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Learning State Recognition in Self-Paced E-Learning

Siyang YU†a), Nonmember, Kazuaki KONDO††, Yuichi NAKAMURA††, Members, Takayuki NAKAJIMA†††,
and Masatake DANTSUJI††, Nonmembers

SUMMARY Self-paced e-learning provides much more freedom in
time and locale than traditional education as well as diversity of learning
contents and learning media and tools. However, its limitations must not
be ignored. Lack of information on learners’ states is a serious issue that
can lead to severe problems, such as low learning efficiency, motivation
loss, and even dropping out of e-learning. We have designed a novel e-
learning support system that can visually observe learners’ non-verbal be-
haviors and estimate their learning states and that can be easily integrated
into practical e-learning environments. Three pairs of internal states closely
related to learning performance, concentration-distraction, difficulty-ease,
and interest-boredom, were selected as targets of recognition. In addition,
we investigated the practical problem of estimating the learning states of a
new learner whose characteristics are not known in advance. Experimental
results show the potential of our system.
key words: e-learning support system, learning states recognition, inter-
personal differences, classifier selection

1. Introduction

Self-paced e-learning is a widespread learning method that
benefits from the characteristic of flexibility. Its learning
performance is highly dependent on a learner’s autonomy.
Hence, well-designed self-paced e-learning should attract
and motivate learners effectively. A learner’s cognitive-
affective states during self-paced e-learning provide signifi-
cant feedback that can serve in many phases, including de-
sign, development, utilization, management, and evaluation
of processes and resources for learning. However, obtaining
such valuable information is difficult. Freedom from time
and locale brings both convenience and difficulties. There-
fore, acquiring such information is demanding.

An automated system that can assist teachers in recog-
nizing students’ learning states is required to deal with this
problem. Such a system will considerably reduce the effort
required by the teacher, especially when the number of stu-
dents is large.

In this research, we designed an e-learning support sys-
tem that can capture learners’ behaviors visually and esti-
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mate their learning states in an actual self-paced e-learning
environment. Then, we considered the practical problem of
estimating the learning states of a new learner whose charac-
teristics are not well known in advance. E-learning systems
may face a variety of new students, because e-learning is of-
ten designed as learners with a variety of backgrounds can
join at different time and places. However, it would be dif-
ficult to have all types of learner models beforehand. We
need to consider a mechanism to adapt the system to new
learners.

In the following sections, we first introduce our frame-
work, our method for learning state estimation, and the
scheme for dealing with new learners. Then, we present our
experimental results showing good potential for our frame-
work.

2. Related Work

Previous studies have focused on recognizing learners’
cognitive-affective states in learning environments. These
had different target states and utilized various modalities.
Butko et al. [1] proposed an automatic facial feature extrac-
tion system that was designed based on the Facial Action
Coding System. Seven GentleBoost classifiers were used to
recognize the expression of being interested, thinking, tired
or bored, confused, confident or proud, frustrated, and dis-
tracted on the part of a learner during interactions with a
teacher. Ammar et al. [2] focused on detecting the contour of
eyes, eyebrows, and mouth. Distance changes among these
were used for classifying six universal emotions. White-
hill et al. [3] investigated the correlation between facial ex-
pressions and self-reported difficulty. Zakharov et al. [4]
used facial features to identify whether the affective state
was positive or negative. This enabled a pedagogical agent
persona to respond to a learner’s action on the basis of the
learner’s cognitive and affective states. D’mello et al. [5]
studied dialogue features extracted from conversations be-
tween learners and an intelligent tutoring system and on
the classification of boredom, confusion, flow, frustration,
and neutrality. Litman et al. [6] used acoustic and prosodic
features of students’ speech to detect negative, neutral, and
positive emotions. In [7], physiological signals were used
to recognize emotions developed during the learning pro-
cess. Three kinds of sensor were used for skin conductance,
blood volume pressure, and electroencephalography (EEG)
to recognize four kinds of emotion, engagement, confusion,
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boredom, and hopelessness. Yang [8] used combinations of
mouse operations and facial information to detect attend-
ing and responding states of students, including attentive
vs. inattentive and active vs. passive, respectively. Woolf et
al. [9] combined four sensors to recognize confident, frus-
trated, excited, and interested, using facial expressions, pos-
tures measured by the pressure from the seat cushion and
back pad, a learner’s hand pressure measured by a special
mouse, and skin conductance.

3. Problems and Objectives

Despite much research progress having been made with re-
spect to cognitive-affective state recognition in learning en-
vironments, problems remain for practical applications.

Various cognitive-affective states have been recog-
nized, but some of them were either not closely relevant
to learning performance, or could not be used readily by
teachers. In other words, research from the perspective of
assisting teachers has received less attention. One notewor-
thy issue in practical application that must be considered is
the applicability of modality and equipment for raw data
measurement. The choice must provide rich information,
but more importantly, must be easily integrated into prac-
tical e-learning environments without imposing additional
constraints on learners or learning environments. Another
critical problem for practical use, which has been less ex-
plored, is how to deal with new students. We need to con-
sider that learners are considerably different in their behav-
iors, i.e., inter-personal differences among learners. Even
if we achieve sufficiently good performance for a specific
learner, we might not obtain good performance for another
learner.

To handle these problems, we choose learning state tar-
gets that have been proven closely related to learning per-
formance. The details will be provided in the next section.
Teachers can use them to improve learning experience ef-
fortlessly. We choose visual sensing of learners, because it is
non-intrusive and non-contact, and a small camera can be in-
tegrated easily with existing e-learning systems with current
technologies. Based on this, we develop a reliable method to
estimate learners’ states. Moreover, the e-learning support
system requires models that can be applied to a variety of
learners. We investigate the inter-personal differences and
explore methods for choosing an appropriate model for a
new learner.

An overview of our scheme is illustrated in Fig. 1.
There are three principal components. At each e-

learning site, an RGB-D (color and depth) camera is
mounted on an existing e-learning system, as shown on the
top left in the figure. A video of a learner’s face and upper-
body is captured by a Kinect camera in RGB-D format.
Learning states are estimated through the module as in the
bottom portion of Fig. 1. In this component, visual features
are obtained through the processing of RGB-D images. Sub-
sequently, they are input to Support Vector Machine (SVM)
to recognize learners’ internal states. Details will be given

Fig. 1 Overview of our scheme

in Sect. 5. The detected information is summarized and pre-
sented to teachers in a comprehensible manner, as depicted
in the top right portion of Fig. 1. This information enables
teachers to provide mentoring, modify materials, or conduct
educational analysis. For instance, teachers can find and
pay additional attention to those learners who need more
assistance. Teachers can also design and adjust materials to
keep learners motivated, e.g., by setting tasks a step ahead of
learners’ current skill levels. This use is left for future work,
and we concentrate on the top left and the bottom portions
in this paper.

4. Learning States

4.1 Internal States

We choose concentration-distraction, difficulty-ease, and
interest-boredom as the targets of recognition. The signif-
icance of concentration in education has been investigated
and emphasized in many studies, such as [10] and [11]. Dif-
ficulty of learning content plays a crucial role in maintaining
students’ concentration [12]. It is important for knowledge
and skills acquisition to keep the tasks in the zone of prox-
imal development of students by setting appropriate chal-
lenges. Interestingness is another important factor in moti-
vating students to remain in concentration [13]. Moreover, a
positive relationship between interest and academic achieve-
ment has been found in [14]. Shirey [15] reported that infor-
mation can be learned readily, if it was interesting to learn-
ers.

It is widely recognized that they are mutually related.
Concentration on a target can foster interest. Interest can
be referred to as an important driving force which can re-
sult in concentration. However, concentration can be af-
fected not only by interest but also by a variety of factors
both inside and outside of learners, e.g., fatigue, stimulus
strength, and time and place of learning. For difficulty and
interest, Silvia [16] reported that both low and high in dif-
ficulty may cause low rating in interest, which implies that



342
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

Table 1 Five-level scale of learning states

5 4 3 2 1
Very Very

concentrated Concentrated Neutral Distracted distracted
Very Very

difficult Difficult Neutral Easy easy
Very Very

interesting Interesting Neutral Boring boring

interest captures an aspect different from difficulty. There-
fore, our scheme deals with those three as separate indices.
Its advantage is clear if we think of their usage. Difficulty
is an important feedback that is helpful for keeping the level
of the learning materials adequate, e.g., learning materials
need to be easier if learners feel too much difficulty and
vice versa. Interestingness is also good information to make
learning materials attractive. Teachers get good feedback
how much learners are interested in each portion. Concen-
tration is helpful for knowing the attitude of a learner, and
useful for evaluating a learner.

We take the same approach for the estimation of those
three internal states. The ground truth values for all three
internal states need to be gathered in terms of introspection,
because the internal states cannot be physically measured by
current technology in actual e-learning environments. For
their estimation, we choose visual sensing, because a non-
intrusive way without heavy constraints and cost is prefer-
able.

4.2 Scoring of Learning States

Some previous studies used evaluation by trained judges as
ground truth ([9], [17], [18]). However, such judgments
are often different from self-evaluation, and consequently,
the ground truth indicates how learners look more than how
they feel. In contrast, we use learners’ self-evaluation as
ground truth. To avoid learning interruptions and obtaining
high reliance on self-reports, we integrate several methods
summarized in [19] by comparing their advantages and lim-
itations. The details regarding ground truth acquisition will
be described in Sect. 7. However, self-reporting introduces
the problem of a tendency of participants to average their
ratings [19], as well as the issue of social desirability.

In most previous work, two-level evaluation was used,
e.g. attentive vs. inattentive or boredom vs. neutral, as was
suitable for their purposes. It is often difficult for humans
to evaluate themselves quantitatively. However, multiple-
level measurement is commonly used in psychometrics to
measure attitudes for analysis, e.g., the Likert scale or se-
mantic differentials. For the benefit of teachers, we use a
five-level scale for learning state measurement as shown in
Table 1. Nevertheless, this introduces ambiguity and differ-
ences among persons. This problem will be discussed in the
following sections.

5. Learning State Recognition by Visual Sensing

Each learning period is segmented into intervals of a spec-
ified length, which is 30 seconds in our experiments. For
each interval, the following features are detected, and the
learning states are estimated.

5.1 Low-Level Feature Detection

Low-level features, including three-dimensional (3D) head
pose (position and angle), facial parts movements, and body
area and distance, are obtained from RGB-D images. Head
pose is obtained using face detection, and movements of
mouth and eyebrows are obtained using facial parts detec-
tion. These detections are based on an active appearance
model [20]. Head pose is indicated in terms of translation
and rotation angles in camera coordinates. Movements of
mouth and eyebrows are indicated by displacements from
the neutral position and shape of mouth and eyebrows.

5.2 Intermediate Feature Detection

Three categories of intermediate feature are obtained using
low-level features.
(1) Presence information: Presence of the learner in front
of the screen and the distance between the learner and the
screen. We use face detection and body area measurement
results for this purpose. Specifically, when the algorithm
fails to detect the face, and the body size is smaller than the
threshold, a learner is considered as “absent.” Otherwise,
the learner is “present,” and the distance is obtained from
the depth in the RGB-D image.
(2) Head and facial parts information: These features are
obtained directly from the head pose and facial parts move-
ments.
(3) Probability of gazing at the screen: We do not use com-
mercial eye-gaze tracking systems because of the cost. Al-
ternatively, gazing direction, i.e., a line of sight, is estimated
by face orientation based on training samples. If we assume
that a learner is looking straight forward, then gazing direc-
tion is the same as face orientation, and the gazing target is
the “intersection” of the line of sight and the environment.
However, this does not always hold. To cope with this prob-
lem, we use the statistics of samples collected beforehand,
in which a participant looked “inside” and “outside” of the
screen with changing directions and conditions. The moni-
tor screen area is quantized into 10 x 10 small regions called
cells. The probability of “gazing at the monitor screen” for
each cell is calculated based on Bayes’ theorem, using the
following formula:

P(A|Xi) =
P(Xi|A)P(A)

P(Xi)
(1)

where A indicates that a participant looks inside the screen,
and Xi indicates that the participant’s line of sight intersects
the ith cell.
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Fig. 2 Gazing target: intersection of line of sight and screen

Table 2 Thirty-three-element feature vector

Feature source: Feature items:
Presence Present proportion

information Distance (Max, Average, Min)
Head and facial Face detection successful proportion

parts information Lips movement (Max, Average, Min)
Eyebrows movement (Max, Average, Min)
Head pose angle Pitch (Max, Average, Min)
Head pose angle Yaw (Max, Average, Min)
Head pose angle Roll (Max, Average, Min)

Head position X-coordinate (Max, Average, Min)
Head position Y-coordinate (Max, Average, Min)
Head position Z-coordinate (Max, Average, Min)

Probability of High probability proportion
gazing at screen Moderate probability proportion

Low probability proportion
Consider as zero probability proportion

5.3 Classification by Support Vector Machine

A feature vector with 33 elements is calculated based on
intermediate features of each interval, as listed in Table 2.
Together with the self-evaluation score as ground truth, they
comprise one training sample.

We use an SVM for classification, specifically, the one-
against-one method for handling multiclass classification in
LIBSVM [21]. A radial basis function is used as the kernel.
Details on our experimental data will be provided in Sect. 7.

6. Inter-personal Differences

6.1 Strategy for Adjusting to a New Learner

For learners to record their learning states after actual e-
learning requires considerable effort. Scoring, often takes
time longer than the time for actual learning, and requires
considerable mental effort in video reviewing, introspection,
and marking†. Provided scores by learners would be un-
reliable due to the additional load, if learners are simply
forced to mark scores after actual e-learning. On the other
hand, during the phase of system development, we can ex-
pect that a considerable number of samples can be obtained

†Details of ground truth acquisition will be described in 7.1.

from multiple participants. From this point of view, we need
a system that can adjust quickly to a new learner with little
effort by the learner. For this purpose, we consider the fol-
lowing scheme:
Step 1: We gather sufficiently many samples from multi-
ple learners who collaborate for data collection. Hereafter,
we call those learners and samples “prototype learners” and
“prototype samples,” respectively.
Step 2: The system asks a new learner to provide ground
truth scores for a small number of intervals in actual e-
learning. Hereafter, we call these “representative samples.”
Step 3: The system selects appropriate classifiers by using
both representative and prototype samples.

6.2 Classifier Selection Strategies

Assuming that we have sufficiently many prototype samples
from multiple prototype learners, we can think of various
classifiers as follows:
(C1) Classifiers that are each trained with prototype samples
from a single prototype learner.
(C2) Classifiers that are each trained with prototype samples
from a combination of two or more prototype learners.
(C3) A classifier that is trained with all prototype samples
from all prototype learners. Hereafter, we call this the “uni-
fied classifier.”
The possible variations comprise the power set of the learn-
ers. With those classifiers, our target is to develop a method
for choosing the best classifier for a new learner. We con-
sider the following strategies for this problem:
(M1) Accuracy-based method: The system applies every
classifier to the representative samples from a new learner
and then chooses the classifier that results in the best perfor-
mance.
(M2) Similarity-based method: The system measures the
similarities between representative samples of a new student
and prototype samples and then chooses the classifier that
has the greatest number of similar samples in its training
data within a specified number of resembling samples. In
this approach, L1 distance is chosen as the metric for simi-
larity measurement. This strategy has the advantage that it
does not require self-evaluation by a new learner.

7. Experimental Results

7.1 Environment of Experiment

As e-learning contents, we chose multimedia English learn-
ing materials for the Computer-Assisted Language Learning
(CALL) system at Kyoto University [22]. These materials
are used widely by students not only at Kyoto University
but also in several other universities. Learners are univer-
sity students expected to have self-regulatory e-learning. A
sample image is shown in Fig. 3.

A Kinect camera is located above the monitor for
recording learners’ video and estimating internal states. The
computer screen is captured continuously using a frame
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Fig. 3 E-learning interface

Fig. 4 Reviewing for self-scoring

grabber. A small webcam is placed at the foot of the moni-
tor to capture the learner’s face independently of the Kinect
camera. Both the learner’s face and the screen capture
can be shown synchronously to the learner right after the
e-learning session, as shown in Fig. 4, and the prototype
learner provides self-evaluation for each interval by watch-
ing them.

We gathered seven participants, undergraduate students
with no experience in learning with the specified e-learning
materials. Each participant participated in an average of
nine sessions, each of which was approximately 30 minutes
in length. We obtained samples for 1,559.5 minutes, i.e.,
3,119 valid samples of intervals with self-evaluation scores
as ground truth.

7.2 Potential of Learning States Estimation

We first examined the potential performance of simple clas-
sification accuracy by the following schema:
(E1) A classifier is trained using samples from one partic-
ipant mentioned as C1 in Sect. 6.2. Target samples, i.e.,
recognition targets, are from the same participant.
(E2) A classifier is trained using samples from one partic-
ipant mentioned as C1. Target samples are taken from a
different participant.
(E3) A classifier is trained using samples from all partici-

Fig. 5 Strict matching performance on E1, E2, and E3 conditions.

Fig. 6 Lenient matching performance on E1, E2, and E3 conditions.

pants mentioned as C3, excluding samples from the partic-
ipant considered as a new learner. Target samples are from
the excluded participant.

E1 estimates the upper bound performance of our
method. In other words, the performance we can expect if
the learner is well-known. E2 shows the performance degra-
dation caused by inter-personal differences. E3 estimates
the potential performance of the unified classifier for a new
learner. For each scheme, the leave-one-out method is used
for cross validation.

The criteria of the matching are as follows:
1. Strict matching criterion: This requires an exact match
between the classification result provided by the SVM and
the ground truth.
2. Lenient matching criterion: This allows a classification
result to be equal or nearly equal to the ground truth, i.e.,
the score difference must be at most one.

Lenient matching criterion is introduced to examine
how estimated scores are close to the ground truth. If the
performance of lenient matching is satisfactory, an esti-
mated score can be useful even if it does not perfectly match
to the ground truth. Another aspect of lenient matching is
concerning difficulty of introspection. Because introspec-
tion may contain fluctuation caused by human nature, strict
matching criterion could be too severe, and teachers may
feel that lenient matching criterion is reasonable.

Figures 5 and 6 show the results for the strict and le-
nient matching criteria, respectively. The average values are
shown by thick bars, and the ranges between the best case
and the worst case are shown as thin lines.

From the E1 results, we can see that the average ac-
curacy of strict matching is approximately 60%. One of
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Fig. 7 Similar appearances but different self-evaluation scores of the
same learner. Top sample: Reference sample, self-evaluation score 1.
Bottom-left sample: Closest sample 1, self-evaluation score 3. Bottom-
right sample: Closest sample 2, self-evaluation score 4

the primary reasons for the performance degradation in this
case is the similarity of the behaviors among different in-
ternal states. Figure 7 shows three samples with differ-
ent self-evaluation scores for concentration-distraction. The
first sample is chosen as the reference, for which the L1 dis-
tances to the other samples of the same student are calcu-
lated. The other two are the closest samples. During these
three intervals, the learner retained appearances as in the
shown images, with only small movements. Consequently,
the feature vectors for these intervals are similar, while the
self-evaluation scores are different.

Another reason is the dissimilarity of behaviors for the
same self-evaluation score. An example is shown in Fig. 8.
Four representative images result in four different situations
with score 1 for concentration-distraction producing diverse
feature vectors. The top-left image is the same sample as
the top sample in Fig. 7. The top-right sample indicates that
the learner is napping; the bottom-left sample indicates that
the learner is almost out of field. In the bottom-right case,
the learner does not look at the screen. The feature vectors
for those three samples are much different from those for the
first sample in the L1 distance metric.

Another possible reason is the ambiguity of self-
evaluation. Self-evaluation appears to fluctuate because of
the difficulty of introspecting. From this point of view, we
cannot expect perfect performance. However, all of those
drawbacks are relaxed in the lenient matching cases. We
obtain approximately 90% accuracy for all three pairs of in-
ternal states.

As the results of E2, we have serious performance

Fig. 8 Different situations for same self-evaluation score: score 1 in
concentration-distraction

Fig. 9 Similar appearances but different self-evaluation scores of dif-
ferent learners. Top sample: Reference sample, self-evaluation score 5.
Bottom-left sample: Closest sample 1, self-evaluation score 3. Bottom-
right sample: Closest sample 2, self-evaluation score 1.

degradation for strict matching if we apply classifiers trained
for a different person, as shown in Fig. 5. Figure 9 shows
an example of similar appearances for different learners.
The first image is the reference sample with score 5 for
concentration-distraction, for which L1 distances to the
other students’ samples are calculated. The two closest sam-
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Fig. 10 Three methods for performances in concentration-distraction

ples, whose self-evaluation scores are 3 and 1, respectively,
are shown in Fig. 9. Based on the images, they are not signif-
icantly different except in the detailed conditions of the eyes
that are not included in feature vectors in our experiments.
Detection of those detailed features is left for future work.
The performance degradation is, however, relaxed with the
lenient matching criterion, as shown in Fig. 6.

The E3 results show the performance expectation of the
unified classifier for a new learner. The large gaps between
E1 and E3 indicate that simple aggregation of a large num-
ber of samples does not necessarily provide a good classifier.
On the other hand, the performance difference between E3
and E2 shows that the performance improvement resulting
from gathering samples from multiple persons is not neg-
ligible. Those results imply that we need a more sophisti-
cated method to utilize a variety of samples from a variety
of learners effectively. This problem is discussed in 7.4.

Concerning the differences among learning states, per-
formance is not significantly different. However, we ob-
serve the tendency that the accuracy is better in the order of
interest-boredom, concentration-distraction, and difficulty-
ease. One possible reason might be a negative mood that
learners choose to conceal.

7.3 Performance for a New Learner

Experiments were conducted for checking the possibility of
choosing an appropriate classifier by using a small num-
ber of representative samples from a new learner. For this
purpose, one participant was chosen as a new learner in
turn, and the other participants were regarded as prototype
learners. Five representative samples were chosen randomly
from the new learner’s samples. We applied the accuracy-
and similarity-based methods for choosing a classifier from
among all classifiers, i.e., C1, C2, and C3 in 6.2. Then, the
chosen classifier was applied to all the samples of the new
learner, and the performance was evaluated. We repeated
this process 20 times for every new learner, and the average
performance was recorded.

Figure 10 shows the results for concentration-
distraction. The baseline is the performance by the unified
classifier. The average accuracy of seven new learners is

Fig. 11 Score distribution of similar samples

displayed with a thick bar. The values of the highest and the
lowest accuracy are presented by the thin lines on the bars.
We can see that the accuracy-based method provides better
performance than the unified classifiers. On the other hand,
the similarity-based method does not provide good results.
Figure 11 shows one example that might explain this. For
each of five representative samples of new learners, the ten
closest samples are extracted from all prototype samples,
and their scores are counted. Although prototype learner A
has the most samples similar to representative samples of
the new learner, none of them has the same score. This fact
clearly shows the difficulty posed by inter-personal differ-
ences.

Next, we examined the integrated method, a combi-
nation of the above two methods. The first process is the
same as the accuracy-based method. If there are multiple
classifiers that yield the best performance for given rep-
resentative samples, the second process chooses the clas-
sifier that has the greatest number of similar samples out
of the 50 closest samples. As shown in Fig. 10, the inte-
grated method shows no significant improvement over the
accuracy-based method. This might be a result of the small
number of representative samples, in addition to the facts
disclosed in Fig. 11. The results for difficulty-ease and
interest-boredom are shown in Figs. 12 and 13, respectively.
They also indicate no significant improvements from the in-
tegrated method.

As for difficulty-ease, the results in E2 and E3 that have
the smallest average accuracies and the smallest range be-
tween the highest and the lowest accuracy suggest larger
inter-personal differences among learners. This diversity
makes improvements difficult. For the interest-boredom
case, the performance of the baseline, i.e., E3, is better than
that of the other two learning states. The room for improve-
ment is consequently small.

7.4 Discussion

The results of E1 show much room for improvement, espe-
cially in strict matching. One reason is the wide variety of
external expressions, and another is the ambiguity of self-
evaluation. For future improvements, incorporating other
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Fig. 12 Two methods for performances in difficulty-ease

Fig. 13 Two methods for performances in interest-boredom

measuring modalities might be a partial solution. Detailed
information regarding the eyes is expected to improve the
performance. Additionally, we can consider the use of non-
intrusive physiological measurements and/or the use of a
mouse and keyboard to input information.

E2 results show serious inter-personal differences, and
E3 results reveal that simply mixing all samples does not
provide sufficient improvement. To clarify this point, we
verified how performance changes with the number of pro-
totype learners. Figure 14 shows the result. The horizon-
tal axis indicates the number of prototype learners used for
training, and the vertical axis indicates the accuracy of es-
timating concentration-distraction for a new learner. The
three lines show maximum accuracy, average, and minimum
accuracy.

The figure illustrates the trend that the maximum ac-
curacy is better with one or a few prototype learners, and it
worsens as the number of prototype learners increases. This
fact suggests that a classifier trained by the samples from
one or a few similar prototype learners tends to provide good
performance. On the other hand, the minimum accuracy
improves gradually as the number of prototype learner in-
creases. A classifier trained for one or a few prototype learn-
ers with different characteristics yields poor performance,
and this problem will be relaxed with more prototype learn-
ers. As the number of prototype learners increases, the
chance that samples with behavioral characteristics similar
to a new learner’s are included will increase. This fact sug-

Fig. 14 Performance changes by the number of prototype learners

gests that it is useful to consider the unified classifier based
on all of the samples as the baseline.

Next, we focus on the selection of an appropriate clas-
sifier for a new learner. In our research, we use only a small
number of representative samples, viz., five samples in our
experiments, in order to keep the workload of a new learner
as low as possible. The accuracy-based and the integrated
methods improved the estimation accuracy in some cases,
but did not provide significant improvements in other cases.
From the results of E1 and Fig. 14, we see that there are
many classifiers that provide better performance. We have
much room for improvement for future work. We can ex-
pect better accuracy using the integrated method if we can
obtain more representative samples with less effort by a new
learner. Therefore, a method for reducing effort in and dis-
tress over self-scoring can be expected to lead to accuracy
improvements.

8. Conclusion

In this research, we designed an e-learning support sys-
tem that can capture learners’ behaviors visually and es-
timate learners’ learning states. We chose concentration-
distraction, difficulty-ease, and interest-boredom as a
learner’s learning states, and these were recognized by us-
ing the learner’s presence, head position, and facial feature
information. The experimental results showed the potential
of our classification method by SVM using the abovemen-
tioned visual features: approximately 60% average accuracy
in strict matching and approximately 90% average accuracy
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in lenient matching can be achieved. We also examined
practical methods for adjusting to a new learner who can
provide only a few samples as ground truth. Accuracy-based
selection of classifiers and our integrated method showed
better performance than the unified classifier for which all
of the samples were used for classifier training.

For future work, we need a variety of investigations to
improve recognition accuracy, including improvements in
the sensing system, feature selection, and classifier selec-
tion. We also need experiments with various e-learning ma-
terials and learners of diverse ages, as well as practical use
in classes. Developing a user interface for providing educa-
tional information for teachers’ browsing is also important.
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