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PAPER

A Bayesian Approach to Image Recognition Based on Separable
Lattice Hidden Markov Models

Kei SAWADA†a), Student Member, Akira TAMAMORI†b), Member, Kei HASHIMOTO†c), Nonmember,
Yoshihiko NANKAKU†d), and Keiichi TOKUDA†e), Members

SUMMARY This paper proposes a Bayesian approach to image recog-
nition based on separable lattice hidden Markov models (SL-HMMs). The
geometric variations of the object to be recognized, e.g., size, location,
and rotation, are an essential problem in image recognition. SL-HMMs,
which have been proposed to reduce the effect of geometric variations, can
perform elastic matching both horizontally and vertically. This makes it
possible to model not only invariances to the size and location of the object
but also nonlinear warping in both dimensions. The maximum likelihood
(ML) method has been used in training SL-HMMs. However, in some im-
age recognition tasks, it is difficult to acquire sufficient training data, and
the ML method suffers from the over-fitting problem when there is insuffi-
cient training data. This study aims to accurately estimate SL-HMMs using
the maximum a posteriori (MAP) and variational Bayesian (VB) methods.
The MAP and VB methods can utilize prior distributions representing use-
ful prior information, and the VB method is expected to obtain high gen-
eralization ability by marginalization of model parameters. Furthermore,
to overcome the local maximum problem in the MAP and VB methods,
the deterministic annealing expectation maximization algorithm is applied
for training SL-HMMs. Face recognition experiments performed on the
XM2VTS database indicated that the proposed method offers significantly
improved image recognition performance. Additionally, comparative ex-
periment results showed that the proposed method was more robust to geo-
metric variations than convolutional neural networks.
key words: image recognition, hidden Markov models, separable lattice
hidden Markov models, Bayesian approach, deterministic annealing

1. Introduction

Image recognition is a technique for identifying objects in
an image. Typical applications include biometrics authen-
tication, e.g., fingerprint and face, optical character recog-
nition (OCR), and video recognition. Statistical approaches
have been successfully applied in the field of image recog-
nition. In particular, principal component analysis (PCA)
based approaches, such as the eigenface method [1] and the
subspace method [2], attain good recognition performance.
For conventional statistical approaches, however, it is nor-
mal to apply a pre-processing method for normalizing im-
age variations, e.g., geometric variations such as size, loca-
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tion, and rotation. This is because many classifiers cannot
deal with such image variations. The accuracy of these nor-
malization processes affects recognition performance. Task-
dependent normalization techniques have thus been devel-
oped for each image recognition task. However, the final
objective of image recognition is not to accurately normal-
ize image variations for human perception but to achieve
high recognition performance. It is therefore a good idea
to integrate the normalization processes into classifiers and
optimize them on the basis of a consistent criterion.

Geometric variations of an object to be recognized are
an essential problem in image recognition. Therefore, much
research work has been conducted on this problem. Scale-
invariant feature transform (SIFT) [3] and histograms of ori-
ented gradients (HOG) [4] have been proposed to detect and
describe local features that are invariant to local geomet-
ric variation. Unfortunately, these methods cannot grasp
global information. In recent years, convolutional neural
network (CNN) based techniques have achieved significant
improvements [5], [6]. In addition to the structure of the
standard feed-forward neural networks as classifiers, CNNs
have geometric invariants based on multiple convolutional
and pooling layers. However, since pooling is independently
performed in each local window, it is difficult to represent
global geometric transforms over an entire image. Another
way to address geometric variations is using hidden Markov
models (HMMs) [7], [8]. Geometric matching between in-
put images and model parameters is represented by discrete
hidden variables and the normalization process is included
in the calculation of probabilities. However, the extension
of HMMs to two dimensions for two-dimensional data gen-
erally leads to an exponential increase in the amount of
computation needed for training. To overcome this prob-
lem, several low computational complexity models have
been proposed [9]–[15]. Among them, separable lattice
HMMs (SL-HMMs) have been proposed to reduce compu-
tational complexity while retaining outstanding properties
that model two-dimensional data [15]. SL-HMMs can per-
form an elastic matching in both the horizontal and vertical
directions, which makes it possible to model not only invari-
ances to the size and location of an object but also nonlin-
ear warping in both dimensions. One of advantages of SL-
HMMs against CNNs is explicit modeling of generative pro-
cess which can represent geometric variations over an entire
image. Furthermore, some extensions to structures repre-
senting typical geometric variations which are seen in many
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image recognition tasks have already been proposed, e.g.,
a structure for rotational variations [16], a structure with
multiple horizontal and vertical Markov chains [17], explicit
state duration modeling [18], trajectory modeling [19], and
integration SL-HMMs and factor analyzers [20]. By select-
ing an appropriate model structures reflecting data genera-
tion process for a target task, human knowledge can effec-
tively be utilized as prior information and this makes it pos-
sible to construct classifiers with a small amount of training
data. It is also an interesting property of SL-HMMs that var-
ious size images can directly be used as inputs without size
normalization.

In some image recognition tasks, only a small amount
of training data is available and so efforts to achieve high
generalization ability are required. The maximum likeli-
hood (ML) criterion has typically been used in image recog-
nition using SL-HMMs. However, although SL-HMMs can
be trained from a relatively small amount of training data,
since the ML criterion produces a point estimate of model
parameters, the estimation accuracy may be degraded due
to the over-fitting problem when there is insufficient train-
ing data. In this study, we focus on estimating SL-HMMs
with high generalization ability by using the Bayesian cri-
terion. The Bayesian criterion assumes that model param-
eters are random variables, and high generalization abil-
ity can be obtained by marginalizing all model parame-
ters in estimating predictive distributions. Moreover, the
Bayesian criterion can utilize prior distributions represent-
ing useful prior information on model parameters. There-
fore, the Bayesian criterion has higher generalization abil-
ity than the ML criterion when there is insufficient train-
ing data. However, the Bayesian criterion requires compli-
cated integral and expectation computations to obtain pos-
terior distributions when models have hidden variables. To
overcome this problem, the maximum a posteriori (MAP)
method [21] and the variational Bayesian (VB) method [22]
have been proposed as approximation methods. We applied
the MAP and VB methods to image recognition based on
SL-HMMs, and obtained significantly better performance
than the ML method [23]. The additional contributions of
this paper are 1) further evaluation of SL-HMMs based on
the MAP and VB methods, 2) improvement of the training
algorithm by applying the deterministic annealing expec-
tation maximization (DAEM) algorithm [24], [25], and 3)
comparison with CNN-based approaches in image recogni-
tion experiments. The DAEM algorithm can alleviate the
local maximum problem dependent on the initial parame-
ter. We show that the MAP and VB methods applying the
DAEM algorithm can improve the performance in image
recognition experiments. Additionally, comparative experi-
ments results show that the proposed method is more robust
to geometric variations than CNNs.

The rest of the paper is organized as follows. Sec-
tion 2 briefly explains the structure of SL-HMMs, and
Sect. 3 describes training criteria in the Bayesian statistics.
A training algorithm for SL-HMMs using the ML (conven-
tional) method is described in Sect. 4. In Sect. 5, we de-

rive Bayesian (proposed) approach for SL-HMMs. Sec-
tion 6 presents face recognition experiments we did on the
XM2VTS database [26] and we conclude the paper with a
summary of key points in Sect. 7.

2. Separable Lattice Hidden Markov Models

In the case that observations are two-dimensional data, e.g.,
pixel values of an image, observations are assumed to be
given on a two-dimensional lattice as:

o = {ot | t = (t(1), t(2)) ∈ T}, (1)

where T = {(1, 1), (1, 2), . . . , (1,T (2)), (2, 1), . . . , (t(1), t(2)),
. . . , (T (1),T (2))} denotes the two-dimensional image lat-
tice, t denotes the two-dimensional coordinate lattice,
t(m) is the coordinate of the m-th dimension, T (m) is
the maximum coordinate of the m-th dimension, and
m ∈ {1, 2} denotes dimension index. In two-dimensional
HMMs, observation ot is emitted from a state indi-
cated by hidden variable zt . The hidden variables
zt ∈ K can take one of K(1)K(2) states, which are as-
sumed to be arranged on a two-dimensional state lat-
tice K = {(1, 1), (1, 2), . . . , (1,K(2)), (2, 1), . . . , (K(1),K(2))},
where K(m) is the maximum state of the m-th dimension.
In other words, a set of hidden variables represents a seg-
mentation of observations into the K(1)K(2) states and each
state corresponds to a segmented region in which the obser-
vation vectors are assumed to be generated from the same
distribution. The number of possible state sequences in two-
dimensional HMMs is (K(1)K(2))T (1)T (2)

. Therefore, standard
two-dimensional HMMs demand high computational costs.

Separable lattice hidden Markov models (SL-HMMs)
have been proposed to reduce computational complex-
ity [15]. In SL-HMMs, to reduce the number of possible
state sequences, hidden variables are constrained to be com-
posed of two Markov chains as follows:

z= {z(1), z(2)}, (2)

z(m) = {z(m)
t(m) |1 ≤ t(m) ≤ T (m)}, (3)

where z(m) is the Markov chain along with the m-th coordi-
nate, and z(m)

t(m) ∈ {1, . . . ,K(m)}. The composite structure of
hidden variables in SL-HMMs is defined as the product of
hidden state sequences as:

zt = (z(1)
t(1) , z

(2)
t(2) ). (4)

This means that hidden state sequences are independent of
each dimension and the segmented regions of observations
are constrained to rectangles. That is, it allows an obser-
vation lattice to be elastic both horizontally and vertically.
Using this structure, the number of possible state sequences
can be reduced from (K(1)K(2))T (1)T (2)

to (K(1))T (1)
(K(2))T (2)

.
Figures 1 and 2 respectively show the graphical model

representation and the model structure of SL-HMMs in face
image modeling. The joint likelihood of observations o and
hidden variables z can be written as:
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Fig. 1 Graphical model representation of SL-HMMs. The rounded
boxes represent a group of variables, and the arrow to each box represents
the dependency in regard to all variables in the box instead of drawing ar-
rows to all the variables.

Fig. 2 Model structure of SL-HMMs in face image modeling.

P(o, z |Λ) =
2∏

m=1

[
P(z(m) |Λ)

]
P(o | z,Λ)

=

2∏
m=1

⎡⎢⎢⎢⎢⎢⎢⎣P(z(m)
1 |Λ)

T (m)∏
t(m)=2

P(z(m)
t(m) | z(m)

t(m)−1
,Λ)

⎤⎥⎥⎥⎥⎥⎥⎦
∏

t

P(ot | zt ,Λ), (5)

whereΛ is a set of model parameters. The model parameters
of SL-HMMs are summarized as follows:

Λ = {π(1),π(2), a(1), a(2), b}. (6)

1) π(m) = {π(m)
i |1 ≤ i ≤ K(m)}: an initial state probability

distribution. The probability of state i at t(m) = 1 is
represented by π(m)

i = P(z(m)
1 = i |Λ).

2) a(m) = {a(m)
i j |1 ≤ i, j ≤ K(m)}: a state transition prob-

ability matrix. The probability of moving from state i
to state j is represented by a(m)

i j = P(z(m)
t(m) = j | z(m)

t(m)−1
=

i,Λ).
3) b = {bk(ot) | k ∈ K}: an output probability distribution.

The probability of an observation ot being generated
from a state k is represented by bk(ot) = P(ot | zt =

k,Λ), where k denotes the two-dimensional state index
in the two-dimensional state lattice K. In this study, the
output probability distribution is assumed to be a single
Gaussian distribution P(ot | zt = k,Λ) = N(ot |μk,Σk),
where μk and Σk respectively denote the mean vector

and the diagonal covariance matrix in the state k.

In the application of image modeling, SL-HMMs can per-
form an elastic matching in both the horizontal and vertical
directions by assuming the transition probabilities with left-
to-right and top-to-bottom topologies, which makes it pos-
sible to model not only invariances to the size and location
of an object but also nonlinear warping in both dimensions.

3. Training Criterion

In Bayesian statistics, it is important to estimate high gen-
eralization ability from training data. This section explains
the estimation criteria of Bayesian statistics.

3.1 Maximum Likelihood Criterion

The maximum likelihood (ML) criterion has typically been
used to train statistical models. The optimal model param-
eters are estimated in the ML criterion by maximizing the
likelihood of training data P(o |Λ) as:

Λ(ML) = arg max
Λ

P(o |Λ). (7)

The predictive distribution of testing data x in the testing
stage is given by P(x |Λ(ML)). However, since the ML crite-
rion produces a point estimate of model parameters, the es-
timation accuracy may be decreased due to the over-fitting
problem when there is insufficient training data.

3.2 Maximum a Posteriori Criterion

The optimal model parameters in the maximum a posteriori
(MAP) criterion are estimated by maximizing the posterior
probability for given training data as:

Λ(MAP) = arg max
Λ

P(o |Λ)P(Λ), (8)

where P(Λ) is a prior distribution for model parameters Λ.
The MAP criterion can utilize prior distribution P(Λ), and
can be seen as an extension of the ML criterion. Testing in
the MAP criterion is conducted using predictive distribution
P(x |Λ(MAP)). However, it still suffers from the over-fitting
problem because of point estimates, when there is insuffi-
cient training data.

3.3 Bayesian Criterion

The predictive distribution of the Bayesian criterion is given
by:

P(x | o) =
∫

P(x |Λ)P(Λ | o)dΛ. (9)

Posterior distribution P(Λ | o) for a set of model parameters
Λ can be written with the Bayes theorem:

P(Λ | o) =
P(o |Λ)P(Λ)

P(o)
, (10)
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Table 1 Training criteria. The c denotes an object class index.

Criterion Training Testing

ML criterion Λ
(ML)
c = arg max

Λ
P(oc |Λ) c(ML) = arg max

c
P(x |Λ(ML)

c )

MAP criterion Λ
(MAP)
c = arg max

Λ
P(oc |Λ)P(Λ) c(MAP) = arg max

c
P(x |Λ(MAP)

c )

Bayesian criterion P(Λ | oc) =
P(oc |Λ)P(Λ)

P(oc)
c(Bayes) = arg max

c

∫
P(x |Λ)P(Λ | oc)dΛ

where P(o) is evidence. The model parameters are inte-
grated out in Eq. (9) so that the effect of over-fitting is mit-
igated. That is, the Bayesian criterion has higher general-
ization ability than the ML and MAP criteria when there is
insufficient training data. However, the Bayesian criterion
requires complicated integral and expectation computations
to obtain posterior distributions when models have hidden
variables. A Markov chain Monte Carlo (MCMC) [27] and
variational Bayesian (VB) [22] methods have been proposed
as approaches to approximation to overcome this problem.
The training criteria are summarized in Table 1.

4. SL-HMMs Using Maximum Likelihood Method

4.1 Expectation Maximization Algorithm

Since SL-HMMs have hidden variables z, it is difficult to
obtain an analytic solution to Eq. (7). The parameters of SL-
HMMs can be estimated via the expectation maximization
(EM) algorithm [28], which is an iterative procedure. This
procedure maximizes the expectation of the complete-data
log-likelihood so-called Q-function:

Q(Λ,Λ(old)) =
∑

z

P(z | o,Λ(old)) ln P(o, z |Λ), (11)

where Λ(old) denotes the current parameters. The likelihood
of the training data is guaranteed to increase by increasing
the value of the Q-function. The EM algorithm starts with
some initial model parameters Λ(old) and iterates between
the following two steps.

(E-step): compute Q(Λ,Λ(old))

(M-step): Λ(new) = arg max
Λ
Q(Λ,Λ(old))

The E-step computes the posterior probabilities of the hid-
den variables P(z | o,Λ(old)) while keeping model parame-
ters Λ(old) fixed to current values. Then, the Q-function is
computed by using P(z | o,Λ(old)). The M-step estimates
the re-estimation parameters Λ(new) by maximizing the Q-
function. These steps are iterated until convergence of the
log-likelihood by replacing Λ(old) ← Λ(new). By maximiz-
ing the Q-function with respect to model parameter Λ, the
re-estimation parameters Λ(new) in the M-step can be easily
derived. By contrast, the calculation of the posterior prob-
abilities P(z | o,Λ(old)) in the E-step is computationally in-
tractable due to the combination of hidden variables.

4.2 Variational Method

Variational methods have been used to approximate the ML

method in probabilistic graphical models with hidden vari-
ables [29]. An approximate posterior distribution is esti-
mated by maximizing the lower bound of the log-marginal
likelihood instead of the true log-likelihood. The lower
bound of the log-marginal likelihood F (ML) is defined by
using Jensen’s inequality as:

ln P(o |Λ)= ln
∑

z

Q(z)
P(o, z |Λ)

Q(z)

≥
∑

z

Q(z) ln
P(z |Λ)P(o | z,Λ)

Q(z)

�F (ML)(Q,Λ), (12)

where Q(z) is an arbitrary distribution. The difference be-
tween the true log-likelihood ln P(o |Λ) and the lower bound
F (ML) is given by the Kullback-Leibler (KL) divergence be-
tween the arbitrary distribution Q(z) and the true posterior
distribution P(z | o,Λ) as:

ln P(o |Λ) − F (ML)(Q,Λ) = KL[Q(z) ||P(z | o,Λ)], (13)

Since the true log-likelihood ln P(o |Λ) is independent of
Q(z), maximizing the lower bound F (ML) is equivalent to
minimizing the KL divergence. In other words, Q(z) can be
regarded as an approximation of true posterior distribution
P(z | o,Λ). The variational method iteratively maximizes
F (ML) with respect to Q(z) and Λ holding the other parame-
ters fixed.

(E-step): Q(new)(z) = arg max
Q(z)
F (ML)(Q(z),Λ(old))

(M-step): Λ(new) = arg max
Λ
F (ML)(Q(new)(z),Λ)

The E- and M-step are iterated until convergence of the
lower bound F (ML) is obtained by replacing Λ(old) ← Λ(new).

To reduce computational complexity, hidden variables
are assumed to be conditionally independent of one another,
i.e.,

Q(z) ≈ Q(z(1))Q(z(2)), (14)

where
∑

z(m) Q(z(m)) = 1, and Q(z(m)) is called variational
posterior distribution. In the E-step, the optimal variational
posterior distributions Q(z(m)) that maximize objective func-
tion F (ML) are given as:

Q(z(m))∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣
∑
z(m̄)

Q(z(m̄)) ln P(z(m) |Λ)P(o | z,Λ)

⎤⎥⎥⎥⎥⎥⎥⎦ , (15)

where m̄ represents the m̄-th dimension, which is an alterna-
tive to the m-th dimension. The details of E- and M-step are
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described in Appendix A.1.

5. Bayesian Approach for SL-HMMs

The ML method can efficiently estimate model parameters.
However, since the ML method produces a point estimate of
model parameters, the estimation accuracy may be degraded
due to the over-fitting problem when there is insufficient
data. In this paper, we propose the Bayesian approach for
the training of SL-HMMs. The Bayesian approach has two
advantageous properties for the training: using prior distri-
butions and marginalization of model parameters. There-
fore, the Bayesian approach can be expected higher gener-
alization ability than the ML method. The MAP method fo-
cus on using prior distributions. On the other hand, the VB
method has the advantageous properties of both using prior
distributions and marginalization of model parameters. The
training algorithms based on the MAP and VB method are
derived in this section.

5.1 Maximum a Posteriori Method

The MAP method is derived in the same way as the ML
method. The lower bound of the log-marginal likelihood
F (MAP) is defined by using Jensen’s inequality as:

ln P(o |Λ)P(Λ)= ln
∑

z

Q(z)
P(o, z |Λ)P(Λ)

Q(z)

≥
∑

z

Q(z) ln
P(z |Λ)P(o | z,Λ)P(Λ)

Q(z)

�F (MAP)(Q,Λ), (16)

The MAP method can be seen as an extension of the
ML method by using prior distributions P(Λ). The re-
estimation parameters using the MAP method are shown in
Appendix B.1.

5.1.1 Prior Distribution

The MAP and VB methods have an advantage in that they
can utilize prior distributions representing useful prior in-
formation on model parameters. Although arbitrary distri-
butions can be used as prior distributions, conjugate prior
distributions are widely used as prior distributions. A con-
jugate prior distribution is a distribution where the resulting
posterior distribution belongs to the same distribution family
as the prior distribution. The conjugate prior distributions of
an SL-HMM are defined as:

P(Λ)=
2∏

m=1

⎡⎢⎢⎢⎢⎢⎣D(π(m) |φ(m))
K(m)∏
i=1

D(a(m)
i |α(m)

i )

⎤⎥⎥⎥⎥⎥⎦
×

∏
k

N(μk |νk, ξ
−1
k Σk)W(Σ−1

k |ηk, Rk), (17)

where D(·) is a Dirichlet distribution and N(·)W(·) is a
Gauss-Wishart distribution. These distributions can be rep-
resented by a set of hyper-parameters {φ(1),φ(2),α(1)

i ,α
(2)
i ,

νk, ξk, ηk, Rk}.
Since the prior distributions of model parameters affect

the estimation of posterior distributions in the MAP and VB
methods, determining prior distributions is a serious prob-
lem in estimating appropriate models. We set the prior dis-
tribution as:

P(Λ) ∝ P(o(prior) |Λ)
1
τ , (18)

where o(prior) is data given in advance (we called this prior
data). We can control the degree of influence the prior distri-
bution has on the posterior distribution by adjusting tuning
parameter τ. The hyper-parameters based on prior data are
given as Appendix B.2.

5.2 Variational Bayesian Method

5.2.1 Posterior Distribution

An approximate posterior distribution is estimated in the
VB method by maximizing the lower bound of log-marginal
likelihood instead of the true likelihood. The lower bound of
log-marginal likelihood F (VB) is defined by using Jensen’s
inequality:

ln P(o)= ln
∑

z

∫
Q(z,Λ)

P(o, z,Λ)
Q(z,Λ)

dΛ

≥
∑

z

∫
Q(z,Λ) ln

P(z |Λ)P(o | z,Λ)P(Λ)
Q(z,Λ)

dΛ

�F (VB)(Q), (19)

where Q(z,Λ) is an arbitrary distribution. The relation
between the log-marginal likelihood and the lower bound
F (VB) is represented by using the KL divergence between
Q(z,Λ) and true posterior distribution P(z,Λ | o):

ln P(o) − F (VB)(Q) = KL[Q(z,Λ) ||P(z,Λ | o)]. (20)

Eq. (20) means that the arbitrary distribution Q(z,Λ) ap-
proximate true posterior distribution P(z,Λ | o).

To reduce computational complexity, random variables
are assumed to be conditionally independent of one another,
i.e.,

Q(z,Λ)≈Q(z(1))Q(z(2))Q(Λ), (21)

Q(Λ)≈
2∏

m=1

⎡⎢⎢⎢⎢⎢⎢⎣Q(π(m))
K(m)∏
i=1

Q(a(m)
i )

⎤⎥⎥⎥⎥⎥⎥⎦
∏

k

Q(bk), (22)

where
∑

z(m) Q(z(m)) = 1 and
∫

Q(Λ)dΛ = 1. Under
this assumption, the optimal variational posterior distribu-
tions Q(z(m)) and Q(Λ) that maximize the objective function
F (VB) are given as:

Q(z(m))

∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣
∑
z(m̄)

∫
Q(z(m̄))Q(Λ) ln P(z(m) |Λ)P(o | z,Λ)dΛ

⎤⎥⎥⎥⎥⎥⎥⎦ , (23)
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Fig. 3 Graphical model representation with model parameters of SL-
HMMs using the ML method. The dashed circles represent model param-
eters.

Q(Λ) ∝ P(Λ) exp

⎡⎢⎢⎢⎢⎢⎣
∑

z

Q(z) ln P(z |Λ)P(o | z,Λ)

⎤⎥⎥⎥⎥⎥⎦ , (24)

Since the approximate posterior distributions obtained, i.e.,
Q(z(m)) and Q(Λ), are dependent on each other, these up-
dates need to be iterated as with the EM algorithm.

(VB E-step): Q(new)(z) = arg max
Q(z)
F (VB)(Q(z)Q(old)(Λ))

(VB M-step): Q(new)(Λ) = arg max
Q(Λ)
F (VB)(Q(new)(z)Q(Λ))

The update equations increase the value of the objective
function F (VB) at each iteration until convergence by replac-
ing Q(old)(Λ)← Q(new)(Λ).

When conjugate prior distributions are used for prior
distributions, the posterior distributions are represented

by the same set of parameters {φ̂(1)
, φ̂

(2)
, α̂(1)

i , α̂
(2)
i , ν̂k, ξ̂k,

η̂k, R̂k}. Figures 3 and 4 show the graphical model repre-
sentation with model parameters of SL-HMMs. The details
of VB E- and M-step are described in Appendix C.1.

5.2.2 Predictive Distribution

Predictive distribution P(x | o) is estimated using Eq. (9) in
the testing stage of the VB method. Since Q(Λ) is an ap-
proximation of posterior distribution P(Λ | o), Q(Λ) can be
substituted for P(Λ | o) in Eq. (9). Although Eq. (9) includes
a complicated expectation calculation, the same approxima-
tion as that in training can be applied.

In image recognition based on SL-HMMs using VB
method, posterior distributions P(Λ | oc) are trained for each
class c, i.e., subject, separately. Then, the likelihood of test-
ing data x, which is calculated by the predictive distribution
P(x | oc), is compared among all subjects. The class c(Bayes)

which obtains the highest likelihood is chosen as the identi-
fication result.

5.3 Training Algorithm with Deterministic Annealing

An iterative procedure, such as an EM algorithm, suffers

Fig. 4 Graphical model representation with model parameters of SL-
HMMs using the VB method. The dashed rectangles represent hyper-
parameters.

from the local maximum problem dependent on the initial
parameter value. A deterministic annealing EM (DAEM)
algorithm has been proposed to overcome this problem [24],
[25]. We apply the DAEM algorithm to the training of SL-
HMMs using the MAP (see Appendix B.3) and VB meth-
ods.

5.3.1 Deterministic Annealing EM Algorithm

In this paper, instead of the simultaneous distribution
P(o, z,Λ), another distribution f (o, z,Λ) is defined by using
three temperature parameters as:

f (o, z,Λ) � Pβ1 (z |Λ)Pβ2 (o | z,Λ)Pβ3 (Λ), (25)

where β1, β2, and β3 are respectively a temperature parame-
ter of the initial and state transition probability distributions,
the output probability distributions, and the prior distribu-
tions. Instead of Eq. (19), a lower bound F (VBDA) is defined
by using Jensen’s inequality:

F (VBDA)(Q)

�
∑

z

∫
Q(z,Λ) ln

Pβ1 (z |Λ)Pβ2 (o | z,Λ)Pβ3 (Λ)
Q(z,Λ)

dΛ. (26)

Random variables are assumed to be conditionally in-
dependent of one another, which is the same as Eqs. (21) and
(22). The optimal variational posterior distributions Q(z(m))
and Q(Λ) that maximize the objective function F (VBDA) are
given by the variational method as:

Q(z(m)) ∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
z(m̄)

∫
Q(z(m̄))Q(Λ)

× ln Pβ1 (z(m) |Λ)Pβ2 (o | z,Λ)dΛ
}
, (27)

Q(Λ) ∝ Pβ3 (Λ) exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

z

Q(z) ln Pβ1 (z |Λ)Pβ2 (o | z,Λ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (28)
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Fig. 5 Examples of images for the experiments.

By applying the deterministic annealing, the temperature
parameters βl are attached to the original variational pos-
terior distributions, where l = 1, 2, 3 denotes the temper-
ature parameter index. In the deterministic annealing pro-
cess, the temperature parameters βl are gradually increased
from βl 	 0 to βl = 1. When βl 	 0, the variational pos-
terior distributions take a form with nearly uniform distri-
bution. While the temperature parameter is increasing, the
form of variational posterior distributions becomes close to
that of the original variational posterior distributions. Fi-
nally at βl = 1, the variational posterior distributions take
the form of the original variational posterior distributions,
and the reliable model parameters can be estimated without
the effect of the local maximum problem. The re-estimation
parameters are derived in Appendix C.2.

6. Experiments

6.1 Conditions

Face recognition experiments on the XM2VTS database [26]
were conducted to evaluate the effectiveness of the proposed
method. The experimental conditions are summarized in
Table 2. We prepared two datasets for these experiments.
Dataset1 did not include many size and location variations,
while Dataset2 did. The cropping image sizes and center
coordinates of cropping were randomly generated by Gaus-
sian distributions in Dataset2. Figure 5 shows some exam-
ples of images for the experiments.

In the prior distributions, we used all training samples
for all subjects as prior data in the research discussed. This
is the same idea as that in a universal background model
(UBM). We controlled the degree of influence the prior dis-
tribution by adjusting tuning parameter τ.

The temperature parameter βl(e) was updated by

βl(e) =
( e

E

)θl
, (29)

where e = 1, . . . , E denotes the number of iterations of tem-
perature updates. In these experiments, the number of tem-
perature parameter updates was set to E = 20 and the sched-
ule of temperature θl was varied to θl = 2ω(ω = −6, . . . , 6).
Figure 6 shows plots of the schedules of temperature θl.

Table 2 Experimental conditions.

Database XM2VTS [26]
Original image size 720 × 576

Dataset Dataset1 Dataset2
Cropping image size 550 × 550 480 × 480–720 × 720

Center coordinates of cropping (360, 288) (360 ± 80, 288 ± 20)
Subsampling image size 64 × 64, grayscale

Subject (class) 100
Training data 6, 4, 2 images per person
Testing data 2 images per person

ML-EM, ML-DAEM,
Method MAP-EM, MAP-DAEM,

VB-EM, VB-DAEM
HMM structure Left-to-right and top-to-bottom

without skip transitions
HMM state 16 × 16, 24 × 24, 32 × 32,

40 × 40, 48 × 48, 56 × 56
Prior distribution Universal background model

Tuning parameter τ 100, 500, 1000, 2000, 3000, 4000,
5000, 6000, 7000, 8000, 9000, 10000

Schedule of temperature θl 2−6, 2−4, 2−2, 2−1, 20, 21, 22, 24, 26

Fig. 6 Schedule of temperature θl.

The training recipe of VB-DAEM is summarized in Ta-
ble 3. Steps 1–2 are a setting of prior distributions, steps 3–4
are an initialization, and steps 5–9 are an iterative procedure.

We performed two convolutional neural network
(CNN)-based approaches [5], [6] (CNN and CaffeNet) in
order to compare with the proposed method. In CNN, a
CNN was trained by using the Caffe [30] based on each
Dataset1 and Dataset2. In CaffeNet, a pre-trained CNN
(CaffeNet) [6], [30], which was trained by using the Im-
ageNet Large Scale Visual Recognition Challenge 2012
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Table 3 Training recipe of VB-DAEM.

1. Train UBM from all training samples for all subjects with flat
hyper-parameters.

2. Set hyper-parameters Eqs. (A· 18)–(A· 23) from UBM by adjusting
tuning parameter τ.

3. Set Eqs. (A· 2)–(A· 3) to flat probabilities.
4. Compute Eqs. (A· 33)–(A· 38).
5. Update temperature parameters βl(e) Eq. (29).
6. (VB E-step): Update Eqs. (A· 29)–(A· 31) and Eqs. (A· 2)–(A· 3).
7. (VB M-step): Update Eqs. (A· 39)–(A· 44).
8. Go to step 6 until convergence of lower bound F (VBDA) Eq. (26).
9. Go to step 5 by adding 1 to e until e = E.

(ILSVRC2012) dataset [31], was used to extract image fea-
tures. The details of CNN approaches are as follows:

CNN: The architecture of the CNN was I(64, 1) −
C(128, 10, 1, 55) − P(3, 2, 27) − C(256, 5, 1, 23) −
P(3, 2, 11)−F(800)−F(600)−F(400)−O(100), where
I(i, d) indicates a input layer with d dimensional i × i
size image, C( f , w, s, o) indicates a convolutional layer
with f filters of w×w size window with a stride of s and
o × o size output, P(w, s, o) indicates a pooling layer,
F(n) indicates a fully-connected layer with n units, and
O(c) indicate a output layer with c classes. The ReLU
function and dropout with probability 0.5 were used in
the convolutional and fully-connected layers.

CaffeNet: The image-feature vectors were composed of
4096 dimensions extracting the pre-trained CaffeNet of
the 7th fully-connected layer. The one-nearest neighbor
was then used as the classifier.

6.2 Results

Mean vectors have been given in Fig. 7 to demonstrate what
effect prior distributions had in the VB method. In the
Fig. 7, (a) presents all training images for one subject and (b)
presents mean vectors (μ or ν) of the model obtained with
the UBM, VB-DAEM, and ML-DAEM. Although from
Fig. 7 (b) it can be seen that the UBM roughly represents
a facial shape, it is difficult to identify the characteristics
of a particular subject. As tuning parameter τ is increased
in VB-DAEM, the mean vector gradually changes from the
UBM to the image of the subject in Fig. 7 (a). If the UBM
is used as the prior distribution with appropriate tuning pa-
rameter τ, similar state alignments are expected to be ob-
tained for all subject models and this therefore avoids the
over-fitting problem. It can actually be seen in Fig. 7 (b) that
VB-DAEM (τ = 1000) preserved the shape of the face us-
ing the UBM, even though the shape of ML-DAEM had
collapsed due to over-fitting. However, tuning parameter τ
needs to be carefully determined because the optimal value
depends on the amount of training data and the number of
states.

Figures 8 (a) and 8(b) respectively show the recogni-
tion rates using six images as training data for each subject
on Dataset1 and Dataset2. A tuning parameter with which
the highest recognition was obtained was used in each state.

Fig. 7 Effect on mean vectors of prior distributions in Dataset2. The
training data comprised four images and there were 40 × 40 HMM states.
(a) All training images of one subject. (b) Mean vectors (μ or ν) of the
model obtained with the UBM, VB-DAEM, and ML-DAEM.

The schedule of temperature θ1 = 20, θ2 = 20, and θ3 = 2−6

were used which could stably be obtained high recognition
performance each method in preliminary experiments. In
the EM algorithm, we can see from the results that MAP-
EM and VB-EM achieved significantly better recognition
rates than ML-EM. Similarly, in the DAEM algorithm,
MAP-DAEM and VB-DAEM outperformed ML-DAEM.
These results suggest that proposed methods, i.e., the MAP
and VB methods for SL-HMMs, mitigated the over-fitting
problem and achieved higher generalization ability than the
ML method. Comparing the computational cost per one it-
eration, the VB method is on the same computational or-
der as the ML method. However, in the VB method, con-
vergence of lower bound requires a lot of iterations be-
cause of marginalization of model parameters. Similar per-
formance was obtained under all conditions by compar-
ing the MAP and VB methods. However, the VB method
was slightly better than MAP when the appropriate num-
ber of states was selected. The highest recognition rates
for MAP-DAEM (Dataset1: 85.0%, Dataset2: 81.0%) and
VB-DAEM (Dataset1: 85.5%, Dataset2: 82.0%) were ob-
tained at 40×40 states. Therefore, we confirmed that the use
of a prior distribution was more effective than the marginal-
ization of model parameters in this task. In addition, much
improvement was obtained by the DAEM algorithm com-
pared with the EM algorithm in each method. This is be-
cause the performance of the EM algorithm was degraded
by the local maximum problem, and the DAEM algorithm
was able to reduce the effect of unreliable initial parameters
in the training of SL-HMMs.

Figures 8 (c) and 8 (d) respectively show the recog-
nition rates obtained when the numbers of images were
changed for Dataset1 and Dataset2. The HMM states and
tuning parameters with which the highest recognition was
obtained were used for each number of training data images,
and θ1 = 20, θ2 = 20, and θ3 = 2−6 were used for the sched-
ule of temperature. The MAP and VB methods achieved
higher recognition rates than ML method for all numbers
of training images. The difference between ML method
and MAP/VB methods became especially larger when small
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Fig. 8 Recognition rates obtained in image recognition experiments. (a) The effect of the number of
HMM states on Dataset1. (b) The effect of the number of HMM states on Dataset2. (c) The effect of
the amount of training data on Dataset1. (d) The effect of the amount of training data on Dataset2.

Table 4 Recognition rates obtained in schedule of temperature experiments. Where θ1, θ2, and θ3 are
respectively a schedule of the initial and state transition probability distributions, the output probability
distributions, and the prior distributions. Bold numbers indicate recognition rates of 87.0% or more.

θ1 20 21 22 24 26 20 21 22 24 26 20 21 22 24 26

θ2 20 21 22

2−6 85.5 85.0 85.0 85.5 85.5 85.0 84.5 85.5 86.0 86.5 84.5 85.5 85.5 87.0 86.5
2−4 84.0 83.5 83.5 83.5 83.5 85.5 85.0 84.5 86.5 86.5 85.0 85.5 84.5 86.0 86.0

θ3 2−2 85.5 84.5 85.0 85.0 85.0 86.0 86.0 86.0 86.0 86.0 85.5 86.0 85.0 85.5 85.5
2−1 80.0 80.5 81.0 80.0 80.5 85.5 87.0 87.5 88.0 88.0 85.0 86.0 87.0 87.0 87.0
20 77.5 78.0 78.0 77.5 78.0 85.0 85.0 84.5 84.5 84.5 85.5 86.0 86.0 86.5 86.5

numbers of training images were used. These results clearly
show that the proposed methods can estimate high general-
ization ability when there is insufficient training data. By
contrast, it is considered that the difference ML method and
MAP/VB methods become smaller when there is sufficient
training data. Although the MAP and the VB methods had
almost the same recognition rates, VB-DAEM (Dataset1:
54.0%, Dataset2: 52.0%) obtained better recognition rates
than MAP-DAEM (Dataset1: 51.0%, Dataset2: 50.0%)
when only two training images were used. Comparing the
proposed method with CNN, VB-DAEM achieved better
recognition rates than CNN. These results indicate that the
proposed method is more effective than CNN when the
amount of training data is insufficient. However, the number
of training images in the experiments was small to train the
CNN. Therefore, in the future, we should perform on large
datasets. Although VB-DAEM and CaffeNet had almost
the same recognition rates in Dataset1, VB-DAEM outper-
formed CaffeNet in Dataset2. These results suggest that
the proposed method is more robust to geometric variations
than CaffeNet.

The effect of the schedule of temperature θl was eval-
uated in VB-DAEM. Table 4 shows recognition rates ob-
tained in the experiments. Six images in Dataset1 were used

as training data for each subject. SL-HMMs with 40 × 40
states and tuning parameter τ = 4000 were used in the ex-
periments. Recognition rates was improved by using the
appropriate schedule of temperature θl. By contrast, an in-
appropriate schedule caused a decrease in the performance
of generalization ability. Statistics of UBM used in prior
distributions are high reliability because it is trained in ad-
vance. On the other hand, statistics of training data are low
reliability in early stage of training. Therefore, high recog-
nition rates was obtained by bringing the schedule of tem-
perature θl = 1 in the order of θ3, θ2, and θ1. As future work,
a method of automatically determining the schedule will be
needed to obtain an appropriate schedule.

7. Conclusion

This paper proposed an image recognition method based on
separable lattice hidden Markov models (SL-HMMs) using
the maximum a posteriori (MAP) and variational Bayesian
(VB) methods. An improved training algorithm using the
deterministic annealing expectation maximization (DAEM)
algorithm was also derived. Face recognition experiments
performed on the XM2VTS database showed that the MAP
and VB methods offer better recognition performance than
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the maximum likelihood (ML) method. These results sug-
gest that the MAP and VB methods are useful for image
recognition applications based on SL-HMMs. The use of
prior distributions was more effective than the marginaliza-
tion of model parameters in this task. The DAEM algorithm
was able to reduce the effect of unreliable initial parame-
ters in the training of SL-HMMs. Additionally, compar-
ative experiment results showed that the proposed method
was more robust to geometric variations than convolutional
neural networks. Subjects for future work include applying
the Bayesian criterion to image recognition based on hid-
den Markov eigen-image models [20], which integrate SL-
HMMs and factor analyzers, and performing experiments
on various image recognition tasks.
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Q(z(m))∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣
K(m)∑
i=1

z(m)
i,1 ln π(m)

i

⎤⎥⎥⎥⎥⎥⎥⎦

× exp

⎡⎢⎢⎢⎢⎢⎢⎣
T (m)∑

t(m)=2

K(m)∑
i=1

K(m)∑
j=1

z(m)
i,t(m)−1

z(m)
j,t(m) ln a(m)

i j

⎤⎥⎥⎥⎥⎥⎥⎦

× exp

⎡⎢⎢⎢⎢⎢⎢⎣
∑

t

K(m)∑
i=1

K(m̄)∑
j=1

z(m)
i,t(m)〈z(m̄)

j,t(m̄)〉Q(z(m̄)) ln bk(ot)

⎤⎥⎥⎥⎥⎥⎥⎦ . (A· 1)

The expectation value with respect to Q(z(m)) is computed
in the E-step by the following equations:

〈z(m)
i,t(m)〉Q(z(m)) =

∑
z(m)

Q(z(m))z(m)
i,t(m) , (A· 2)

〈z(m)
i,t(m)−1

z(m)
j,t(m)〉Q(z(m)) =

∑
z(m)

Q(z(m))z(m)
i,t(m)−1

z(m)
j,t(m) , (A· 3)

〈zk,t〉Q(z) =
∑
z(1)

∑
z(2)

Q(z(1))Q(z(2))z(1)
i,t(1) z

(2)
j,t(2) , (A· 4)

where 〈·〉Q(·) denotes the expectation with respect to the pos-
terior distribution Q(·) and z(m)

i,t(m) is the Kronecker delta func-
tion:

z(m)
i,t(m) = δ(z

(m)
t(m) , i) =

⎧⎪⎨⎪⎩ 0 (z(m)
t(m) � i)

1 (z(m)
t(m) = i)

. (A· 5)

The variational posterior distribution Q(z(m)) in Eq. (A· 1)
has a Markovian structure as the likelihood function of an
standard one-dimensional HMM. Therefore, Eqs. (A· 2) and
(A· 3) can be computed efficiently by the forward-backward
algorithm given in [32].

In the M-step, the model parameters of the SL-HMMs
can be updated by sufficient statistics of the training data as
follows:

π(m)
i = 〈z(m)

i,1 〉Q(z(m)), (A· 6)

a(m)
i j =

N(m)
i j∑T (m)

t(m)=2〈z(m)
i−1,t(m)〉Q(z(m))

, (A· 7)

μk = Fk, (A· 8)

Σk =Sk, (A· 9)

where statistics N(m)
i j , Fk, and Sk are represented as follows:

N(m)
i j =

T (m)∑
t(m)=2

〈z(m)
i,t(m)−1

z(m)
j,t(m)〉Q(z(m)), (A· 10)

Nk =
∑

t

〈zk,t〉Q(z), (A· 11)

Fk =
1

Nk

∑
t

〈zk,t〉Q(z)ot , (A· 12)

Sk =
1

Nk

∑
t

〈zk,t〉Q(z)(ot − Fk)(ot − Fk)�. (A· 13)

Appendix B: Derivation of MAP Method for SL-
HMMs

B.1 EM Algorithm for MAP Method

The model parameters of SL-HMMs using the MAP method
can be updated by sufficient statistics and hyper-parameters
as follows:

π(m)
i =

〈z(m)
i,1 〉Q(z(m)) + φ

(m)
i − 1

1 +
∑K(m)

i′=1 (φ(m)
i′ − 1)

, (A· 14)

a(m)
i j =

N(m)
i j + α

(m)
i j − 1∑T (m)

t(m)=2〈z(m)
i−1,t(m)〉Q(z(m)) +

∑K(m)

j′=1(α(m)
i j′ − 1)

, (A· 15)

μk =
NkFk + ξkνk

Nk + ξk
, (A· 16)

Σk =
1

Nk + ηk − D

⎡⎢⎢⎢⎢⎢⎣
∑

t

〈zk,t〉Q(z)(ot − μk)(ot − μk)�

+ξk(μk − νk)(μk − νk)� + Rk

]
, (A· 17)

where D is a dimension of observation o.

B.2 Hyper-Parameters

The hyper-parameters based on prior data are given as:

φ(m)
i =

〈z̃(m)
i,t(m)〉Q(z(m))

τ
+ 1, (A· 18)

α(m)
i j =

Ñ(m)
i j

τ
+ 1, (A· 19)

νk = F̃k, (A· 20)

ξk =
Ñk

τ
, (A· 21)

ηk =
Ñk

τ
+ D, (A· 22)

Rk =
Ñk

τ
S̃k, (A· 23)

where ·̃ denotes statistics of prior data and τ is the tuning
parameter.

B.3 DAEM Algorithm for MAP Method

The model parameters of SL-HMMs using the MAP method
with the DAEM algorithm can be updated by sufficient
statistics and hyper-parameters as follows:

π(m)
i =

β1〈z(m)
i,1 〉Q(z(m)) + β3(φ(m)

i − 1)

β1 + β3
∑K(m)

i′=1 (φ(m)
i′ − 1)

, (A· 24)

a(m)
i j =

β1N(m)
i j + β3(α(m)

i j − 1)

β1
∑T (m)

t(m)=2〈z(m)
i−1,t(m)〉Q(z(m)) + β3

∑K(m)

j′=1(α(m)
i j′ − 1)

, (A· 25)

μk =
β2NkFk + β3ξkνk

β2Nk + β3ξk
, (A· 26)
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Σk =
1

β2Nk + β3(ηk − D)

×
⎡⎢⎢⎢⎢⎢⎣β2

∑
t

〈zk,t〉Q(z)(ot − μk)(ot − μk)�

+β3ξk(μk − νk)(μk − νk)� + β3Rk

]
. (A· 27)

Appendix C: Derivation of VB Method for SL-HMMs

C.1 EM Algorithm for VB Method

In the VB E-step, the optimal variational posterior distribu-
tions Q(z(m)) that maximize the objective function F (VB) are
given as:

Q(z(m))∝ exp

⎡⎢⎢⎢⎢⎢⎢⎣
K(m)∑
i=1

z(m)
i,1 〈ln π(m)

i 〉Q(π(m))

⎤⎥⎥⎥⎥⎥⎥⎦

× exp

⎡⎢⎢⎢⎢⎢⎢⎣
T (m)∑

t(m)=2

K(m)∑
i=1

K(m)∑
j=1

z(m)
i,t(m)−1

z(m)
j,t(m)〈ln a(m)

i j 〉Q(a(m)
i )

⎤⎥⎥⎥⎥⎥⎥⎦

× exp

⎡⎢⎢⎢⎢⎢⎢⎣
∑

t

K(m)∑
i=1

K(m̄)∑
j=1

z(m)
i,t(m)〈z(m̄)

j,t(m̄)〉Q(z(m̄))〈ln bk(ot)〉Q(bk)

⎤⎥⎥⎥⎥⎥⎥⎦ , (A· 28)

The updates of the expectations of model parameters are de-
rived as:

〈ln π(m)
i 〉Q(π(m)) =Ψ (φ̂(m)

i ) − Ψ
⎛⎜⎜⎜⎜⎜⎜⎝

K(m)∑
i′=1

φ̂(m)
i′

⎞⎟⎟⎟⎟⎟⎟⎠ , (A· 29)

〈ln a(m)
i j 〉Q(a(m)

i ) =Ψ (α̂(m)
i j ) − Ψ

⎛⎜⎜⎜⎜⎜⎜⎝
K(m)∑
j′=1

α̂(m)
i j′

⎞⎟⎟⎟⎟⎟⎟⎠ , (A· 30)

〈ln bk(ot)〉Q(bk) =−1
2

⎧⎪⎪⎨⎪⎪⎩D ln π +
D

ξ̂k
−

D∑
d=1

Ψ

(
η̂k + 1 − d

2

)

+ ln |R̂k| + Tr
[
η̂kR̂

−1
k (ot − ν̂k)(ot − ν̂k)�

]}
, (A· 31)

where Ψ (·) is a digamma function. The expectation value
in Eqs. (A· 2) and (A· 3) can be computed efficiently by the
forward-backward algorithm given in [32].

In the VB M-step, the optimal variational posterior dis-
tributions Q(Λ) that maximize the objective function F (VB)

are given as:

Q(Λ)∝ P(Λ)
2∏

m=1

⎧⎪⎪⎨⎪⎪⎩exp

⎡⎢⎢⎢⎢⎢⎢⎣
K(m)∑
i=1

〈z(m)
i,t(m)〉Q(z(m)) ln π(m)

i

⎤⎥⎥⎥⎥⎥⎥⎦

× exp

⎡⎢⎢⎢⎢⎢⎢⎣
T (m)∑

t(m)=2

K(m)∑
i=1

K(m)∑
j=1

〈z(m)
i,t(m)−1

z(m)
j,t(m)〉Q(z(m)) ln a(m)

i j

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

× exp

⎡⎢⎢⎢⎢⎢⎣
∑

t

∑
k

〈zk,t〉Q(z) ln bk(ot)

⎤⎥⎥⎥⎥⎥⎦ , (A· 32)

The posterior distribution of model parameters Q(Λ) can be
updated by statistics of the training data as follows:

φ̂(m)
i = 〈z(m)

i,1 〉Q(z(m)) + φ
(m)
i , (A· 33)

α̂(m)
i j =N(m)

i j + α
(m)
i j , (A· 34)

ν̂k =
NkFk + ξkνk

Nk + ξk
, (A· 35)

ξ̂k =Nk + ξk, (A· 36)

η̂k =Nk + ηk, (A· 37)

R̂k =NkSk +
Nkξk

Nk + ξk
(Fk − νk)(Fk − νk)� + Rk. (A· 38)

C.2 DAEM Algorithm for VB Method

In the VB E-step, the forward-backward algorithm is ap-
plied by taking temperature parameters into account. In the
VB M-step, the posterior distribution of model parameters
Q(Λ) can be updated by statistics of the training data as fol-
lows:

φ̂(m)
i = β1〈z(m)

i,1 〉Q(z(m)) + β3(φ(m)
i − 1) + 1, (A· 39)

α̂(m)
i j = β1N(m)

i j + β3(α(m)
i j − 1) + 1, (A· 40)

ν̂k =
β2NkFk + β3ξkνk

β2Nk + β3ξk
, (A· 41)

ξ̂k = β2Nk + β3ξk, (A· 42)

η̂k = β2Nk + β3(ηk − D) + D, (A· 43)

R̂k = β2NkSk +
β2β3Nkξk

β2Nk + β3ξk
(Fk − νk)(Fk − νk)� + β3Rk.

(A· 44)
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