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PAPER

Cache-Aware, In-Place Rotation Method for Texture-Based Volume
Rendering

Yuji MISAKI†a), Nonmember, Fumihiko INO†, and Kenichi HAGIHARA†, Members

SUMMARY We propose a cache-aware method to accelerate texture-
based volume rendering on a graphics processing unit (GPU) that is com-
patible with the compute unified device architecture. The proposed method
extends a previous method such that it can maximize the average rendering
performance while rotating the viewing direction around a volume. To re-
alize this, the proposed method performs in-place rotation of volume data,
which rearranges the order of voxels to allow consecutive threads (warps)
to refer to voxels with the minimum access strides. Experiments indicate
that the proposed method replaces the worst texture cache (TC) hit rate of
42% with the best TC hit rate of 93% for a 10243-voxel volume. Thus,
the average frame rate increases by a factor of 1.6 in the proposed method
compared with that in the previous method. Although the overhead of in-
place rotation slightly decreases the frame rate from 2.0 frames per second
(fps) to 1.9 fps, this slowdown occurs only with a few viewing directions.
key words: cache optimization, volume rendering, in-place algorithm,
GPU, CUDA

1. Introduction

Volume rendering [1] is a visualization technique that can
generate a 2-D projection of 3-D volume data with an ar-
bitrary viewing direction. For example, volume rendering
visually supports the understanding of time-varying fluid
simulation [2]–[4] and computer-aided diagnosis in clinical
fields [5], [6]. A typical visualization technique is ray cast-
ing [7], which propagates rays from the viewpoint to every
pixel on the screen, as shown in Fig. 1. A pixel value can
be computed by accumulating the values of penetrated vox-
els on the ray at regular intervals. Ray casting can be eas-
ily parallelized because each pixel computation is indepen-
dent in terms of data dependence. However, ray casting is
a memory-bound application because of the low locality of
references; penetrated voxels can only be reused between
neighboring rays.

Therefore, many volume renderers [8] are accelerated
by a graphics processing unit (GPU) [9], which provides
not only one magnitude higher memory bandwidth over
the CPU but also thousands of processing cores within a
chip. For example, NVIDIA’s Maxwell architecture [9] pro-
vides 336 GB/s of memory bandwidth with 3072 process-
ing cores. These rich resources use millions of GPU threads
to independently compute pixel values. Furthermore, the
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Fig. 1 Geometric relations between the volume axes and the screen: (a)
rays are propagated from the viewpoint, which can be rotated around the
volume; (b) θy represents the viewing angle around the y-axis. Angles θy =
90 and 270 are unfavorable whereas angle θy = 0 is favorable.

GPU provides hardware-accelerated trilinear interpolation.
This acceleration is realized by texture units [10] that are
separated from the processing cores. Thus, interpolation
for every sampling point on rays can be offloaded from the
processing cores to the texture units. To take advantage
of this technique, existing volume renderers [11]–[14] typi-
cally store volume data in texture memory, which is then ac-
cessed by the processing cores to rapidly fetch interpolated
texels through a texture cache (TC). Consequently, maxi-
mizing the TC hit rate is the key to achieving high perfor-
mance for memory-bound volume rendering on a GPU.

Previous studies have accelerated volume rendering by
maximizing the TC hit rate. Sugimoto et al. [13] presented
a cache-aware volume rendering method that dynamically
selects the best shape (i.e., width and height) of thread
blocks [10], according to the viewing direction. Their dy-
namic method attempts to minimize the memory access
stride for warps [10], i.e., a series of consecutive threads that
execute the same instruction every clock cycle. To achieve
this, they analyzed the memory access stride, which varies
according to the direction of the neighboring voxels, i.e.,
the x-, y-, and z-directions, as shown in Fig. 2. For example,
their method selects a horizontally long thread block (i.e.,
horizontally long warps) when the x-axis of the volume,
which has the smallest stride between neighboring voxels,
is rendered horizontally on the screen. With an NVIDIA
GeForce 580 GTX GPU, this minimization increases the
worst frame rates by a factor of 2.2 when projecting a 10243-
voxel volume onto a 10242-pixel screen. The main draw-
back of this method is that the minimization is insufficient
for unfavorable viewing directions where the x-axis is par-
allel to the penetrating rays as shown in Fig. 1 (b). In gen-
eral, threads in the same warp simultaneously access voxels
on the yz-plane in this case, and this access pattern causes
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Fig. 2 Principles of thread block shaping [13]. Thirty-two threads in a
warp are assumed to simultaneously access voxels on a facing place (the
xy-plane, in this example). The shape of thread blocks is determined such
that the memory access stride between simultaneously accessed voxels is
minimized. In this example, a horizontally long shape rather than a ver-
tically long shape is selected because neighboring voxels along the x-axis
have a smaller stride than those along the y-axis.

relatively large strides because the simultaneously accessed
voxels are not oriented along the x-axis. In fact, the best
frame rate was 2.7 times higher than the worst frame rate.

In this study, we present a cache-aware method to ac-
celerate texture-based volume rendering on a GPU. The pro-
posed method extends a previous method [13] such that it
can increase the average frame rate obtained while rotating
the volume using an in-place rotation algorithm that dynam-
ically rearranges the order of voxels to allow unfavorable
viewing directions to be interpreted as favorable. Here, an
in-place algorithm is defined as an algorithm that requires
O(1) memory space (except the original volume data). The
in-place procedure is activated when the viewing direction
enters from a favorable (unfavorable) region to an unfavor-
able (favorable) region. This data rearrangement takes place
at run-time; therefore, its overhead can drop the worst ren-
dering performance. However, after changing the order of
voxels, unfavorable directions can be processed as favor-
able directions rapidly; thus, the average performance can
be significantly increased. Our renderer was implemented
on a GPU that is compatible with the compute unified de-
vice architecture (CUDA) [10].

Our in-place implementation is based on a tile-based
matrix transpose method [15] that utilizes (on-chip) shared
memory [10] for optimization of off-chip memory access.
Because the volume rotation cannot be realized with matrix
transpose, we extend this previous method for volume rota-
tion. We show that (1) a tile-based approach is useful for
in-place rotation and (2) 3-D tiles rather than 2-D tiles real-
ize efficient rotation with reduced (off-chip) memory access.

The remainder of this paper is organized as follows.
Related studies are discussed in Sect. 2. Section 3 sum-
marizes the previous method [13], which is the basis of the
proposed cache-aware method. Section 4 describes the pro-
posed method, and Sect. 5 gives experimental results. Sec-
tion 6 concludes this paper and provides suggestions for fu-
ture studies.

2. Related Work

Weiskopf et al. [16] presented a data structure that splits a
volume into smaller subvolumes called bricks. Each brick

comprises 43 voxels, and the bricks are oriented in different
directions. Consequently, for any viewing direction, half
the bricks are oriented along the viewing direction and the
remaining bricks are oriented in the perpendicular direction.
Thus, the performance variance for different viewpoints is
averaged. In contrast to this averaging strategy, the proposed
method accepts some overheads at specific viewing direc-
tions to obtain the maximum performance for other viewing
directions.

A similar averaging strategy was presented by Wang
et al. [14], [17], who presented a sampling strategy called
warp marching to realize constant rendering performance
while rotating the volume by exploiting the data parallelism
not only between rays but also on each ray. In other words,
a warp is responsible for a ray so that threads in the warp
can simultaneously access voxels along the ray. This is use-
ful for unfavorable viewing directions where the x-axis is
parallel to the rays. With an NVIDIA GeForce GTX TI-
TAN GPU, their method increased the worst frame rates
from 15 frames per second (fps) to 30 fps when projecting a
10243-voxel volume onto a 5122-pixel screen. However, the
best frame rate dropped from 60 fps to 45 fps because the
best performance was obtained while facing the xy-plane.
In other words, the warps responsible for the same ray can
suffer from large strides when accessing voxels neighboring
along the z-axis.

Jönsson et al. [18] presented a data structure that ex-
ploits inter-ray coherence by sharing cached data called
marching cache between neighboring rays. Their method
stores a marching cache in shared memory [10], which can
be rapidly accessed as software managed cache. However,
one drawback of shared memory is a lack of hardware-
accelerated interpolation. Compared with a texture-based
implementation, the rendering performance decreased by
roughly 71% using trilinear interpolation. Consequently,
marching caches are useful for high-quality volume ren-
dering that uses a complex filter, such as the Catmull-Rom
spline [19] or a B-spline [20]. A similar approach was pre-
sented by Mensmann et al. [21], who stored the subvolume
in shared memory.

In general, cache-aware methods are useful for accel-
erating memory-bound applications. Zheng et al. [22] pre-
sented a cache-aware memory-scheduling scheme for cone
beam backprojection [23], [24], which is an inverse volume
rendering problem. In other words, a series of 2-D projec-
tions are backprojected into 3-D space to reconstruct volume
data. To increase the cache hit rate during backprojection,
their method rotates the volume such that warps can access
a small region on the projections. This idea is similar to our
data rearrangement strategy, but we employ an in-place rota-
tion algorithm for an inverse problem wherein warps primar-
ily access a small region in the volume (3-D texture) rather
than the projections (2-D textures).

3. Principles of Warp-Level Cache Optimization

The basic idea of the previous method [13] is the warp-level
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Fig. 3 Memory access strides between neighboring voxels in a 3-D tex-
ture. The access stride ratio of the x-, y-, and z-axis is 1 : 2 : 6 [13] if the
texture is stored in the Morton order [25].

cache optimization for volume rendering. This warp-level
strategy is effective on the GPU because threads in the same
warp issue the same memory transaction simultaneously. To
achieve this warp-level optimization, Sugimoto et al. [13]
analyzed the memory access strides along the volume axes.
They focused on the Morton order [25] and showed that the
memory stride ratio along the x-, y-, and z-axis of a 3-D tex-
ture is around 1 : 2 : 6, as shown in Fig. 3. This non-uniform
ratio indicates that the rendering performance can vary ac-
cording to the viewing direction. In fact, rays can propagate
along the x-, y-, or z-axis. We assume that a thread is re-
sponsible for computing a pixel value on the screen. Here,
let θy be the viewing angle around the y-axis, as shown in
Fig. 1.

Voxels are sampled at regular intervals from the view-
point; thus, a warp simultaneously accesses voxels on the
surface of a sphere. For simplicity, the previous method as-
sumes that this spherical surface can be approximated with
a plane. Under this approximation, a warp simultaneously
accesses voxels on a plane that are parallel to the screen
(Fig. 2). For such a facing plane, there are three cases, i.e.,
the xy-, yz-, and xz-plane. Moreover, there are two varia-
tions for each case, i.e., the vertical (horizontal) axis of the
plane has smaller access strides than the horizontal (verti-
cal) axis. Thus, any viewing direction can be classified into
these 3 × 2 groups.

Given a viewing direction, the previous method first
identifies the facing plane and selects an axis from the two
axes that constitute the facing plane such that the selected
axis has smaller access strides. For example, the facing
plane in Fig. 4 (a), where θy = 0, is the xy-plane and the
plane axis with smaller access strides is the x-axis, which
can be seen horizontally on the screen. In this case, the pre-
vious method selects horizontally long thread blocks (i.e.,
horizontally long warps) to allow warps to access voxels
with the minimum access strides. In contrast, for the view-
ing direction presented in Fig. 4 (b), where θy = 90, the
method selects vertically long thread blocks because the ver-
tical axis has smaller access strides than the horizontal axis
(i.e., the y-axis rather than the z-axis).

Although the previous method selects the best thread
block shape for the viewing direction, this selection is in-
sufficient when the facing plane comprises the y- and z-
axis. Such an unfavorable viewing direction is shown in
Fig. 4 (b). In this example, the x-axis is parallel to the view-

Fig. 4 Favorable and unfavorable viewing directions: (a) favorable view-
ing direction θy = 0; (b) unfavorable viewing direction θy = 90 (the facing
plane for the former is the xy-plane and that for the latter is the yz-plane,
which does not include the x-axis).

ing direction; thus, warps fail to access voxels with the min-
imum access strides. To address this issue, a ray must be
assigned to a warp (i.e., multiple threads), as proposed by
Wang et al. [14]. An alternative solution is to rearrange the
order of voxels, which we present in the next section.

4. Proposed Method

The basic idea of the proposed method is to rearrange the
order of voxels to allow unfavorable viewing directions to
be interpreted as favorable. For example, the viewing direc-
tion in Fig. 4 (b) can be considered as that in Fig. 4 (a) if the
volume is rotated 90◦ around the y-axis prior to rendering.
After this data rearrangement, the facing plane changes from
the yz-plane to the xy-plane, which can be rapidly accessed
by warps with the minimum access strides.

Note that this rotation is intended to change the order
of voxels in the texture rather than update the view matrix.
Consequently, a naive method might distinguish the output
volume from the input volume during rotation. However,
this method consumes twice the video memory, which re-
duces the maximum volume size that can be rapidly ren-
dered without swapping data from the video to the main
memory. Therefore, the proposed method realizes in-place
rotation of the volume, which integrates the input volume
with the output volume to limit memory consumption.

Figure 5 shows an overview of the proposed cache-
aware volume rendering method. The proposed method first
identifies whether the viewing direction is on a boundary of
an unfavorable region. If a viewing angle θy is within the
range of [45, 135) or [225, 315), the viewing direction is un-
favorable; otherwise, it is favorable. After this identification
process, the proposed method invokes an in-place rotation
kernel if the viewing direction enters from a favorable (un-
favorable) region to an unfavorable (favorable) region. Fi-
nally, the method invokes a rendering kernel to produce the
final image for the viewing direction. This rendering kernel
is invoked with an appropriate shape of the thread blocks to
perform warp-level cache optimization [13]. Note that the
in-place rotation kernel must be separated from the render-
ing kernel because barrier synchronization is required be-
tween the two kernels.
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Fig. 5 Flowchart of the proposed volume rendering method. The “Start”
and “End” states are associated with a CPU rendering process.

4.1 In-Place Rotation

Similar to the matrix transpose method [15], the proposed
method is based on a tile-based approach that facilitates in-
place rotation of the volume. We assume that xz-slices of
the volume are isometric, i.e., the volume size Nx along the
x-axis is the same as Nz along the z-axis. For non-isometric
data, dummy transparent voxels are padded to make the data
isometric prior to rendering. This padding operation can be
processed as an initialization phase, which occurs only once
after the dataset to be rendered has been loaded. The pro-
posed method avoids rendering such dummy voxels using
an empty space skipping technique [26].

Here, let N (= Nx = Nz) be the volume size. Let t × t
be the thread block size of the in-place rotation kernel. Fig-
ure 6 shows a data arrangement example that rotates an xz-
slice 90◦ around the y-axis. As shown, the proposed method
partitions the xz-slice into square tiles of t × t voxels. Note
that, for simplicity, we describe our method using 2-D tiles
of t × t voxels; however, our implementation uses 3-D tiles
of t × t × k voxels, where k (> 0) represents the tile size
along the y-axis. Here, let Ti, j be a tile of the i-th row and
the j-th column, where 0 ≤ i, j < N/t. We assume that N is
a multiple of t for simplicity.

A series of data-dependent tiles is then assigned to a
thread block. For example, the series of tiles T0,0, T0,3, T3,3,
and T3,0 in Fig. 6 must be processed by the same thread
block because the i-th tile moves to the ((i + 1) mod 4)-
th tile, where 0 ≤ i < 4. In other words, the rotation
of these four tiles can be considered a cyclic permutation,
which must be processed in sequence. However, voxels in
a tile can be moved in parallel so that tile movement can
be parallelized by a thread block. More formally, a se-
ries of data-dependent tiles can be given by Ti, j, TN/t− j−1,i,
TN/t−i−1,N/t− j−1 and T j,N/t−i−1, where 0 ≤ i, j < N/t.

Algorithm 1 shows the pseudocode of the in-place
rotation kernel, which is processed by GPU threads in a

Fig. 6 Tiled approach for rotating an xz-slice: (a) before rotation and
(b) after rotation. Four data-dependent tiles T0,0, T0,3, T3,3, and T3,0, each
containing t × t voxels, are rotated with a cyclic permutation processed by
a thread block. Reads and writes to a tile are parallelized by t × t threads
within the thread block.

Algorithm 1 In-place rotation kernel
Input: Original volume V
Input: The global coordinates (x, y, z) of the local origin of the first tile

Ti, j

Input: The local index (o1, o2) of a thread, where 0 ≤ o1, o2 < t
Output: Rotated volume V
1: r1 ← V[x + o1][y][z + o2]; � load a voxel of the first tile in a register
2: for i = 0 to 3 do � for each data-dependent tile
3: tmp← z; � compute the coordinates of the next tile
4: z← x;
5: x← N/t − tmp − 1;
6: if i � 3 then
7: r2 ← V[x + o1][y][z + o2]; � load a voxel of the next tile in a

register
8: end if
9: shared[o2][t − o1 − 1]← r1; � store the rotated tile in the shared

memory
10: syncthreads();
11: V[x + o1][y][z + o2]← shared[o1][o2]; � store the rotated tile in

the video memory
12: r1 ← r2; � prepare for the next iteration
13: if i � 3 then
14: syncthreads();
15: end if
16: end for

single-instruction multiple-thread manner [10]. We assume
that the local index of a thread is given by (o1, o2), where
0 ≤ o1, o2 < t. Given the original volume V and the global
coordinates (x, y, z) of the local origin of the first tile Ti, j, the
GPU threads output the rotated volume using shared mem-
ory. To do this, each thread iterates the following steps four
times:

1. Tile load (lines 1 and 7). Each thread accesses video
memory to load a voxel of the current tile in a regis-
ter. Threads in the same warp simultaneously access
contiguous memory addresses during this step.

2. Tile rotation (line 9). Loaded voxels are written into
shared memory such that the shared memory holds the
rotated tile.

3. Tile store (line 11). Each thread stores the rotated tile
from the shared memory to the video memory. Similar
to the first step, threads in the same warp simultane-
ously access contiguous memory addresses during this
step.
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Note that t-strided memory accesses are required to
rotate a tile by threads. Such noncontiguous memory ac-
cesses cannot be handled efficiently with (off-chip) video
memory because memory transactions are performed per
warp [10]. Therefore, our kernel uses shared memory (i.e.,
on-chip memory) to avoid strided accesses to the video
memory. However, synchronization is required prior to
loading shared data, which can be stored asynchronously by
other threads.

As mentioned above, our method can be regarded as
an extension of the matrix transpose method [15]. How-
ever, this method cannot be directly used for volume rota-
tion, which requires cyclic permutations instead of simple
swap operations. Each permutation consists of a sequence
of shift operations applied to four tiles as illustrated in Fig. 6.
Consequently, our method assigns these four tiles to a thread
block whereas the matrix transpose method assigns two tiles
to a thread block.

4.2 Issues with Writable Textures

As mentioned in Sect. 1, a volume is typically stored in a 3-
D texture to take advantage of hardware-accelerated trilinear
interpolation. However, the CUDA currently prohibits GPU
threads from writing to textures [10]. Consequently, the tex-
ture data cannot be directly rotated by GPU threads.

To address this issue, we adopt a two-way approach to
access the volume data. This approach uses texture mem-
ory and surface memory [10], which is writable from GPU
threads but does not provide hardware-accelerated interpo-
lation. In other words, the CUDA array [10] allocated for
the volume is bound to a texture object and a surface object.
The in-place rotation kernel, which never requires interpo-
lated values, then writes the volume data through the sur-
face object. In addition, the rendering kernel accesses the
volume data through the texture object to take advantage of
hardware-based interpolation.

Notice here that only a single CUDA array is required
to store the entire volume with padded area. The presented
two-way approach never requires a copy of the volume data.
Consequently, the overall memory usage can be approxi-
mated by the number of voxels in the original volume and
padded region.

5. Experimental Results

We evaluated the proposed cache-aware method by compar-
ing it to a previous method [13] and a naive method dis-
tributed as CUDA sample code [10]. Comparisons were per-
formed in terms of the TC hit rate and the frame rate. Similar
to the previous method [13], a color map table, which asso-
ciates color and opacity values with each voxel, was stored
in shared memory to avoid perturbation of TC behavior. All
methods activated early ray termination [26] to skip accu-
mulation that did not significantly contribute to the pixel.

According to [27], at least four over-samplings are re-
quired to reconstruct the ray integral with sufficient accu-

Table 1 Experimental environment.

Item Specification
CPU Intel Core i7-3770K 3.5 GHz
Main memory capacity 16 GB
GPU NVIDIA GeForce GTX TITAN X
Video memory capacity 12 GB
OS Windows 7
CUDA version 7.0
Driver version 353.30

racy. Consequently, the sampling distance along the rays
was set to max(Nx,Ny,Nz)/4, so that the renderer used at
most 4 ×max(Nx,Ny,Nz) samples per ray, starting from the
first penetrated voxel in the volume. We determined exper-
imentally that t = 32 achieves the highest rendering perfor-
mance on the deployed GPU. Details of the experimental
environment are listed in Table 1.

We used four volume datasets: head magnetic reso-
nance imaging (MRI), Hazelnut, Flower, and Porsche, as
shown in Fig. 7. The head MRI and Porsche datasets are
non-isometric; the Hazelnut and Flower datasets are isomet-
ric. The isometric datasets differ with respect to volume
size. All voxels had an 8-bit scalar value, and the volume
was stored in a 3-D texture in unsigned char format. The
screen size was set to 10242 pixels during the experiments.
A pair of movie files capturing real-time visualization of the
Flower dataset is available from http://www-hagi.ist.osaka-
u.ac.jp/research/movie/misaki-{proposed,previous}.mp4.

5.1 Rendering Performance

Figure 8 shows the TC hit rates of the rendering kernel mea-
sured while rotating the viewing direction around the y-axis,
which significantly varies the rendering performance. As for
the rotation around the x-axis or z-axis, where the volume
is always rendered from favorable viewing directions, the
rendering performance was kept high [13]. Consequently,
these results are not presented here. The TC hit rates were
obtained using the CUDA toolkit nvprof profiling tool [28].

As shown in Fig. 8 (a), there was no significant gap be-
tween the TC hit rate of the proposed method and that of the
previous method when the smallest head MRI dataset was
rendered. Obviously, such a small dataset can be rendered
efficiently with many cache hits because the largest stride
between neighboring voxels is given by Nx × Ny = 65,536.
Consequently, 64 KB of memory is sufficient to store an xy-
slice of the volume. On the other hand, the deployed GPU
has 1152 KB of L1 texture cache; the GeForce GTX TITAN
X has 24 streaming multiprocessors, each having 2 × 24 KB
of L1 texture cache [29], [30].

However, as shown in Figs. 8 (b) and 8 (c), the gap be-
tween the proposed method and the previous method in-
creased for larger datasets that comprised at least 5123 vox-
els. Both large datasets show similar behavior in terms
of the TC hit rate. The proposed method significantly in-
creased the TC hit rates for unfavorable viewing directions
within the ranges of [45, 135) and [225, 315). For example,
with the Flower dataset (Fig. 8 (c)), the worst TC hit rates at
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Fig. 7 Experimental datasets rendered on a 1024 × 1024-pixel screen: (a) head MRI (256 ×
256 × 124 voxel); (b) Hazelnut (512 × 512 × 512 voxel); (c) Flower (1024 × 1024 ×
1024 voxel); and (d) Porsche (559 × 1023 × 347 voxel). Head MRI and Porsche datasets
were obtained from http://www.gris.uni-tuebingen.de/edu/areas/scivis/volren/datasets/new.html and
http://www9.informatik.uni-erlangen.de/External/vollib/, respectively. Hazelnut and Flower datasets
were obtained from http://www.ifi.uzh.ch/vmml/research/datasets.html.

Fig. 8 TC hit rates of the proposed method, previous method [13], and CUDA sample code [10] for
(a) head MRI, (b) Hazelnut, (c) Flower, and (d) Porsche datasets.

θy = 90 and 270 increased from 42% to 93%. Moreover,
this increased TC hit rate was almost equal to the best hit
rate achieved by the previous method, i.e., 93% at θy = 0
and 180. In other words, the proposed method success-
fully translated unfavorable viewing directions into favor-
able viewing directions.

A similar periodical behavior was observed with the
non-isometric Porsche dataset. Note that the proposed
method decreased the TC hit rate at four viewing regions:
[46, 59), [126, 136), [226, 236), and [302, 316) (Fig. 8 (d)).
This side effect was due to our rotation approach, which

exchanges Nx with Nz. In other words, this non-isometric
dataset satisfies Nx > Nz (559 > 347) before rotation; how-
ever, rotation changes this to Nx < Nz. Thus, the number
of non-dummy voxels neighboring along the x-axis was re-
duced after rotation. Therefore, the TC hit rate decreased
within the abovementioned four viewing regions. For the
same reason, the peaks at θy = 90 and 270 are more pro-
nounced with the proposed method than those of the previ-
ous method and the CUDA sample code at θy = 0 and 180.

Next, we analyzed the rendering performance, which
includes the in-place rotation kernel run-time overhead. Fig-
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Fig. 9 Frame rates of the proposed method, previous method [13], and CUDA sample code [10] for
(a) head MRI, (b) Hazelnut, (c) Flower, and (d) Porsche datasets.

ure 9 shows the frame rates observed while rotating the
viewing direction around the y-axis. With the smallest
dataset, i.e., head MRI, there was no significant gap between
the frame rates of the proposed method and those of the pre-
vious method (Fig. 9 (a)). However, similar to the TC hit
rate behavior, the proposed method successfully increased
frame rates for large datasets, as shown in Figs. 9 (b) and
9 (c). Thus, maximizing the TC hit rate is critical to maxi-
mizing rendering performance for large datasets.

Compared with the previous method, the worst frame
rate for the Flower dataset was reduced from approximately
2.0 fps to 1.9 fps with the proposed method. These dropped
frame rates were observed when θy = 45, 135, 225, or 315,
where the in-place rotation kernel was invoked to rearrange
the order of voxels. Similarly, the overhead of the rotation
kernel was ignorable for the Hazelnut dataset as shown at
θy = 45, 135, 225, and 315 in Fig. 10 (b). In contrast, the
overhead slightly decreased the frame rate for non-isometric
datasets: the head MRI and Porsche datasets as can be
seen in Figs. 10 (a) and 10 (d), respectively. This was due
to padded voxels. Although these transparent voxels were
skipped during rendering, the frame rate slightly dropped
at these angles. However, the invocation overhead allowed
unfavorable regions [45, 135) and [225, 315) to be processed
as rapidly as the remaining favorable regions. Consequently,
compared to the previous method, the execution times spent
from θy = 0 to θy = 359 were reduced by 13%, 38%, and
18% for the Hazelnut, Flower, and Porsche datasets, respec-

tively; as for the smallest MRI Head dataset, the execution
time increased by 5%. Thus, the rendering performance was
primarily dominated by texture access.

Box plots of the measured frame rates are shown in
Fig. 10. As volume size increased, the performance gain
of the proposed method was evident. The most significant
improvement can be seen in the median of the measured
performance, which increased from 2.5 fps to 9.8 fps for
the Flower dataset (Fig. 10 (c)). The average frame rate also
increased from 5.7 fps to 9.3 fps. A similar significant in-
crease was observed with the non-isometric Porsche dataset.
Consequently, the proposed method can increase the aver-
age rendering performance at the cost of four viewing direc-
tions, where in-place rotation occurs (θy = 45, 135, 225, and
315).

Note that with the previous method, there was a rel-
atively large gap between the median and average frame
rates; the gap was 3.2 (= 5.7 − 2.5) fps with the previ-
ous method, whereas it was 0.5 (= 9.8 − 9.3) fps with the
proposed method. This large gap implies that the previous
method suffers from many low frame rates below the me-
dian. Such low frame rates were primarily observed when
the volume was rendered with unfavorable viewing direc-
tions. Similar behavior was observed with the CUDA sam-
ple code.

As presented above, our method increased the frame
rates for many viewing directions at the expense of few
directions (slowdowns). Because volume rendering is de-
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Fig. 10 Box plots of frame rates of the proposed method, previous method [13], and CUDA sam-
ple code [10] for (a) head MRI, (b) Hazelnut, (c) Flower, and (d) Porsche datasets. Maximum, 75%
percentile, 50% percentile (median), 25% percentile, and minimum rates are presented.

signed for visualization with an arbitrary viewing direction,
we think that these slowdowns are acceptable if the render-
ing performance increases for many viewing directions. In
fact, when rotating the Flower dataset, we faced little (4%)
slowdowns only for 1.1% of viewing directions, whereas
the frame rates increased by ×3.5 for 50% of viewing di-
rections. No significant performance improvement (> 2%)
was observed for the remaining (49%) directions. In this
case, the influence of the worst frame rate was limited, and
thus, demonstrating the practicality of our method.

5.2 Efficiency of In-Place Rotation

We also analyzed the efficiency of the in-place rotation ker-
nel because rendering performance can be limited by its run-
time overhead. As shown in Fig. 9, the worst frame rates at
θy = 45, 135, 225, and 315 decreased slightly with the pro-
posed method.

Figure 11 shows the execution times of the in-place ro-
tation kernel with different tile sizes t × t × k, where t = 32
and 1 ≤ k ≤ 32. The execution time was minimized when
k = 16. With k = 16, the effective memory through-
put reached 231 GB/s, which was 93% of the effective off-
chip memory bandwidth (248 GB/s) measured by the CUDA
software development kit bandwidthTest program. Because
the performance of in-place rotation is limited by off-chip
memory access, we believe that the achieved performance
is the best result with the deployed GPU.

The execution times at k = 1 and k = 2 were, respec-
tively, 4.1 and 2.2 times longer than the shortest execution
time (k = 16). According to the nvprof profiling tool, ex-
ecution with k = 1 (k = 2) incurred four (two) times more
off-chip memory accesses than with k = 4. In contrast, off-
chip memory access was nearly constant when k ≥ 4. This

Fig. 11 Execution time of the in-place rotation kernel with different tile
sizes t × t × k, where t = 32 for Flower dataset. Due to the limited size
of thread blocks (i.e., the maximum number of threads in a thread block),
execution with k = 32 resulted in a failure.

behavior indicates the internal structure of surface memory,
which uses byte addressing [10]. Owing to this byte ad-
dressing, surface memory might be optimized for 3-D sur-
face objects of depth of at least four. Thus, 3-D tiles (k > 1)
rather than 2-D tiles (k = 1) realize efficient rotation with
reduced off-chip memory access.

Finally, the execution time of in-place rotation was
much shorter than that of data transfer between the CPU and
GPU. We found that it took at least 270 ms to swap out the
Flower dataset from the video memory to the main mem-
ory, whereas the in-place rotation took 9.3 ms, as shown in
Fig. 11. Therefore, without the proposed in-place algorithm,
the worst rendering performance dropped from 1.9 fps to
1.3 fps due to the data transfer required to swap out the vol-
ume data from the video memory to the main memory. In
contrast, our in-place algorithm avoided dropping the worst
rendering performance because it took 9.3 ms to complete
the rotation kernel; the rotation kernel can be processed at
108 (= 1000/9.3) fps even though it is invoked after every
frame.
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6. Conclusion

In this study, we have presented a cache-aware method for
accelerating texture-based volume rendering on a GPU. The
proposed method maximizes the TC hit rate by changing the
order of voxels at specific viewing directions. This data rear-
rangement is performed by an in-place algorithm, which re-
quiresO(1) memory space (except the volume data). Thus, a
large volume can be rapidly rendered without swapping data
from the video memory to main memory. We integrated the
proposed method into a previous cache-aware method [13]
that is capable of selecting the best thread organization ac-
cording to the viewing direction.

We compared the proposed method with the previous
method and the CUDA sample code. The experimental re-
sults show that the proposed method successfully increased
the worst TC hit rate (42%) to 93%. Accordingly, the aver-
age frame rate increased from 5.7 fps to 9.3 fps, achieving
a 1.6× speedup over the previous method. We also found
that the performance of the proposed in-place rotation ker-
nel was limited by off-chip memory bandwidth.

In the future, we plan to develop a sophisticated mecha-
nism to dynamically activate the in-place rotation kernel ac-
cording to the movement history of the viewing directions.
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