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PAPER

LSTM-CRF Models for Named Entity Recognition

Changki LEE†a), Member

SUMMARY Recurrent neural networks (RNNs) are a powerful model
for sequential data. RNNs that use long short-term memory (LSTM)
cells have proven effective in handwriting recognition, language model-
ing, speech recognition, and language comprehension tasks. In this study,
we propose LSTM conditional random fields (LSTM-CRF); it is an LSTM-
based RNN model that uses output-label dependencies with transition fea-
tures and a CRF-like sequence-level objective function. We also propose
variations to the LSTM-CRF model using a gate recurrent unit (GRU) and
structurally constrained recurrent network (SCRN). Empirical results re-
veal that our proposed models attain state-of-the-art performance for named
entity recognition.
key words: LSTM-CRF, LSTM RNN, recurrent neural network, name entity
recognition

1. Introduction

Recurrent neural networks (RNNs) are a form of neural
sequence model that achieves state-of-the-art performance
on language modeling, speech recognition, and machine
translation [1]–[3]. RNNs that use long short-term memory
(LSTM) cells have proven effective in handwriting recogni-
tion, language modeling, speech recognition, and language
comprehension tasks [4]–[6].

In this study, we examine the use of RNNs in named
entity recognition (NER). NER is a subtask of informa-
tion extraction that seeks to locate and classify elements in
text into pre-defined categories such as the names of per-
sons, organizations, locations, etc. For example, the sen-
tence of “U.N. official Ekeus heads for Baghdad.” is tagged
as “U.N./B-ORG official/O Ekeus/B-PER heads/O for/O
Baghdad/B-LOC ./O” where a BIO tag indicates whether
it begins (B-), is inside (I-), or is outside (O) of a named
entity. The most obvious approach to this task is the use
of conditional random fields (CRFs), in which an expo-
nential model is used to compute the probability of a la-
bel sequence given input word sequences [7]. CRFs pro-
duce the globally most likely label sequence, and have been
used widely in NER. Recently, Collobert et al. proposed a
semantic/syntactic extraction using a neural network archi-
tecture (SENNA), which is a sentence-level neural network
that generated state-of-the-art results for NER [8]. They ex-
tended the model from a linear to non-linear architecture
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and replaced discrete with distributional feature representa-
tions in a continuous space. This architecture consists of the
following: a projection layer that extracts features for each
word, a hidden layer that extracts features from a window
of words, a set of output nodes, and an output graph over
which tag inference is achieved using a Viterbi algorithm.

Our current research improves on the SENNA archi-
tecture [8]. Whereas the SENNA architecture uses feed-
forward or convolutional networks, we propose to use
LSTM-based RNN to exploit long-range dependencies in
the sequence of words. In addition, our research improves
on the LSTM RNN model. LSTM RNN does not explic-
itly model the dependencies between output labels. LSTM
RNN also produces a sequence of locally normalized output
distributions, one for each word position as in a maximum
entropy Markov model (MEMM). Thus, LSTM RNN can
suffer from the same label bias problem as in MEMM [6].
To resolve these problems, we propose LSTM conditional
random fields (LSTM-CRF), an LSTM-based RNN model
that uses output label dependencies with transition features
and the CRF-like sequence-level objective function. In addi-
tion, we propose variations to the LSTM-CRF model using
a gate recurrent unit (GRU) [3] and structurally constrained
recurrent network (SCRN) [9].

Our approach is an advance over previous research on
recurrent conditional random fields (R-CRF) for language
comprehension [10]. R-CRF models use RNN to exploit
long-range dependencies in the sequence of words. How-
ever, training standard RNNs is difficult because of the van-
ishing gradient problem. To solve this problem, we pro-
pose to use LSTM RNN and its variations such as GRU and
SCRN.

2. Models

In this section, we describe the models used in this study:
RNN, variations of RNN (i.e., LSTM RNN, BI-LSTM
RNN, GRU, BI-GRU, and SCRN), LSTM-CRF, variations
of LSTM-CRF (i.e., BI-LSTM CRF, GRU-CRF, BI-GRU
CRF, and SCRN-CRF).

2.1 RNN and LSTM RNN Models

Given an input vector sequence x = {x1, x2, . . . , xT }, an
RNN computes the hidden vector sequence h = {h1, h2, . . . ,
hT } and output vector sequence y = {y1, y2, . . . , yT } (yt is a
one-hot encoded vector) by iterating the following equations
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Fig. 1 RNN architecture.

Fig. 2 LSTM memory block.

from t = 1 to T :

ht = f (UExt + Vht−1 + bh) (1)

P(yt |x) = yt
T g(Wht + by) (2)

where U, V , and W denote weight matrices (e.g., U is the
input-hidden weight matrix), E is a weight matrix for the
word and feature embedding, bh and by denote bias vectors
(e.g., bh is a hidden bias vector), f is a nonlinear function
(i.e., sigmoid or tanh function), and g is the softmax func-
tion. This RNN architecture is shown in Fig. 1. Figure 1
reveals that no direct connection exists between output la-
bels. RNN also produces a sequence of locally normalized
output distributions, one for each word position. Thus, it
can suffer from a label bias problem [6].

LSTM RNN has been shown to perform more effec-
tively than the standard RNN at finding and exploiting long-
range dependencies in the data [6]. One difference from the
standard RNN is that the LSTM uses a memory cell with
gate units, which are linear activation functions. LSTM
RNN is defined according to the following equations.

it = σ(WixExt +Wihht−1 +Wicct−1 + bi) (3)

ft = σ(Wf xExt +Wf hht−1 +Wf cct−1 + b f ) (4)

ct = ft � ct−1 + it � tanh(WcxExt +Wchht−1 + bc) (5)

ot = σ(WoxExt +Wohht−1 +Wocct + bo) (6)

ht = ot � tanh(ct) (7)

P(yt |x) = yt
T g(Wyhht + by) (8)

where σ denotes the sigmoid function; g denotes the soft-
max function; � denotes the element-wise product among
vectors; and i, f , o, and c are the input, forget, and output
gates, and memory cell, respectively. Wix, Wih, Wic, Wf x,
Wf h, Wf c, Wcx, Wch, Wox, Woh, Woc, and Wyh are weight
matrices, E is a weight matrix for the word and feature em-
bedding, and bi, b f , bc, bo, and by are bias terms. Figure 2
shows a single LSTM memory block. Each memory block

Fig. 3 LSTM-CRF architecture.

contains an input gate that controls the flow of input acti-
vations into the memory cell, a forget gate that scales the
state of the cell before adding it as input to the cell through
a self-recurrent connection of the cell, and an output gate
that controls the output flow of cell activations into the rest
of the network [4].

2.2 LSTM-CRF Model

To add dependence between output labels in LSTM RNN,
we propose an LSTM-CRF model that extends the output
layer, as given in (8), of LSTM RNN according to the fol-
lowing.

sword(yt, t) = yt
T (Wyhht + by) (9)

ssent(x, y) =
∑T

t=1
{[A]yt−1,yt + sword(yt, t)} (10)

log P(y|x) = ssent(x, y) − log
∑

y′
exp(ssent(x, y′)) (11)

where ssent(x, y) denotes the score of output-tag sequence y,
sword(yt, t) denotes the score of yt tag at the t-th word, and the
element of [A]y,y′ of the weight matrix A denotes the transi-
tion score for jumping from y to y′ output tags in successive
words. The dynamic programming such as forward algo-
rithm and Viterbi algorithm can be used efficiently to com-
pute P(y|x) and optimal output-tag sequence for inference as
in CRF. We use the standard cross-entropy as the objective
function when training the proposed model. We train the
model using back propagation through time (BPTT) with
stochastic gradient descent. Given a sentence x at infer-
ence time, we use the Viterbi search algorithm to find the
most probable output-tag sequence y. Figure 3 shows the ar-
chitecture of LSTM-CRF. LSTM-CRF has dependence be-
tween output labels and exploits long-range dependencies in
the given sentence.

2.3 BI-LSTM RNN and BI-LSTM-CRF Models

In sequence labeling task, we can utilize a bidirectional
LSTM RNN (BI-LSTM RNN) and a bidirectional LSTM-
CRF (BI-LSTM CRF) to access to both past and future in-
put words and features for a given time. Figure 4 shows the
architecture of BI-LSTM CRF.

2.4 GRU, BI-GRU, GRU-CRF, and BI-GRU CRF Models

Recently, variations of LSTM RNN were proposed to ad-
dress the vanishing gradients problem. Among those, we
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Fig. 4 BI-LSTM-CRF architecture.

use a GRU and SCRN, and we extend these models to add
dependence between output labels.

Cho et al. proposed GRU, which functions effectively
in sequence-based tasks with long-term dependencies [3].
Similar to the LSTM unit, GRU has gating units: reset and
update gates. The update gate z selects whether the hidden
state is to be updated with a new hidden state h̃. The re-
set gate r determines whether the previous hidden state is
ignored. Detailed equations that describe GRU are as fol-
lows.

rt = σ(WrxExt +Wrhht−1 + br) (12)

zt = σ(WzxExt +Wzhht−1 + bz) (13)

h̃t = φ(WhxExt +Whh(rt � ht−1) + bh) (14)

ht = zt � ht−1 + (1 − zt) � h̃t (15)

P(yt |x) = yt
T g(Wyhht + by) (16)

where Wrx, Wrh, Wzx, Wzh, Whx, Whh, and Wyh denote weight
matrices; E denotes a weight matrix for the word and fea-
ture embedding; br, bz, bh, and by denote bias vectors; σ
denotes the sigmoid function; φ is a nonlinear function (sig-
moid or tanh function); and g is the softmax function. To
add dependence between output labels in GRU, we propose
a GRU-CRF model that extends the output layer, as shown
in (16), of GRU according to the following.

sword(yt, t) = yt
T (Wyhht + by) (17)

ssent(x, y) =
∑T

t=1
{[A]yt−1,yt + sword(yt, t)} (18)

log P(y|x) = ssent(x, y) − log
∑

y′
exp(ssent(x, y′)) (19)

A bidirectional GRU (BI-GRU) and a bidirectional
GRU-CRF (BI-GRU CRF) are also used to access to both
past and future input words and features for a given time.

2.5 SCRN and SCRN-CRF Models

Mikolov et al. proposed SCRN, which possesses both a fully
connected recurrent matrix for producing a set of quickly
changing hidden units and a diagonal matrix that encourages
context units to change slowly [9]. The fast layer, ht, can
learn representations similar to n-gram models, whereas the
slowly changing layer, zt, can learn topic information, which
is similar to the behavior of cache models. SCRN is defined
according to the following.

Fig. 5 SCRN-CRF architecture.

zt = (1 − α)BExt + αzt−1 + bz (20)

ht = φ(Pzt + AExt + Rht−1 + bh) (21)

P(yt |x) = yt
T g(Wyhht +Wyzzt + by) (22)

where α is a hyper-parameter in (0, 1), B, P, A, R, and Wyh,
Wyz are weight matrices, E is a weight matrix for the word
and feature embedding, bz, bh, and by are bias vectors, φ is
a nonlinear function (sigmoid or tanh function), and g is the
softmax function.

To add dependence between output labels in SCRN, we
propose a SCRN-CRF model that extend the output layers,
as shown in (22), of SCRN according to the following.

sword(yt, t) = yt
T (Wyhht +Wyzzt + by) (23)

ssent(x, y) =
∑T

t=1
{[A]yt−1,yt + sword(yt, t)} (24)

log P(y|x) = ssent(x, y) − log
∑

y′
exp(ssent(x, y′)) (25)

Figure 5 shows the architecture of SCRN-CRF.

2.6 Summary of Models

The SENNA architecture can use the dependencies between
output labels. However, it can not capture long-range de-
pendencies between faraway words, because it uses a simple
feed-forward neural network.

R-CRF uses RNN to exploit long-range dependencies
in the sequence of words. It can use the dependencies be-
tween output labels. However, training standard RNN is dif-
ficult because of the vanishing gradient problem.

Variations of RNN (i.e., LSTM RNN, BI-LSTM RNN,
GRU, BI-GRU, and SCRN) can capture long-range depen-
dencies in the sequence of words and solve the vanishing
gradient problem in RNN. However, they do not explicitly
model the dependencies between output labels.

LSTM-CRF and its variations (i.e., BI-LSTM CRF,
GRU-CRF, BI-GRU CRF, and SCRN-CRF) can capture the
dependencies between output labels and long-range depen-
dencies between faraway words. They can also solve the
vanishing gradient problem. However, their computational
cost is high.

Table 1 summarizes the characteristics of the models
proposed in this paper. #h denotes the number of hidden
units, #c denotes the number of context units for SCRN
and SCRN-CRF, and α is the hyper-parameter of SCRN and
SCRN-CRF. Dropout rate, initial learning rate, weight decay
rate, and activation function are omitted in the table because
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Table 1 A brief summary of models.

they are hyperparameters that are common to all models.

3. Experiments

We evaluate CRF, feed forward neural network (FFNN),
RNN, LSTM RNN, LSTM-CRF, BI-LSTM RNN, BI-
LSTM CRF, GRU, GRU-CRF, BI-GRU, BI-GRU CRF,
SCRN, and SCRN-CRF models on a NER task. To com-
pare the performance of these modes with existing studies,
we used the CoNLL03 data set†, which is a NER bench-
mark data set based on Reuters data, and ETRI Korean NER
data set [11]. We train models using training data and tune
hyperparameters of models using validation data. Because
ETRI Korean NER data set do not have a validation data set,
we use part of training data for validation purpose. Table 2
shows the size of tokens and labels for training, validation,
and test sets respectively.

We use two types of vector values for input vector xt:
word and feature embedding. For word embedding, we
used the Collobert and Weston English word embedding and
Korean word embedding produced by Word2vec [14]. We
used randomly initialized value for feature embedding. For
features, we use the capital letter and gazetteer features as
in [8]. Capital letter features indicate whether each word
is in lowercase, is all uppercase, has first letter capital, or
has at least one non-initial capital letter. Gazetteer features
indicate whether a word or chunks of words are found in
the gazetteer under one of four categories (i.e., person, loca-
tion, organization, and miscellaneous entities). We used the
gazetteer provided by the CoNLL challenge as in [8]. For
CRF, we use word, POS tag, capital letter, gazetteer, word
cluster, and word embedding features.

We implemented our proposed models using
Theano [12]. We use stochastic gradient descent with mo-
mentum with a learning rate of 0.1 to train modes. We di-
vide the learning rate by 2 after each training epoch when
the validation error does not decrease.

We applied the dropout [13] to the projection and hid-
den layers in all models except CRF (dropout probabilities

†See http://www.cnts.ua.ac.be/conll2003/ner.

Table 2 Size of tokens and labels for training, validation, and test sets.

Fig. 6 F1 score on the CoNLL03 validation set (y-axis) vs. number of
hidden units (x-axis).

Table 3 F1 score results with different models in CoNLL03 test set. For
F1 scores, standard deviations are in parentheses.

are 0.2 and 0.5 for the projection and hidden layers,
respectively).

In our experiments, we chose the hyperparameters of
our models by trying a few different networks over the
validation set. For example, the number of hidden units
from {50, 100, 200, 300, 500, 700, 900, 1100, 1300}was cho-
sen by optimization on the validation set. For each experi-
ment, we report the average and standard deviation of 10
trials with random initial parameters.

Figure 6 shows the F1 score for each model on the
CoNLL03 validation set with respect to the number of hid-
den units.

Table 3 shows the numbers of hidden units and context
units which were chosen by optimization on the validation
set, the number of parameters of different models, and the
F1 score on the CoNLL03 test set. RNN and its variations
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Table 4 An example of results of NER in CoNLL03 data set.

(i.e., LSTM RNN, BI-LSTM RNN, GRU, BI-GRU, and
SCRN) except SCRN outperform CRF and FFNN. LSTM-
CRF and its variations (i.e., BI-LSTM-CRF, GRU-CRF,
BI-GRU-CRF, and SCRN-CRF) except SCRN-CRF signifi-
cantly outperform SENNA, R-CRF, RNN, and variations of
RNN (Paired t-test, p < 0.005). BI-LSTM-CRF shows the
best performance, but it has substantially more parameters
than other models.

Table 4 shows the example of results of NER on the
CoNLL03 test set. SENNA is apt to confuse Organization
with Location, but BI-LSTM-CRF classifies them correctly
with faraway clue words. BI-LSTM RNN does not cap-
ture the dependencies between output labels (e.g. Sale/B-
MISC Grammar/I-ORG School/O, Real/O Madrid/I-ORG,
and Downing/B-LOC Street/I-ORG), but BI-LSTM-CRF
captures the label dependencies.

A plausible explanation of these improvements over
SENNA, R-CRF, and variations of RNN is that LSTM-CRF
and its variations effectively capture the dependencies be-
tween output labels and long-range dependencies between

Table 5 F1 score results with different models in ETRI Korean NER
data set. For F1 scores, standard deviations are in parentheses.

Fig. 7 Training speed (#sentence/sec.) of various models (y-axis).

faraway words. For example, LSTM-CRF can use past in-
put words and features using a LSTM layer and use past and
future output labels using a CRF layer.

Table 5 shows the numbers of hidden units and context
units which were chosen by a minimal validation, the num-
ber of parameters of different models, and the F1 score on
the ETRI Korean NER test set. We re-implemented SENNA
model as a baseline for comparison of Korean NER data
set. Similar to Table 3, LSTM-CRF and its variations ex-
cept SCRN-CRF outperform CRF, FFNN, SENNA, R-CRF,
RNN, and variations of RNN.

Figure 7 shows the training speed (i.e., #sentence/sec.)
of various models. We can see a trade-off between the speed
and accuracy. For example, BI-LSTM-CRF and LSTM-
CRF, which archive the best performance in Table 3 show
the worst training speed. However, GRU-CRF which per-
forms similarly to LSTM-CRF, show faster training speed
than does LSTM-CRF.

4. Conclusion

In this study, we proposed a LSTM-CRF model that special-
izes in sequence labeling as it adds output label dependency
to the LSTM RNN model. We also propose variations to the
LSTM-CRF model using a GRU and SCRN. Experiments
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show that our models outperform the existing models such
as CRF, FFNN, SENNA, RNN, variations of RNN, and
R-CRF.

For future research, we will apply the proposed model
to problems similar to NER such as chunking, semantic role
labeling, and natural language comprehension.
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