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PAPER

Using a Single Dendritic Neuron to Forecast Tourist Arrivals to
Japan

Wei CHEN†, Jian SUN†,††, Nonmembers, Shangce GAO†a), Member, Jiu-Jun CHENG†††, Jiahai WANG††††,
and Yuki TODO†††††, Nonmembers

SUMMARY With the fast growth of the international tourism industry,
it has been a challenge to forecast the tourism demand in the international
tourism market. Traditional forecasting methods usually suffer from the
prediction accuracy problem due to the high volatility, irregular movements
and non-stationarity of the tourist time series. In this study, a novel single
dendritic neuron model (SDNM) is proposed to perform the tourism de-
mand forecasting. First, we use a phase space reconstruction to analyze
the characteristics of the tourism and reconstruct the time series into proper
phase space points. Then, the maximum Lyapunov exponent is employed
to identify the chaotic properties of time series which is used to determine
the limit of prediction. Finally, we use SDNM to make a short-term predic-
tion. Experimental results of the forecasting of the monthly foreign tourist
arrivals to Japan indicate that the proposed SDNM is more efficient and ac-
curate than other neural networks including the multi-layered perceptron,
the neuro-fuzzy inference system, the Elman network, and the single mul-
tiplicative neuron model.
key words: artificial neural networks, chaos, dendritic neuron model,
phase space reconstruction, time series prediction, tourism demand

1. Introduction

In the past few decades, the significant growth of interna-
tional tourism has been achieved in Japan, and the tourism
industry has become a crucial contribution to Japan’s eco-
nomic development. According to the Japanese National
Tourism Organization [1], the estimated number of interna-
tional visitors to Japan in January 2016 reached to 1.85 mil-
lion, recording the highest figure for January on a monthly
basis [2]. Chinese tourists are going wild on a shopping
spree in Japan, resulting a new word “Bakugai” in Japanese.
It is highly important for Japanese tourism agencies includ-
ing government bodies and the private sector to understand
the trends affecting monthly tourist arrivals. Thus, the fore-
casting visitor arrivals is crucial for better tourism planning
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and administration.
Traditional tourism demand researches tend to use lin-

ear parametric time series forecasting models. The most
popular are the autoregressive integrated moving average
models [3]–[5], the naive method [6], [7], and the exponen-
tial smoothing model [8]. However, the predictions obtained
using these traditional models are usually imprecise, and it
is difficult to utilize these models to approximate nonlinear
and irregular tourism time series [9], [10].

Recently, more and more nonlinear forecasting models
are proposed to address the above issues in the time series
prediction. A piecewise linear method is proposed to model
and forecast the demand for the tourism, and the experimen-
tal results indicate that the piecewise linear model is signifi-
cantly more accurate than those autoregressive models [11].
A regime switching detection and forecasting model is pro-
posed in [12]. However, the performance of these models is
limited to the problems of proper model selection and data
dependency [10], [13].

On the other hand, machine learning techniques are de-
veloped for time series forecasting, such as support vector
machines [14]–[16], fuzzy time-series methods [17], rough
set approaches [18], [19], genetic programming [20], artifi-
cial neural networks (ANNs) [21]–[28] and their hybridiza-
tions [29]–[32]. These complex non-linear models over-
come the limitation of linear models as they are able to cap-
ture non-linear pattern of data, thus improving their predic-
tion performance.

Among them, ANNs are receiving increasing interests
due to their ability to adapt to imperfect data, functions of
self-organizing, self-study, data-driven, associated memory,
and arbiter function mapping [9]. ANNs can learn from pat-
terns and capture hidden functional relationships in a given
data even if the functional relationships are not known or
difficult to identify [33], [34]. Using the training methods,
an ANN can be trained to identify the underlying corre-
lation between the inputs and outputs, and finally to gen-
erate appropriate outputs. A number of researchers have
utilized ANNs to predict tourism demand [24], [25], [27],
[31], [35], [36]. Kon and Turner [24] provided a review of
the applications of ANN in tourism. Empirical evidences
show that ANNs outperform the classical linear models in
tourism forecasting. For example, the best performance was
obtained by an ANN method in [22] when compared it with
the naive, decomposition, exponential smoothing and re-
gression models.
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Although various ANNs have been proposed for
tourism time series, it is difficult to identify the best com-
pared with others over all instances [37] because each ANN
has its distinct characteristics and limitations, which influ-
ence the prediction performance. For example, despite the
widespread applicability of the multiple-layered perceptron
(MLP), the back-propagation-based MLP can only learn an
input-output mapping for static or spatial patterns that are
independent of time. The time-delayed ANN may be the
simplest choice for representing a wide range of mappings
between past and present values [38], but the fixed time de-
lays in these ANNs remain constant throughout training af-
ter initialization, thereby risking a mismatch between the
choice of time delay values and the temporal locations of
important information in the input patterns [39]. The El-
man recurrent ANN [40] has advantages compared with the
MLP because the memory features obtained using a feed-
back mechanism can be used to extract time dependencies
from the data. However, the traditional recurrent ANN al-
gorithms based on the gradient descent approach are well
known for their slow convergence and high computational
costs [41], thus it is difficult to utilize them in actual appli-
cations.

In this paper, we propose a realistic single dendritic
neuron model (SDNM) with synaptic nonlinearities in a
dendritic tree for tourism forecasting. The distinct charac-
teristic of SDNM is that the sense of locality of dendrites
can be represented and manipulated. For a specific given
task, SDNM is able to identify what type of synapse (exci-
tatory or inhibitory) is needed, where the synapse should be
located, which branch of the dendrite is needed, and which
one is not needed [42], [43]. This is realized by model-
ing the synaptic nonlinearity with a sigmoid function, and
thus enabling the single neuron to be capable of comput-
ing linearly non-separable functions and approximating any
complex continuous function [44], [45]. On the other hand,
although the tourist arrivals time series apparently is one-
dimension, it actually contains high-dimensional informa-
tion and is a result of many factors such as the tourism policy
which strongly influences the number of tourists, and thus
making the tourism data nonlinear, irregular, and difficult to
be predicted. To address this problem, we employ the phase
space reconstruction (PSR) technique based on the Takens’s
embedding theorem [46] to handle the chaotic properties of
the tourism time series before using SDNM to perform the
prediction. By doing so, a set of single observations from
the tourist arrivals can be reconstructed into a series of mul-
tiple dimensional vectors with two parameters of time de-
lay and embedding dimension. The acceptable dimensions
and time delay of the attractors in the tourism time series
can be obtained, thereby allowing the time series data to be
manipulated without losing the dynamic behavior and struc-
tural topology. Based on the the maximum Lyapunov expo-
nent of the reconstructed phase points of tourism time series,
SDNM is then used to perform short-term predications. Ex-
perimental results of the forecasting of the monthly foreign
tourist arrivals to Japan indicate that the proposed SDNM is

more efficient and accurate than other neural networks in-
cluding the MLP, the artificial neuro-fuzzy inference system
(ANFIS), the Elman network (Elman), and the single multi-
plicative neuron model (SMN).

The rest of the paper is organized as follows. Section 2
describes the SDNM in details. Section 3 elaborates more
about the prediction method by using PSR and SDNM. Ex-
perimental results and discussions are given in Sect. 4. Fi-
nally, concluding remarks are presented in Sect. 5.

2. Single Dendritic Neuron Model

Compared with ANNs which utilize more than one neurons
in information processing procedure, many attentions have
been paid to propose single neuron models, such as the sin-
gle multiplicative neuron model [47], [48] and the sigma-
pi unit [49]. However, these single neuron based models
are based on the architecture of the McCulloch-Pitts neu-
ron which uses weights to represent the degree of clustering
between synapses. Thus, all sense of locality in dendrites is
lost, and these models could not represent local interaction
within a fixed dendritic tree. Moreover, the nonlinear com-
putational capabilities of these McCulloch-Pitts based sin-
gle neuron models are limited to solve complex problems,
especially the non-linearly separated problems [50].

Different from the McCulloch-Pitts neuron based mod-
els which do not consider the dendritic structure in the neu-
ron, it has been recently conjectured by a series of theoret-
ical studies that individual neurons could act more power-
fully as computational units by considering synaptic non-
linearities in a dendritic tree [51], [52]. The various types
of synaptic plasticity and nonlinearity mechanisms allow
synapses to play a more important role in computations [53].
Synaptic inputs from different neuronal sources can be dis-
tributed spatially on the dendritic tree and the plasticity
in neuron can result from changing in synaptic strength
or connectivity, and the excitability of the neurons them-
selves [54]. Moreover, a slight morphological difference can
just cause great functional variation, acting as filters to de-
termine what signals a single neuron receives and then how
these signals are integrated [55].

By taking the nonlinearity of synapses into consider-
ation, a single dendritic neuron model (SDNM) has been
proposed in our previous researches [42], [44], [45]. In [42],
an unsupervised learning method was proposed for SDNM
to learn two-dimensional eight-directionally selective prob-
lems. In [44], an error back-propagation (BP) method was
used for training SDNM to perform cancer classification
tasks. In [45], we demonstrated that SDNM could be ap-
proximately realized by using logic NOT, AND and OR
operations, corresponding to its dendritic morphology, and
thus was suitable for a simple hardware implementation in
practice. In this study, we apply SDNM to perform the
tourism arrivals forecasting. The details of SDNM are de-
scribed in the following and its architecture is shown in
Fig. 1.

SDNM is constituted by four layers including a synap-
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Fig. 1 The architecture of the single dendritic neuron model (SDNM).

Fig. 2 Four kinds of connection cases in the synaptic layer.

tic layer which performs sigmoid functions, a dendrite layer
which acts as a multiplicative function for the outputs of
synapses, a membrane layer which actually is an addition
function for the outputs of all dendritic branches, and a soma
function which uses another sigmoid function to output the
result of the entire single neuron.

2.1 Synaptic Layer

A synapse refers to the connection between neurons at a
terminal bouton of a dendrite to another dendrite/axon or
the soma of another neural cell. The direction of infor-
mation flow is feedforward, from the presynaptic neuron
to postsynaptic neuron. The synapse can be either excita-
tory or inhibitory which depends on changes in the post-
synaptic potential caused by ionotropic. The function con-
necting the i-th (i = 1, 2, . . . ,N) synaptic input to the j-th
( j = 1, 2, . . . ,M) synaptic layer is expressed by Eq. (1). The
value k is a positive constant, and the weight wi j and the
threshold θi j are the connection parameters.

Yi j =
1

1 + e−k(wi j xi−θi j)
(1)

where xi is the input part of a synapse, referred to as the
pre-synaptic terminal, and its range is [0, 1].

Depending on the values of wi j and θi j, there are four
kinds of connection cases as shown in Fig. 2, where the
graph’s horizontal axis represents the inputs of presynaptic
neurons; the vertical axis shows the output of the synaptic

layer. Because the range of x is [0,1], only the correspond-
ing part needs to be observed. The four connection cases
include: (1) A constant 0 connection (when wi j < 0 < θi j

or 0 < wi j < θi j) where the output will approximately be 0
whenever the input changes from 0 to 1. (2) A constant 1
connection (when θi j < wi j < 0 or θi j < 0 < wi j) where the
output will approximately be 1 whenever the input changes
from 0 to 1. (3) Excitatory connection (when 0 < θi j < wi j)
where the synapse will be an excitatory type if the input
changes from 0 to 1 and the output is proportional to the in-
put. (4) Inhibitory connection (when wi j < θi j < 0) where
the synapse will be an inhibitory type and the output will be
inversely proportional to the input in this case.

It is worth pointing out that these four connection cases
are crucial to identify the morphology of a neuron via spec-
ifying the locations and synapse types of dendrites. For a
more detailed description of morphology detection, readers
can refer to [42], [44], [45].

2.2 Dendrite Layer

The dendrite layer simply performs a multiplication on var-
ious synaptic connections of each branch. As mentioned
before, the nonlinearity of synapses could be used to im-
plement a type of multiplication instead of summation, thus
our model adopts the multiplicative operation in the dendrite
layer. It should be noted that a soft-minimization operator
was utilized in our previous dendritic neuron model [42] to
deal with binary input classification problem, while the mul-
tiplicative operation adopted in this study can address real
number input problems. The multiplication is very equal to
the logic AND operation as the value of inputs and outputs
of the dendrites are either 1 or 0. In Fig. 1, the multiplica-
tion operator is represented by the symbol “π”. The output
equation for the j-th branch can be given as follows.

Zj =

N∏
i=1

Yi j (2)

2.3 Membrane Function

Subsequently, the result received from the branch is calcu-
lated by a summation operation, which is similar to a logic
OR operation in the binary case. The output is approximated
as follows.

V =
M∑
j=1

Zj (3)

2.4 Soma Function

Finally, a sigmoid function is utilized to obtain the value of
the output, which can be described as follows.

O =
1

1 + e−ksoma(V−θsoma)
(4)

The parameter ksoma is set as a positive constant and the
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threshold θsoma is adjusted from 0 to 1.

2.5 BP-like Learning Method

The error between the ideal target vector Tp and the actual
output vector Op (p = 1, 2, . . . , P) can be represented by
Eq. (5) and P denotes the number of training samples.

Ep =
1
2

(Tp − Op)2 (5)

According to the error back-propagation (BP) learning
rule [44], we can perform learning using a function for mod-
ifying the connection parameters wi j and θi j as the connec-
tion function during learning. The output vector produced
by the input vector is compared to the target vector, which
can decrease the error between output vector and teaching
signal Tp vector by correcting wi j and θi j. Eventually, the
synapses can converge to one of the four synaptic connec-
tions. The connection parameters should be corrected using
the gradient descent learning function, which is a method
for modifying the value of the error function, as follows:

Δwi j(t) = −η
P∑

p=1

∂Ep

∂wi j
(6)

Δθi j(t) = −η
P∑

p=1

∂Ep

∂θi j
, (7)

where η represents the learning constant and it is a positive
constant. The updating rules for wi j and θi j are defined as:

wi j = wi j + Δwi j(t) (8)

θi j = θi j + Δθi j(t) (9)

where t denotes the learning epoch.
It should be pointed out that the BP learning method is

carried out in a batch mode, where the weight changes re-
sulted by BP are accumulated over an entire presentation of
training samples before the updating (i.e., Eqs. (8) (9)) is ap-
plied. The reasons that the batch mode is selected are mani-
fold: (1) it requires less weight update and provides a more
accurate measurement of the required weight changes [56];
(2) the batch mode requires shorter training time since up-
dates can be done much faster [57], [58]; and (3) the batch
training is theoretically superior to on-line training because
it uses the true gradient and is slightly more efficient in terms
of computations [59].

Moreover, the partial differentials of E with respect to
wi j and θi j can be computed as follows.

∂Ep

∂wi j
=
∂Ep

∂Op
· ∂Op

∂V
· ∂V
∂Zj
· ∂Zj

∂Yi j
· ∂Yi j

∂wi j
(10)

∂Ep

∂θi j
=
∂Ep

∂Op
· ∂Op

∂V
· ∂V
∂Zj
· ∂Zj

∂Yi j
· ∂Yi j

∂θi j
(11)

The components in the above partial differential are
shown as follows.

∂Ep

∂Op
= Op − Tp (12)

∂Op

∂V
=

ksomae−ksoma(v−θsoma)

(1 + e−ksoma(v−θsoma))2
(13)

∂V
∂Zj
= 1 (14)

∂Zj

∂Yi j
=

N∏
L=1 andL�i

YL j (15)

∂Yi j

∂wi j
=

kxie−k(xiwi j−θi j)

(1 + e−k(xiwi j−θi j))2
(16)

∂Yi j

∂θi j
=
−ke−k(xiwi j−θi j)

(1 + e−k(xiwi j−θi j))2
(17)

2.6 Remarks regarding Characteristics of SDNM

• The architecture of SDNM is similar to those of multi-
plicative neuron models and sigma-pi models. They are
multiple-layered and signals are transferred in a feed-
forward manner. As a result, the functions used in these
models can be reciprocated. For example, the radial
basis functions using Gaussian kernels, a simplified
fuzzy logic formulation and kernel-regression models
are able to be represented by a variation of sigma-pi
formulation [60]. Furthermore, some of them are iso-
morphic (e.g. the augmented two-layer neuron model
2LM is isomorphic to a traditional ANN [61]).
• Multiplication is both the simplest and one of the most

widespread of all nonlinear operations in the nervous
system [62]. Taking advantage of the multiplication
operation which is essential and important to the infor-
mation processing in a neuron [63], the computation in
synapses is innovatively modelled using sigmoid func-
tions. Depending on the values of the parameters in
synapses, the output of synapses can successfully rep-
resent excitatory, inhibitory, constant 0 and constant 1
signals, which is benefit for identifying the morphol-
ogy of a neuron [42].
• SDNM has been successfully applied on a number of

classification problems, such as XOR [64], cancer di-
agnosis [44], Iris and Glass datasets [45]. On the con-
trary, some other dendritic neuron models are not able
to solve such nonlinearly separated problems [50] (e.g.,
the Legenstein-Maass model [65]). More importantly,
the classifier resulted from SDNM can be easily imple-
mented in hardware [45] using logic circuits.

3. Forecasting Framework for Tourist Arrivals

The framework for forecasting the tourist arrivals based on
PSR and SDNM is shown in Fig. 3, where PSR is utilized
to analyze the behavior of tourism time series based on the
Takens’s embedding theorem and SDNM is used to perform
the predication. Following Fig. 3, the procedures of the fore-
casting method are summarized as in the following.
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Fig. 3 Prediction framework based on the proposed SDNM.

3.1 Input Time Series Data

Let xt be the one-dimensional tourism time series at time t,
(t = 1, 2, . . .). First of all, xt is input and processed using
a normalization method to the range of [0, 1] according to
Eq. (18).

yt =
xt − MIN(xt)

MAX(xt) − MIN(xt)
(18)

where yt is the normalized data to alleviate the problem
of inconsistent measures for different time series data, and
MAX (MIN) returns the maximal (minimal) value of the
vector. It is worth emphasizing that the normalization
method is performed on both training and testing samples
of the tourism time series. That is to say, the dataset used
in the experiment has been pre-processed by normalizing
them between 0 and 1. Other normalization methods, such
as the mean and variance normalization, or simple normal-
ization [33] are also worth being utilized [66] For a compre-
hensive review of the data normalization techniques in neu-
ral networks for forecasting, readers can refer to as in [33].

3.2 Phase Space Reconstruction

Real-world tourism time series perform chaotically and un-
predictably according to long-term observations, and thus it
is difficult to obtain reliable future forecasts. By contrast,
they exhibit periodicity when reconstructed as a phase point
in a phase space. Thus, making predictions in the phase
space based on PSR is easier than using a one-dimensional
time series. PSR is regarded as the basis of chaotic time
series and widely used in non-linear system analysis. It is
a theory for inferring geometrical and topological informa-
tion related to a dynamical attractor based on observations.

Takens [46] proposed the delay coordinates method of PSR
for time series analysis, and proved that PSR can unfold the
time series into an m-dimensional embedding space while
retaining the topology of the higher dimensional dynamic
system with the chaotic attractor.

Two parameters of the time delay τ and the embedding
dimension m are very important in PSR. Theoretically any
value of τ is acceptable for the choice of the delay time.
However, the appearance of the reconstructed attractor de-
pends strongly on the choice of embedding lag. A suitable
value for τ must bear the function to sufficiently separate
the data in the time series as to have a smooth reconstruc-
tion of the attractor. In this study, we use an appropriate
embedding dimension m and time delay τ to reconstruct the
phase space. The Grassberger-Procaccia algorithm [67] is
used to determine the embedding dimension m and the mu-
tual information function [68] is used to calculate the time
delay τ. More details regarding the implementation of these
two methods are interpreted in Sect. 4. As a result, a recon-
structed phase space can be represented by a matrix (P,T )′
for the normalized time series yt, t = 1, . . . ,N, where

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1 y2 . . . yN−1−τ(m−1)

y1+τ y2+τ . . . yN−1−τ(m−2)

. . .
y1+τ(m−1) y2+τ(m−1) . . . yN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

T = (y2+τ(m−1), y3+τ(m−1), . . . , yN) (20)

In the training and forecasting process of SDNM, P is used
as the input data, while T is treated as the target data.

3.3 Maximum Lyapunov Exponent Calculation

To determine whether a long-term or a short term predica-
tion of the trajectory of the tourism can be made, it is neces-
sary to calculate the Lyapunov exponents of the time series
which is able to quantitatively characterize the chaotic at-
tractor and provides an important measure for the sensitiv-
ity of the chaotic orbit to its initial conditions. Lyapunov
exponents describe the growth or shrinkage rate of small
perturbations in different directions in the phase space of
the orbits. The time series changes into chaos when the
Lyapunov exponent is computed as positive [69]. The Wolf
method [69] is employed to compute the largest Lyapunov
exponents of the chaotic time series based on the phase track
in the present study. We assume that the initial time is t0 and
that the reconstructed first phase point is yt0 , where the min-
imum length compares yt0 with its adjacent phase points is
L0. By considering the evolution of the two phase points,
the distance L′0 > ε has a positive threshold value when the
time is t1, L′0 = ||yt1 − yt0 ||. If another phase point y1

t1 with
L1 = ||yt1 − y1

t1 || < L′0 is found, then L′0 will be substituted.
Finally, this calculation process is continued until yt arrives
at the end of the time series yN . Hence, we can process the
largest Lyapunov exponent as the following function.

λmax =
1

tm − t0

m∑
i=0

ln
L′i
Li

(21)
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Fig. 4 The monthly tourist arrivals from ten major source markets and six continents to Japan.

In a chaotic system, we can only predict the time series in
short intervals. The reciprocal Lyapunov exponent can be
used to determine how short the intervals will be in the-
ory [70], [71].

Δt =
1
λmax

(22)

When the maximum Lyapunov exponent exceeds zero, the
system exhibits chaos. If it is greater than one, the pre-
dictable limit is less than the sampling frequency. Thus,
the chaotic time series predictions are only of practical use
when the chaotic system with the maximum Lyapunov ex-
ponent is between zero and one. If the positive exponent
approaches zero, long-term predictions are possible.

3.4 Prediction Using SDNM

When the reconstruction of phase space and maximum Lya-
punov exponent calculation accomplished, we carry out the
prediction for tourism arrivals based on the SDNM de-
scribed in Sect. 2. First, we divide all time series data into
two parts: one is used as training data set and the other is
used to verify the prediction accuracy. Then we implement
the BP-like learning method to optimize the weights wi j and
thresholds θi j in the synaptic layer of SDNM until a learning
termination condition is fulfilled. In this study, a maximum
learning epoch Lmax is used as the termination condition.
Finally, we output the prediction results using some assess-
ment methods.

4. Experimental Results and Analysis

We use our proposed method to study monthly foreign
tourist arrivals to Japan from the eight major markets of
China, Korea, Hong Kong, Thailand, Taiwan, Singapore,
Australia, USA, Canada and UK, and form six continents

of Asia, Europe, Africa, North America, South America,
and Oceania, respectively, from January 1996 to Decem-
ber 2014. These data are published by Japanese National
Tourism Organization [1]. Figure 4 illustrates these data
in one-dimensional time series. For each sequence of the
tourism arrival, there are 228 points, where the first 168 (14
years) points are employed for SDNM learning and the re-
maining 60 (5 years) points for verification. All experiments
are conducted using Matlab (R2013) software on a personal
PC with Intel(R) Core i5, 1.70GHz and 4GB memory.

4.1 Time Delay and Embedding Dimension

The time delay τ is calculated to take the value for which
the mutual information has its first minimum [68]. The
mutual information I(y, yτ) between two time series y =
{yt1 , yt2 , . . . , ytN } and yτ = {yt1+τ, yt2+τ, . . . , ytN+τ} is the av-
erage bits where y was predicted by the measurement from
yτ. I(y, yτ) can be represented as

I(τ) = I(y, yτ) = H(y) + H(yτ) − H(y, yτ) (23)

where H(y) and H(yτ) are the entropy of y and yτ respec-
tively. H(y, yτ) is the mutual entropy between y and yτ. Gen-
erally, the moment of the first minimal mutual information
is taken as the optimal delay time for PSR. Figure 5 shows
the time delay sequence of the monthly tourism arrivals time
series from China to Japan with respect to the mutual infor-
mation. It is apparent that the time delay is 3 months as the
first minimal mutual information appears, namely τ = 3. All
the time delays for ten major source markets and six conti-
nents are summarized in Table 1 and Table 2 with the values
located in the interval of [2, 7].

Once the time delay is determined, we use the
Grassberger-Procaccia algorithm to calculate the embedding
dimension. First, the correlation integral C(r) is calculated:
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Fig. 5 The mutual information versus time delay for tourism time series
from China to Japan after PSR.

Table 1 Results of PSR for the monthly tourist arrivals from ten major
source markets to Japan: the embedding delay τ, the embedding dimen-
sion m, and the maximum Lyapunov exponents MLE.

Country τ m MLE
China 3 8 0.2510
Korea 2 12 0.0779
Hong Kong 3 6 0.3060
Thailand 4 4 0.2121
Taiwan 5 4 0.1416
Singapore 2 18 0.0173
Australia 2 13 0.0333
USA 4 12 0.2520
Canada 2 10 0.1269
UK 2 12 0.0669

Table 2 Results of PSR for the monthly tourist arrivals from six conti-
nents to Japan: the embedding delay τ, the embedding dimension m, and
the maximum Lyapunov exponents MLE.

Continent τ m MLE
Asia 2 12 0.0067
Europe 2 14 0.0473
Africa 4 6 0.3339
North America 7 9 0.0146
South America 3 9 0.0691
Oceania 2 14 0.0467

C(r) =
2

Nm(Nm) − 1

∑
1≤i≤ j≤Nm

ϕ(r − |yi − y j|) (24)

where Nm = N − τ(m − 1), r is the chosen radius and ϕ(·)
is the Heaviside function. The correlative dimension D(m)
(D(m) = ln(C(r))/ln(r)) increases with the increment of the
embedding dimension m, and gradually converges to a satu-
ration value. We plot ln(C(r)) vs. ln(r) for different m, which
is presented in Fig. 6, for the monthly tourism arrivals time
series from China to Japan. Intuitively, several nearby paral-
lel line segments exist in the figure, which indicate that when
ln(r) varies in [9.5, 13], the embedding dimension m varies
from 1 to 20. The slopes of the line portion can be estimated
as the correlation dimension which is shown in Fig. 7. The
embedding dimension is determined as the value when D(m)
first reaches a stable value. Thus, we obtain m = 8 for the
monthly tourism arrivals time series from China to Japan.
The values of the embedding dimension for other time se-
ries instances are summarized in Table 1 and Table 2.

Fig. 6 The correlation function, ln(C(r)) versus ln(r) of the monthly
tourist arrivals from China to Japan.

Fig. 7 Correlation dimension (fitted ln(C(r)/ln(r))) versus the embedding
dimension for tourism time series from China to Japan after PSR.

4.2 PSR and Lyapunov Exponent

Using the obtained time delay τ and embedding dimension
m, we reconstruct the phase space by Eqs. (19) and (20)
from the original one-dimension time series. The recon-
structed phase space is exhibited using a three-dimensional
phase space, although the calculated embedding dimension
m = 8 in the tourism time series of China, which means that
it is difficult to explicitly map the higher-dimensional in-
formation onto a lower-dimensional space. However, we lo-
cate three vectors in different three-dimensional phase space
without losing the distortion factor because the three dimen-
sions contributed to the geometric representation, and thus
they can also intuitively represent the structure of the attrac-
tor. Figure 8 depicts the results of PSR using two three-
dimensional vectors (yt, yt+3τ, yt+6τ) and (yt+τ, tt+4τ, tt+7τ)
for the PSR results of China, respectively. Both three-
dimensional vectors show clear chaotic attractors, which
suggest that the distributed trace for the tourism exhibits the
property of dissipation, and thereby indicating that it is an
ordered dynamic system despite possessing the features of a
strange attractor. Similar PSR results can also be plotted for
the other tourism time series.

The Lyapunov exponents are the average exponential
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rates of divergence or convergence of adjacent orbits in
phase space. All maximum Lyapunov exponents (MLE) for
the tourism time series are calculated to verify whether the
tourism system is chaotic and further to determine the lim-
itation of the predication. The MLE results are also sum-
marized in Table 1 and Table 2, and these MLE are positive
values between [0, 1] for all cases, indicating chaotic behav-

Fig. 8 Three-dimension phase space for tourism time series from China
to Japan after PSR.

Fig. 9 Performance of proposed method for the tourism time series of Korea to Japan: (a) training and
prediction results, (b) convergence graph based on the BP-like learning, (c) the correlation coefficient
of fitting, and (d) the correlation coefficient of prediction.

iors. Besides, as the obtained MLE has relative large values,
it is more reliable to predict the tourism arrivals in a shorter
time range (i.e., to perform a short-term forecasting).

4.3 Short-Term Forecasting and Performance Comparison

Generally, with the length of the time range to be forecasted
increasing, the predication accuracy will decrease. In this
study, we use five years as the forecasting time length to
evaluate the performance of our proposed method. It is
worth emphasizing that, within the five years, the former es-
timated values will be used to forecast the latter values based
on PSR. In addition, user-defined parameters in SDNM in-
fluence the prediction performance for the tourism time se-
ries. These parameters include the number of dendrites M,
the parameter k in synapses (Eq. (1)), the parameters ksoma

and θsoma in the soma function (Eq. (4)), the BP learning rate
η (Eqs. (6) and (7)), and the maximum learning epoch Lmax.
It should be noted that the input number parameter N is set
to be the embedding dimension m in SDNM.

It is not trivial to set user-defined parameters to ob-
tain the best performance for SDNM, and generally no sys-
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Table 3 Results based on the L16(45) orthogonal array and factor assign-
ment.

No. M k ksoma θsoma η MSE (×10−2) Time
1 1 1 1 0 0.005 3.63 ± 0.58 2.8
2 1 3 3 0.3 0.01 2.01 ± 0.45 2.8
3 1 5 5 0.5 0.05 1.57 ± 0.37 2.8
4 1 10 10 0.9 0.1 1.83 ± 0.46 2.8
5 3 1 3 0.5 0.1 1.61 ± 0.57 8.8
6 3 3 1 0.9 0.05 1.56 ± 0.73 8.8
7 3 5 10 0 0.01 2.33 ± 0.75 8.8
8 3 10 5 0.3 0.005 1.98 ± 0.81 8.8
9 5 1 5 0.9 0.01 3.45 ± 1.24 12.7

10 5 3 10 0.5 0.005 2.23 ± 0.95 12.7
11 5 5 1 0.3 0.1 2.35 ± 1.02 12.7
12 5 10 3 0 0.05 2.77 ± 1.45 12.7
13 10 1 10 0.3 0.05 3.05 ± 1.68 18.5
14 10 3 5 0 0.1 2.94 ± 1.43 18.5
15 10 5 3 0.9 0.005 2.37 ± 1.02 18.5
16 10 10 1 0.5 0.01 1.84 ± 0.53 18.5

tematic procedure exists to find out the optimal values for
these parameters except the exhaustive method which is
very time-consuming. Also, it is clear that the parameter
M plays a significant influence on the computational time
of SDNM. Moreover, we find that Lmax = 1000 is a suf-
ficient large learning epoch to make the training algorithm
converge for all tested time series data (e.g., as shown in
Fig. 9 (b)).

As a preliminary experiment, we use Taguchi’s
method [72] to find a reasonable setting combination of
these parameters. Taguchi’s method tests part of the pos-
sible combinations among factors and levels instead of full
factorial analysis, and it commits to a minimum of exper-
imental runs and best estimation of the factor main effects
over the process [73]. The number of levels for each of
the five factors (i.e., the user-defined parameters) is set as
follows: four levels for the number of dendrites, that is
M = 1, 3, 5, 10; four levels for the parameter k, that is
k = 1, 3, 5, 10; four levels for the parameter ksoma, that is
ksoma = 1, 3, 5, 10; four levels for the parameter θsoma, that
is θ = 0, 0.3, 0.5, 0.9; and four levels for the BP learning
rate η, that is η = 0.005, 0.01, 0.05, 0.1, respectively. A
full factorial design of experiment should result in a total
of 45 = 1024 experiments. In contrast with the full factorial
analysis, the Taguchi’s method uses the orthogonal arrays
reducing the number of experimental runs, and controlling
the cost of time, manpower and materials, effectively. Thus,
an orthogonal array L16(45) which contains only 16 experi-
ments is adopted in the preliminary study.

Table 3 summarizes the experimental results based on
the orthogonal array and factor assignment, where the MSE
values are displayed in the form of “Mean ± Standard De-
viation” over 25 runs, and computational times are average
values in seconds. As a result, aiming to reduce the run-
ning time of training and forecasting, we adopt an accept-
able setting of these user-defined parameters based on our
preliminary experimental results, shown as: M = 1, k = 5,
ksoma = 5, θsoma = 0.5, η = 0.05, and Lmax = 1000. Nev-
ertheless, it is worth noticing that we have to be cautious
about generalizing our conclusions here until a full factorial

Table 4 Experimental results the monthly tourist arrivals from ten ma-
jor source markets to Japan.

MLP Elman ANFIS SMN SDNM
China MSE 0.041 0.052 0.020 0.021 0.019

RF 0.53 0.46 0.75 0.73 0.77
RP 0.11 0.04 0.66 0.65 0.68
Time 12.6 14.7 11.9 4.9 2.9

Korea MSE 0.032 0.025 0.027 0.018 0.015
RF 0.71 0.78 0.76 0.80 0.82
RP 0.34 0.43 0.55 0.69 0.73
Time 12.3 14.5 11.6 4.5 2.7

H. K. MSE 0.045 0.050 0.038 0.029 0.021
RF 0.64 0.44 0.57 0.71 0.80
RP 0.17 0.12 0.22 0.45 0.71
Time 12.8 14.6 11.8 4.8 2.8

Thail. MSE 0.041 0.037 0.039 0.026 0.019
RF 0.60 0.69 0.77 0.78 0.83
RP 0.25 0.48 0.63 0.69 0.75
Time 12.9 14.5 11.7 4.9 2.8

Taiwan MSE 0.034 0.037 0.019 0.020 0.013
RF 0.78 0.73 0.80 0.83 0.86
RP 0.66 0.69 0.71 0.68 0.82
Time 12.8 14.3 11.8 4.6 2.8

Sing. MSE 0.021 0.011 0.008 0.008 0.006
RF 0.73 0.88 0.92 0.95 0.97
RP 0.55 0.80 0.86 0.89 0.92
Time 12.4 14.1 11.7 4.5 2.7

Austr. MSE 0.028 0.029 0.018 0.017 0.015
RF 0.79 0.77 0.80 0.82 0.85
RP 0.65 0.64 0.72 0.80 0.83
Time 12.5 14.2 11.9 4.6 2.8

USA MSE 0.031 0.036 0.019 0.021 0.019
RF 0.65 0.71 0.79 0.81 0.82
RP 0.63 0.56 0.74 0.62 0.78
Time 12.4 14.5 11.7 4.6 2.7

Canada MSE 0.029 0.031 0.016 0.019 0.016
RF 0.80 0.73 0.83 0.81 0.85
RP 0.71 0.58 0.71 0.64 0.81
Time 12.5 14.6 11.8 4.5 2.8

UK MSE 0.028 0.029 0.015 0.018 0.013
RF 0.76 0.83 0.88 0.78 0.90
RP 0.69 0.67 0.84 0.69 0.84
Time 12.6 14.7 11.9 4.5 2.8

analysis is completed.
We use three assessments to evaluate the performance

of SDNM, and compare SDNM with the traditional MLP
network model [74], the Elman neural network [75], the
ANFIS [76] and the SMN [47]. The three assessment cri-
terions are calculated based on Eqs. (25) and (26).

• The mean square error (MSE) of the predictor for the
normalized data is:

MSE =
1

2n

n∑
i=1

(Oi − Ti)
2 (25)

• The correlation coefficient of fitting (RF) and the cor-
relation coefficient of prediction (RP) is calculated for
the training phase and predication phase, respectively:

R =

∑n
i=1(Ti − Ti)(Oi − Oi)√∑n

i=1(Ti − Ti)2
∑n

i=1(Oi − Oi)2

(26)

where Oi is the vector of the output of the used predication
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Table 5 Experimental results the monthly tourist arrivals from six con-
tinents to Japan.

MLP Elman ANFIS SMN SDNM
Asia MSE 0.052 0.047 0.029 0.039 0.020

RF 0.31 0.45 0.72 0.72 0.78
RP 0.11 0.19 0.60 0.59 0.62
Time 12.7 14.9 11.9 4.7 2.8

Europe MSE 0.036 0.031 0.018 0.021 0.013
RF 0.79 0.75 0.83 0.76 0.88
RP 0.43 0.51 0.76 0.53 0.80
Time 12.8 14.8 11.8 4.8 2.7

Africa MSE 0.031 0.025 0.017 0.018 0.013
RF 0.69 0.76 0.86 0.91 0.93
RP 0.55 0.62 0.78 0.83 0.87
Time 12.8 14.8 11.8 4.8 2.8

N. Ame. MSE 0.025 0.022 0.019 0.020 0.017
RF 0.84 0.80 0.85 0.74 0.84
RP 0.77 0.78 0.81 0.72 0.77
Time 12.9 14.9 11.8 4.9 2.9

S. Ame. MSE 0.031 0.029 0.021 0.018 0.016
RF 0.79 0.89 0.82 0.79 0.89
RP 0.65 0.73 0.76 0.73 0.81
Time 12.8 14.8 11.8 4.9 2.9

Oceania MSE 0.033 0.029 0.023 0.018 0.017
RF 0.78 0.79 0.75 0.85 0.87
RP 0.62 0.75 0.67 0.76 0.80
Time 12.8 14.8 11.9 4.8 2.8

model, Ti is the vector of the true values, and n is the number
of testing data samples (P = 168 in the training phase and
n = 60 in the predication phase).

We implement all predication models for 25 indepen-
dent runs and the average performance values are summa-
rized in Tables 4 and 5 for the ten major source market data
and six continents data, respectively. In the preliminary ex-
periment, we empirically adjust the network size together
with the parameter values to make the compared models
achieve their roughly best performance. These parameter
settings in MLP, Elman, ANFIS and SMN also follow the
general suggestions in the original research paper and the
obtained preliminary experimental data. From Tables 4 and
5, it is clear that all the MSE obtained by SDNM are less
than 0.021, thereby demonstrating the high accuracy of the
predictions. The RF and RP values are higher than those
obtained using MLP, Elman, ANFIS, and SMN with the
same training data and test data. The computational time
consumed by SDNM is the least among the five compared
models.

Moreover, we plot a typical running result for the
tourism time series of Korea in Fig. 9, where (a) depicts the
data fitting graphs of training and predication; (b) gives a
convergence graph of the training phase; (c) illustrates the
correlation coefficient of fitting; and (d) is the correlation
coefficient of prediction. From this figure, we can find that
both training and predication the outputs values obtained by
SDNM are quite near the actual values, and a quick conver-
gence is acquired, suggesting that the SDNM is somewhat
easy to be trained. Relative high values of the correlation
coefficients in training phase (RF = 0.8598) and predica-
tion phase (RP = 0.75175) can be obtained, verifying that
the proposed model ban be utilized with great confidence.

All in all, from the experimental results it can be said that
SNDM outperforms its competitor models in terms of pred-
ication accuracy and computational time.

5. Conclusions

In this study, we presented a short-term forecasting model
based on a single dendritic neuron model (SDNM) for the
tourism arrivals predication. First, chaotic properties of the
tourism time series were confirmed using three classic in-
dicators in the Takens’s theorem, including the time delay,
the embedding dimension, and the maximum Lyapunov ex-
ponent. Then SDNM was used to perform the predication
based on the reconstruction technique of phase space. Ex-
perimental results showed the model’s high prediction ac-
curacy and fitting effect. Performance comparisons demon-
strated the superiority of SDNM.

The contributions of this study lie in three aspects.
Theoretically it strengthens the assumption that a neural net-
work model performs better than linear models when pre-
dicting nonlinear variables [10], [13], [24]. From the appli-
cation perspective, SDNM based on PSR provides an effect
alternative to learn the chaotic propensities of tourism time
series. In practice, the comparative experiment results might
give some insights into the selection of neural models for
decision makers.

This study opens the door to the following future
research. First, more applications should be made on
optimization, classification, and predication problems for
SDNM to further verify its information processing capacity.
Second, settings of the user-defined parameters need to be
investigated systematically and some self-adaptive setting
mechanisms should be developed. Last but not least, the
hardware implementation of the approximated SDNM [45]
can also be realized.
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