SM. However,
the unified memory for the L1 cache and read-only/texture
memory is halved to 24 KB. These adjustments were de-
signed to increase the computation throughput that had not
been balanced with the high memory bandwidth in the Ke-
pler architecture.

The configurations for the original implementation are
described in Table 4. The thread-block width of Kepler
GPUs are optimal at not more than 128 threads with 32
registers per thread, but Maxwell GPU (GTX-980) could
improve the performance up to 320 threads with rendering.
The vectorized results (ResVect) are not significant for such
relatively high ratio of computation per memory throughput
devices as GTX-980 and Tegra-K1. Replacing the division
by multiplication (DivAsMul) improved the rendering per-
formance in all the desktop Kepler GPU devices. The syn-
chronization at the end of the loop technique (SyncAtEnd)
can be applied, but, due to the short life-span of a thread,
this did not significantly impact the performance.

The configurations of the proposed implementations
for rendering and depth extraction applications are de-
scribed in Table 5 and Table 6, respectively. The block
width and grid size correspond to the patch size and the
output resolution of the applications (Table 3). The range
of the micro-images indicates the number of micro-images
that are horizontally traversed by each thread. Texture unit
is used in some rendering implementations to replicate the
direct access to read-only memory and in some depth extrac-
tion implementations to alleviate the separated access of the
large patch size iteration (14 pixels), which is larger than
the output patch size (11 pixels). The configurations be-
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Table1  Compiler and environmental setup

Parameters Description

CUDA library version CUDA Toolkit 7.5 and 6.5 (Tegra-K1)
Compilation option -arch=sm_{30,32,35,52} -rdc true
Option for n register limitation | -Xptxas -v —_maxrregcount n

Host operation system Centos 6 64-bit, Linux For Tegra R21.4

GCC library version GCC 4.4.7 and 4.8.4 (Tegra-K1)

Table 2  Specification of evaluated GPU devices
Devices GTX | GTX | Tegra | GTX | GTX
670 | 650'| K1 | 780 | 980
Stream multiprocessor (SM) 7 4 1 12 16
Core counts 1344 | 768 192 | 2304 | 2048
Core frequency (MHz) 1058 | 1098 | 852 902 | 1253
L2 cache size (KB) 512 | 384 128 | 1536 | 2048
Memory bus (bit) 256 | 192 64 384 | 256
Memory frequency (MHz) 3004 | 3004 | 924 | 3004 | 3505
Compute compatibility 3.0 32 3.5 5.2
32-bit registers per thread 63 255
Read-only memory per SM (KB) 48 24
Shared memory per SM (KB) 64 (shared with L1) 96
Warp schedulers : cores ratios 4:192 1:32
Active block per SM 16 32
! GTX-650Ti-boost
Table 3  Parameters of light-field application

Parameters Description

Micro-image (ML1.) size (pixel) 74.75

Patch size (pixel) 11

Range corresponding mirco-image limit 2

Patch size traversing range for depth extraction | 8 (7 - 14)

Micro-image count (width x height) 96 x 72

Output resolution (pixel x pixel) 1056 x 792

Table4  Configuration of original implementation
Application Rendering Depth extractaion
GPU device’l M9 [ G8 [ G7 [ G6 | TK [ M9 | G8 [ G7 [ G6 [ TK
Block width | 320 | 128 | 128 | 128 [ 160 | 64 | 128 | 96 | 96 | 96
ResVect vIVvI]Y VI VvV
SyncAtEnd | v v VIVIVIV v
DivasMul v I Vv ]V n/a

Table 5  Configuration of proposed rendering implementation

Sync. NoSync.

GPU device? | M9 [G8]G7[G6 [TK | M9 [G8[G7[G6 [ TK
Block size 55x1 55x2 55x1
Grid size 1x792 2x396 2x792
Range ML 96 50 50
Register limit [ x 48 40 x [60] 48
Texture unit X v X
ResVect X v X v
L1/Shared -/96 16/48 -/96 16/48
Unrolling low max

Table 6  Configuration of proposed depth extraction implementation

Sync. NoSync.
GPU device? | M9 [GB [G7 [G6 [ TK [ M9 [G8[G7[G6 [ TK
Block size 55x1 55x1
Grid size 2x792 2x792
Range MI. 50
Register limit | 48 | 64 | 63 80 [ 63 [o4
Texture unit X v x| vV
ResVect X [ Y v
L1/Shared -/96 | 48/16 -/96 16/48
Unrolling low low specific [ low
SAD type int | short int short

2 M9=GTX-980, G8=GTX-780, G7=GTX-670, G6=GTX-650Ti-boost, TK=Tegra-
K1
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tween the L1 cache and the shared memory of GTX-980 are
unnecessary, given to the fixed-size dedicated shared mem-
ory. Kepler GPUs are configured differently because the L1
cache space is also used for the register spilling that fre-
quently occurs when we limit the register per thread to in-
crease the occupancy. The vectorized result is configured for
better results, but it did not show a clear relation to the GPU
specifications. The register limit configurations were mostly
conducted on the Kepler GPUs, not the Maxwell GPU, due
to the high cost of register spilling that was previously found
in [21]. We also shortened the SAD variable type to 16 bits
to reduce the shared memory pressure in Kepler GPUs. The
unroll value indicates the loop unrolling, where we found
that Sync. scheme is optimal only with the most inner loop
unrolled, due to the increasing cost of the synchronization
overhead. Since the synchronization occurs less in NoSync.
scheme, it is capable of high unrolling, which increases the
concurrent memory loading and omits the costly warp diver-
gence caused by the loop control flow instructions. Specific
unrolling of the pre-initialization phase loop significantly
improved the performance on some Kepler GPUs. We also
attempted to reuse the accumulated weight data and replace
the division instruction in rendering. However, the perfor-
mance was reduced due to the increased bank conflict when
flushing the shared memory.

We investigated the problem of shared memory bank
conflict, especially for the rendering optimizations where
the RGB data (and the accumulated weight value as the
fourth channel) could be declared as four structures of an
array (SoA: int [4][55]) or an array of a structure (AoS: int4
[55]). Since the weight value multiplies each color channel
separately, the SoA version did achieve lower bank conflict
and less average transactions per request. However, the AoS
version achieved better performance, due to the compiler
optimizing the four 32-bit load/store instructions to a sin-
gle 128-bit load/store instruction (LDS.128 and STS.128),
which reduces the total shared memory request. Addition-
ally, since all 32 threads in a warp access the shared mem-
ory by the 128-bit memory load instruction, all 32 banks
of shared memory are fully utilized by the load instruction
from 8 threads per access.

5.2 Result and Discussion

Table 7 and Table 8 show the statistic information of ren-
dering and depth extraction implementations, respectively.
Our optimization conceals the memory’s latency by keep-
ing the memory manipulation near to the computation unit
as is shown by the reduced memory dependency stall and
increased execution dependency stall. The global store effi-
ciency is also increased due to the improved input data flow.
However, more complex implementations require more reg-
isters, reducing thus the occupancy and the active threads,
and further reduce the IPC, as discussed by [22]. We do
not include the global memory load efficiency and the ex-
ecuted and issued load/store instructions information, be-
cause these metrics do not measure the memory transactions
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Table 7  Statistic information of Rendering application optimization.
Devices GTX-980 GTX-780 GTX-670 GTX-650Ti-boost Tegra
Implementation Base | Sync | NoSy || Base | Sync | NoSy (| Base | Sync | NoSy || Base | Sync | NoSy || Base | Sync | NoSy
Execution dependency stall || 19% | 17% | 12% || 20% | 23% | 27% - - - - - - 26% | 15% | 21%
Memory dependency stall 70% | 51% | 71% || 46% | 16% | 9% - - - - - - 28% | 17% 1%
Synchronization stall 0% | 15% 1% 0% | 17% | 3% - - - - - - 0% | 23% | 4%
Achieved occupancy 89% | 51% | 52% || 96% | 70% | 46% || 95% | 72% | 48% || 95% | 73% | 48% || 60% | 74% | 32%
IPC 238 | 2.31 | 2.03 333 | 2.86 | 2.65 || 3.10 | 2.73 | 2.39 || 3.35 | 2.80 | 2.63 || 3.52 | 2.87 | 2.05
Global store efficiency 33% | 18% | 25% || 38% | 61% | 80% || 33% | 61% | 25% || 38% | 61% | 80% || 33% | 15% | 25%
\, throughput (GB/s) 11.7 | 209 | 149 || 8.67 | 7.84 | 7.05 || 5.77 | 470 | 7.96 1.00 | 1.31 | 1.82 || 0.09 | 0.41 | 043
\ transactions (10%) 235 | 442 | 318 523 | 100 | 56.2 118 | 100 149 523 | 100 | 56.2 118 | 399 | 79.2
DRAM read (GB/s) 142 | 138 139 119 | 141 161 71.1 | 82.0 | 783 || 47.3 | 49.1 | 495 - - -
| transactions (10®) 289 | 292 | 298 || 2.88 | 3.07 | 3.00 || 290 | 2.98 | 3.12 | 2.89 | 299 | 3.09 - - -
L2 cache hit rate 28% | T% 10% || 38% | 15% | 17%' || 35% | 10% | 14% || 34% | 9% 15% - - -
\ throughput (GB/s) 197 | 147 156 193 | 166 | 194 109 | 90.8 | 90.8 || 71.6 | 54.2 | 58.1 1.65 | 1.98 -
\ transactions (10°) 399 | 311 | 332 || 466 | 3.62 | 3.62 || 442 | 330 | 3.62 || 437 | 3.30 | 3.62 || 422 | 3.32 -
Texture cache hit rate 73% | 51% | 52% || 70% | 54% | 53% || 70% | 55% - 70% | 55% - 2% | 58% -
N\ throughput (GB/s) 518 | 145 148 442 | 259 | 295 257 | 155 - 171 | 92.8 - 4.08 | 3.36 -
“\ transactions (10°) 104 | 3.07 | 3.15 10.7 | 5.65 | 5.49 10.5 | 5.65 - 10.5 | 5.65 - 10.5 | 5.65 -
Table 8  Statistic information of Depth extraction application optimization.
Devices GTX-980 GTX-780 GTX-670 GTX-650Ti-boost Tegra
Implementation Base | Sync | NoSy || Base | Sync | NoSy || Base | Sync | NoSy || Base | Sync | NoSy || Base | Sync | NoSy
Execution dependency stall || 33% | 18% | 28% || 23% | 20% | 22% - - - - - - - - -
Memory dependency stall 53% | 65% | 14% || 35% | 11% | 20% - - - - - - - - -
Synchronization stall 0% 3% 1% 1% 7% 1% - - - - - - - - -
Achieved occupancy 74% | 60% | 36% || 74% | 49% | 33% || 75% | 49% | 42% || 74% | 50% | 42% || 73% | 50% | 43%
IPC 315 | 2.18 | 3.14 || 279 | 2.08 | 1.40 || 2.61 | 1.73 | 1.02 || 2.68 | 1.69 | 1.03 || 2.06 | 2.64 | 1.98
Global store efficiency 33% | 61% | 80% || 38% | 61% | 80% || 38% | 61% | 80% || 38% | 61% | 80% || 33% | 61% | 80%
\ throughput (GB/s) 1.33 | 1.00 | 0.90 || 0.67 | 1.05 | 0.60 || 0.44 | 0.65 | 0.31 0.26 | 0.37 | 0.18 || 0.01 | 0.01 | 0.004
“\ transactions (10°) 235 | 171 131 523 | 100 | 56.2 || 523 | 100 | 56.2 || 52.3 | 100 | 56.2 118 | 100 | 56.2
DRAM read (GB/s) 758 | 773 | 68.8 || 31.6 | 62.42| 74.9 || 359 | 36.8 | 44.5 || 20.0 [ 282 | 27.1 - - -
| transactions (10®) 134 | 13.6 | 104 10.0 | 102 | 169 17.5 | 9.86*| 19.5 164 | 133 | 20.2 - - -
L2 cache hit rate 79% | 61% | 64% || 83% | 69% | 51% || 2% | 62% | 47% || 73% | 48% | 41% - - -
\, throughput (GB/s) 366 | 199 187 184 | 165 131 128 | 95.0 | 83.6 || 75.0 | 53.6 | 469 || 293 | 1.32 | 1.0l
\\ transactions (10®) 64.6 | 348 | 28.1 586 | 27.0 | 29.6 || 622 | 255 | 36.7 || 61.4 | 252 | 35.0 || 64.0 - -
Texture cache hit rate 49% | 56% | 57% || 54% | 62% | 59% || 51% | 63% | 58% || 51% | 63% | 60% || 50% - -
N\, throughput (GB/s) 455 | 220 192 253 | 315 224 165 89 36 98 111 | 81.0 || 3.65 | 2.64 | 2.01
\ transactions (10°) 80.3 | 38.6 | 289 || 80.3 | 51.5 | 50.5 || 80.3 | 50.8 | 60.0 || 80.3 | 52.3 | 60.4 || 80.3 - -

- : The information is not available or correctly reported by NVIDIA Profiler.
! The higher throughput although with the lower L2 cache hit rate, mentioned in Sect. 5.2, paragraph 1.
2 The increased memory bandwidth or decreased number of memory transactions, mentioned in Sect. 5.2, paragraph 5.

via read-only/texture memory in Kepler GPUs [23]. Some
metrics are not available on some devices or are not reported
correctly, especially by Tegra-K1.

Figure 8 shows the effective DRAM bandwidth of our
implementations compared to the peak memory bandwidth
of each GPU device. The increased computation throughput
architecture on GTX-980 achieves better memory latency
concealment. This is shown by fully utilizing memory band-
width in Simple copy and comparing this to other Kepler
GPUs, which struggle at less than 75%. For rendering, we
achieved, in general, a memory bandwidth equal to or higher
than the original implementation. Especially, on GTX-780,
with NoSync scheme, we increased the bandwidth beyond
Matrix transpose and to the level of Simple copy. The depth
extraction application is much more computation-intensive
than the rendering and therefore requires a high computa-
tion throughput to obscure the memory latency and increase
memory bandwidth utilization, as shown by the result from
GTX-980.

Figure 9 shows the relative number of memory trans-
actions of our optimizations compared to the original im-
plementations. Our proposed coalesced memory access pat-
tern reduced the number of transactions at read-only/texture
memory and, in consequence, at the L2 cache. The L2 cache
hit rates are lower because a cache line is expected to be
used only once after being loaded. This is also applies to
the read-only/texture memory hit rates on rendering imple-
mentations. However, the lower L2 cache hit rates do not
always imply a lower throughput, if the DRAM throughput
is significantly increased, as it is in the rendering optimiza-
tion of GTX-780 with NoSync. scheme (see Table 7). The
data reusability in depth extraction optimizations increased
read-only/texture memory hit rates and reduced the number
of L2 cache transactions, for example, in the GTX-980 with
NoSync. scheme and GTX-780 with Sync. scheme. The
performance improvement of our optimizations is the prod-
uct of increased DRAM bandwidth and decreased number
of DRAM transactions.
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Fig.11  Optimization result of depth extraction application.

Figure 10 shows the performance improvement of the
rendering application. For GTX-980, although we suc-
ceeded in reducing the numbers of transactions at both read-
only/texture memory and L2 cache, the performance was
still throttled by the DRAM memory bandwidth. This in-
dicates that a latency-hiding by parallelism in the original
implementation performed better than our latency-hiding by
caching (local memory buffering) for a high computation
per memory throughput unit such as GTX-980, as discussed
by [22], [24]. With the increased DRAM bandwidth, GTX-
780 with NoSync. scheme increased the performance by
30% and outperformed GTX-980. However, GTX-670 and
GTX-650Ti-boost performed better with Sync. scheme due
to the limitation of the direct access to the read-only mem-
ory, which is cannot be fully replicated by the texture unit
function. Although, the memory can be accessed via the
texture unit [7], we found a performance difference between
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both memory unit function on both GTX-780 and GTX-980.

Figure 11 shows the performance improvement of the
depth extraction application. Relocating the patch size
traversing loop to the innermost iteration to enable reusing
significantly increased the performance, as shown by the
82% performance improvement on GTX-780 and 18% im-
provement on GTX-980. The NoSync. scheme worked well
with GTX-980 but not with Kepler GPUs, where it got the
higher numbers of L2 cache transactions than Sync. scheme,
which further increased the number of DRAM transactions.
Thus, Kepler GPUs preferred Sync. scheme to improve
the performance of both read-only/texture memory and L2
cache and to either increase the DRAM bandwidth or de-
crease the number of DRAM transactions.

The Tegra K1, unlike the other Kepler GPUs, did not
increase the performance of rendering application by using
Sync. scheme. This was because Tegra K1 had a significant
high synchronization stall problem that reduced the perfor-
mance to below that of the original implementation. For
depth extraction optimization, with limited reported infor-
mation, we could only conclude that the performance degra-
dation was caused by the lower occupancy and drastically
decreased L2 cache throughput. Moreover, our proposed
method has a thread-block size that is not a multiple of the
warp size. This caused ineffective usage of a single SM and
reduced the overall performance.

According to our results, determining the most opti-
mal configuration and optimization technique for particular
applications and GPU devices requires an empirical evalua-
tion, especially to find the balance among loop unrolling,
register control, and L1 cache/shared memory configura-
tion. We encourage other developers to consider unusual
methods for example, implicitly replacing the less frequent
access register variable with shared memory to reduce the
register pressure and increases both occupancy and concur-
rent memory access. Also, implicitly using the 32-bit float-
ing variable, instead of the integer variable, can reduce the
computation latency on some GPUs.

The coordination geometry of the micro-images and
their intra pixels can be represented as a 4-dimensional (4D)
data. Thus, our proposed optimization method can be ap-
plied in the other applications that utilize the 4D data, such
as Lattice Quantum Chromodynamics [25].

6. Conclusion

Light-field image processing is a fundamental computation
for such approaching applications as re-focusable cameras
or the depth of object-based applications. GPU devices are
accelerating such computations. However, due to the sparse
memory access pattern of the applications, the straightfor-
ward implementation of the original state-of-the-art algo-
rithm did not fully utilize the GPU device. Therefore, we an-
alyzed the details of memory access patterns and proposed
an optimization method that improves both the computation
and the memory access patterns. The proposed optimization
fully exploited the benefits of the SIMT mechanism in GPU
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devices, effectively utilized all of the available resources,
and increased the data reusability in the depth extraction
application. We proposed two local memory management
schemes, a synchronized scheme (Sync.) which uses less
register, and a non-synchronized (NoSync.) scheme which
uses more register. To evaluate our proposed method, we
first explored the most optimal optimization and configu-
ration for both the original and the optimized implementa-
tion based on the several evaluated GPU devices. Compared
with the original implementations, our NoSync. scheme im-
proved the rendering performance of GTX-780 by 30% and
the depth extraction of GTX-980 by 18%. Sync. scheme
improved the depth extraction performance of GTX-780 by
82%.
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