
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017
265

PAPER

The Performance Stability of Defect Prediction Models with Class
Imbalance: An Empirical Study

Qiao YU†, Student Member, Shujuan JIANG†a), and Yanmei ZHANG†, Nonmembers

SUMMARY Class imbalance has drawn much attention of researchers
in software defect prediction. In practice, the performance of defect predic-
tion models may be affected by the class imbalance problem. In this paper,
we present an approach to evaluating the performance stability of defect
prediction models on imbalanced datasets. First, random sampling is ap-
plied to convert the original imbalanced dataset into a set of new datasets
with different levels of imbalance ratio. Second, typical prediction mod-
els are selected to make predictions on these new constructed datasets, and
Coefficient of Variation (C·V) is used to evaluate the performance stability
of different models. Finally, an empirical study is designed to evaluate the
performance stability of six prediction models, which are widely used in
software defect prediction. The results show that the performance of C4.5
is unstable on imbalanced datasets, and the performance of Naive Bayes
and Random Forest are more stable than other models.
key words: class imbalance, software defect prediction, prediction models,
performance stability, imbalance ratio

1. Introduction

Class imbalance has gradually become a crucial problem
in the fields of machine learning and data mining in re-
cent years. Generally, class imbalance refers to the situation
where the number of samples from one class is much higher
than that from other class [1]. Class imbalance is a com-
mon problem in various areas, such as text classification [2],
medical diagnosis [3] and software defect prediction [4], [5].

Software defect prediction can be regarded as a bi-
nary classification problem, which aims to divide software
modules into defective modules or non-defective modules.
Defective modules are usually the minority class, and non-
defective modules are the majority class. In this case, cor-
rectly classifying the minority class is more important than
that of the majority class. However, many prediction mod-
els usually focus on maximizing the overall accuracy, which
may reduce the accuracy of minority class [6]. For exam-
ple, suppose that a dataset contains 1000 samples, including
only 10 defective samples and 990 non-defective samples. If
one prediction model classifies all samples as non-defective
samples, its overall accuracy could up to 99.0%, but the ac-
curacy of minority class is 0%. We find that this prediction
model may be ineffective on imbalanced datasets [7].

At present, many solutions have been proposed to

Manuscript received May 17, 2016.
Manuscript revised September 28, 2016.
Manuscript publicized November 4, 2016.
†The authors are with the School of Computer Science and

Technology, China University of Mining and Technology, Xuzhou,
China.

a) E-mail: shjjiang@cumt.edu.cn (Corresponding author)
DOI: 10.1587/transinf.2016EDP7204

solve the class imbalance problem, such as sampling, cost-
sensitive learning and ensemble learning [8]. However, most
of researchers often take no account of the impact of class
imbalance, and they do not take any measures to deal with
this problem in empirical studies. Therefore, in order to
achieve better performance, we should choose the more sta-
ble and efficient prediction models for experiments. We
think about which prediction models are more stable in
terms of their performance with class imbalance? Based on
this question, we conduct an empirical study to evaluate the
performance stability of different prediction models in soft-
ware defect prediction.

In this paper, we present an approach to evaluating
the performance stability of defect prediction models with
class imbalance. First of all, we apply random sampling
to convert the original imbalanced dataset into a set of new
datasets with different levels of imbalance ratio. Then,
we select typical prediction models to make predictions
on these new constructed datasets, and we use Coefficient
of Variation (C·V) [9] to evaluate the performance stabil-
ity of different models. Finally, we design experiments to
evaluate the performance stability of six prediction mod-
els, which are widely used in software defect prediction.
The results show that the performance of C4.5 [10] obvi-
ously decreases on most datasets with the increasing of im-
balance ratio, which indicates that its performance is unsta-
ble on imbalanced datasets. In contrast, the performance of
Naive Bayes [11] and Random Forest [12] are more stable
than other models. Based on our work, we can be aware
of the performance stability of different prediction models
with class imbalance, and we can choose reasonable predic-
tion models in empirical studies and practical applications.

The main contributions of this paper are concluded as
follows:

• An approach is proposed to evaluate the performance
stability of defect prediction models with class imbal-
ance.
• An empirical study is designed to evaluate the perfor-

mance stability of six prediction models. The results
show that the performance of C4.5 is unstable on im-
balanced datasets, and the performance of Naive Bayes
and Random Forest are more stable than other models.

The remainder of this paper is organized as follows.
Section 2 summarizes the related work of class imbalance.
Section 3 describes our approach in detail, and Sect. 4 gives
an empirical study to show its validity. In Sect. 5, we draw

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



266
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

our conclusions and discuss the following work.

2. Related Work

In recent years, class imbalance has drawn much attention of
researchers in software defect prediction. In order to explore
the impact of class imbalance on software defect prediction
and its related techniques, many researchers have carried out
a large number of empirical studies.

For example, Japkowicz and Stephen [13] showed that
class imbalance could affect the performance of decision
tree model. Wang et al. [1] provided an empirical study on
the stability of feature selection techniques. The experimen-
tal results showed that many factors could affect the stabil-
ity of feature selection, such as class balance, feature subset
size and perturbation level. Galinac Grbac et al. [14] investi-
gated the stability of different techniques in relation to levels
of data imbalance. They also indicated that feature selection
was unstable with higher level of data imbalance.

In addition, Wang and Yao [5] investigated the per-
formance of resampling, cost-sensitive and ensemble algo-
rithms with class imbalance. The results showed that Ada-
Boost.NC, one of ensemble algorithms, achieved the best
performance. Seiffert et al. [15] investigated the combined
effects of class imbalance and noise on the performance of
sampling techniques. Ryu et al. [16] investigated the im-
pact of class imbalance on cross-project defect prediction
(CPDP), and they proposed a value-cognitive boosting ap-
proach for CPDP. The experimental results showed that this
approach outperformed both existing CPDP approaches and
class imbalance approaches.

There are many solutions to the class imbalance prob-
lem, such as sampling, cost-sensitive learning and ensem-
ble learning. For example, Tahir et al. [17] proposed an
inverse random under-sampling to address the class imbal-
ance problem, which could also be applied to improve the
accuracy of multi-class problem. Qian et al. [18] presented
a resampling ensemble algorithm for imbalanced datasets,
which applied over-sampling for small classes and under-
sampling for large classes. However, under-sampling may
lead to the information loss, and over-sampling may result
in overfitting problem.

Cost-sensitive learning aims to set different misclassi-
fication costs for different classes. Traditional prediction
models consider that the misclassification costs of different
classes are the same [19]. In practice, the cost of misclassi-
fying minority class is much higher than that of misclassify-
ing majority class. Ensemble learning is proposed to gather
multiple prediction results to improve the performance of
one single model. Generally, the ensemble model outper-
forms one single model. Ensemble learning is not specif-
ically proposed for solving the class imbalance problem,
but it has obtained improvements in addressing this prob-
lem [20]. Moreover, Rodriguez et al. [21] also indicated that
ensemble approaches outperformed the sampling and cost-
sensitive approaches when dealing with the class imbalance
problem in software defect prediction.

Although there are so many solutions, many re-
searchers often ignore the impact of class imbalance unless
specifically research this problem. So we should choose the
stable prediction model for better performance in empirical
studies. Which prediction models are more stable on im-
balanced datasets? Based on this question, we conduct an
empirical study to evaluate the performance stability of de-
fect prediction models with class imbalance.

3. Our Approach

Class imbalance is a common problem in software defect
prediction, which may affect the performance of defect pre-
diction models. In this paper, we present an approach to
evaluating the performance stability of defect prediction
models with class imbalance. The details are described as
follows.

3.1 The Framework

Suppose that a standard defect dataset is expressed as D =
{x1, x2, . . . , xn}, and xi ∈ Rd. It indicates that there are n
samples in dataset D and d features in each sample of this
dataset. We count the number of defective samples and non-
defective samples in dataset D, marked as n1 and n2. The
imbalance ratio (IR) [22] can be defined as the number of
non-defective samples divided by the number of defective
samples, that is n2/n1. In our approach, we redefine IR as
the floor of n2/n1, which is shown in formula (1):

IR = �n2/n1� (1)

Where n2 > n1, and IR > 1. The higher the value of IR
is, the more imbalanced the dataset is.

Based on the definition of IR, we give the framework of
our approach in Fig. 1. For an original imbalanced dataset
D, we suppose that the IR of dataset D is represented by
r. Then, we construct new datasets by random sampling,
which can convert the original imbalanced dataset D into a
set of new datasets D∗i (i = 1, 2, . . . , r) with IR increased one
by one, as IR = 1, 2, . . . , r. After that, we select prediction
models to make predictions on new datasets D∗i and evaluate
the performance stability of these prediction models eventu-
ally.

3.2 New Datasets Construction

In order to evaluate the performance stability of prediction
models on imbalanced datasets, we need to obtain a set of
datasets with different levels of IR. In our approach, we use
random sampling to convert the imbalanced datasets into a
set of new datasets with increasing IR. The process of new
datasets construction is shown in Fig. 2. The meanings of
graphs and symbols are explained in the bottom-left corner
of Fig. 2.

As shown in Fig. 2, there are n samples in the original
imbalanced dataset D, and the number of defective samples



YU et al.: THE PERFORMANCE STABILITY OF DEFECT PREDICTION MODELS WITH CLASS IMBALANCE: AN EMPIRICAL STUDY
267

Fig. 1 The framework of our approach.

Fig. 2 New datasets construction.

and non-defective samples are marked as n1 and n2. First,
we select n1 non-defective samples from all non-defective
samples (n2) randomly, and merge them with all defective
samples (n1). The new dataset D∗1 is produced, and the IR of
D∗1 is equal to 1. Next, we also select n1 non-defective sam-
ples from the rest non-defective samples (n2-n1) randomly.
We would randomize the rest non-defective samples before
each sampling to ensure that these samples are evenly dis-
tributed. After that, we merge the selected samples with D∗1,
so the new dataset D∗2 is produced. The IR of D∗2 is equal to

2. Repeat the above operations until the number of rest non-
defective samples is less than n1. Finally, we can convert the
original imbalanced dataset D into a set of new datasets D∗i
with IR increased one by one, as IR = 1, 2, . . . , r.

We find that this process is achieved by under-
sampling, and we can get a set of new datasets with IR
increased one by one. If we apply over-sampling to con-
struct new datasets, the values of IR may not be increased
one by one. For example, there are 10 defective samples
and 500 non-defective samples in an imbalanced dataset,
and its IR is equal to 50. Then, we apply over-sampling
to replicate defective samples, and the IR of new datasets
are �500/11� = 45, �500/12� = 42, �500/13� = 38,
�500/14� = 36 etc., which are intermittent. However, this
may affect the accuracy of the following evaluation.

Therefore, we apply under-sampling to construct new
datasets in our approach. Particularly, we assume that the
distributions of samples between original dataset and the
new datasets are the same. That is to say, we take no account
of the information loss in the process of under-sampling.

3.3 Prediction Models Evaluation

We count the widely used prediction models in software de-
fect prediction. Table 1 lists the name, explanation and re-
lated references of these models. Particularly, references in-
dicate that they have used these models in their empirical
studies. Considering that the performance stability of these
models may be related to the validity of empirical studies,
it is important to be aware of the performance stability of
different prediction models. Based on this, we aim to evalu-
ate the performance stability of these widely used prediction
models with class imbalance.

As listed in Table 1, C4.5 [10] is a decision tree algo-
rithm, and it uses information gain ratio for feature selec-
tion, which eliminates the bias of selecting frequent features
of information gain. K-Nearest Neighbors (KNN) [31] is
an instance-based algorithm, and one sample can be classi-
fied by a majority vote of its k nearest neighbors. Logistic
Regression (LR) [32] is designed to add the logistic regres-
sion function into linear regression model. MultiLayer Per-
ceptron (MLP) [33] is a feed-forward artificial neural net-
work model with multiple layers. Naive Bayes (NB) [11]
is a probabilistic classifier based on Bayes theorem, and it
supposes that all features are independent. Random Forest
(RF) [12] is an ensemble model of random trees, and the
output of RF is obtained by voting in classification problem.
Based on the above prediction models, we aim to evaluate
their performance stability on imbalanced datasets.

Next, we should select reasonable metric to evaluate
the performance of these prediction models. In this paper,
we apply AUC [34] metric, which represents the Area Un-
der the receiver operating characteristic (ROC) Curve. As a
binary classification problem, there are four different results
between actual results and prediction results as the confu-
sion matrix shown in Table 2.

True positive rate (TPR) represents the ratio of cor-



268
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

Table 1 The description of prediction models.

Name Explanation References
C4.5 Decision tree [23]–[27]

K-Nearest Neighbors (KNN) Instance-based algorithm [28], [29]
Logistic Regression (LR) Regression model with logistic function [24]–[28]

MultiLayer Perceptron (MLP) Neural network model with multiple layers [27]–[30]
Naive Bayes (NB) A probabilistic classifier based on Bayes theorem [23]–[30]

Random Forest (RF) An ensemble model of random trees [23], [26], [27], [30]

Table 2 The confusion matrix.

Prediction results
Defective Non-defective

Actual
results

Defective True positive (TP) False negative (FN)
Non-defective False positive (FP) True negative (TN)

rectly predicted as defective samples and actual defective
samples, as TP/(TP+FN). False positive rate (FPR) repre-
sents the ratio of incorrectly predicted as defective samples
and actual non-defective samples, as FP/(FP+TN). ROC
curve shows the relationship between TPR and FPR, and
AUC is equal to the area under the ROC curve. The range
of AUC is between 0 and 1. The larger the value of AUC is,
the better the performance of one prediction model is.

Although there are a lot of metrics for evaluating the
performance of prediction models, such as Precision, Re-
call and F-Measure. Jiang et al. [35] proved that AUC was
more accurate and reliable than other metrics. Moreover,
AUC has been widely used to evaluate the performance of
prediction models in software defect prediction [23], [28],
[29], [36], [37]. Therefore, we also use AUC to evaluate the
performance of prediction models.

4. Empirical Study

To investigate the validity of our approach, we conduct
an empirical study on datasets from the PROMISE repos-
itory†. All experiments are conducted on Open JDK 1.7 and
Weka 3.7††.

4.1 Experimental Subjects

We select eight datasets from NASA and PROMISE as the
subjects of our experiments. The reason why we choose
these datasets is that they are imbalanced datasets and
their imbalance ratios are in different levels. In addition,
Shepperd et al. [38] indicated that there were many repeated
and inconsistent data in the original NASA datasets, and
they provided the cleaned datasets. Therefore, we use these
cleaned NASA datasets in our experiments, which can be
obtained from the PROMISE repository.

The details of these datasets are described in Table 3. It
shows the name of group, dataset and the number of features
included in each dataset (columns 1–3). Then it shows the
number of all samples, defective samples and non-defective
samples (columns 4–6). Finally, it shows the value of IR

†http://openscience.us/repo/
††http://www.cs.waikato.ac.nz/ml/weka/

(column 7), which can be calculated by formula (1). The
higher IR indicates that the dataset is more imbalanced. We
find that the IR of three datasets MC1, PC2 and Jedit-4.3 are
42, 45 and 43 respectively. It indicates that these datasets are
more imbalanced than others.

4.2 Experimental Design

Our experiments are conducted on all prediction models in
Table 1 and all datasets in Table 3. All prediction models are
implemented in Weka, where these prediction models are
designed as classifiers. Considering that most of researchers
are used to taking default parameters of prediction models
in empirical studies, we also take the default parameters in
our experiments.

All experiments are conducted over ten times of 10-
fold cross-validation, which is commonly used in empirical
studies [28], [39]. In order to reduce the effect of random
sampling on new datasets construction, we take the average
of 100 times same experiments as the final value of AUC,
so as to ensure the prediction results more accurate and reli-
able.

4.3 Experimental Results and Analysis

First, we select a dataset from Table 3 and suppose that its
IR is r. We use random sampling to convert this dataset into
a set of new datasets with different levels of IR. Then, we
apply the prediction models in Table 1 to make predictions
on these new constructed datasets, and we can get a set of
AUC, marked as {AUCi}, and i = 1, 2, . . . , r. At last, we cal-
culate the average μ and standard deviation σ of all values
of AUC, thereby analyzing the performance differences of
each prediction model on imbalanced datasets. The calcula-
tions are shown in formulas (2) and (3):

μ =

r∑
i=1

AUCi

r
(2)

σ =

√√√√ r∑
i=1

(AUCi − μ)2

r
(3)

Based on the above formulas, we can get the average μ
and standard deviation σ of all prediction models, and the
results are listed in Table 4. It shows that the average per-
formance of these prediction models are different.

In order to show the average performance of different
prediction models clearly, we use the line charts as displayed



YU et al.: THE PERFORMANCE STABILITY OF DEFECT PREDICTION MODELS WITH CLASS IMBALANCE: AN EMPIRICAL STUDY
269

Table 3 Defect datasets.

Group Dataset Number of
features

Number of
all samples

Number of
defective samples

Number of non-
defective samples

IR

NASA

MC1 38 1988 46 1942 42
PC1 37 705 61 644 10
PC2 36 745 16 729 45
PC3 37 1077 134 943 7

PROMISE

Camel-1.0 20 339 13 326 25
Ivy-1.4 20 241 16 225 14

Jedit-4.3 20 492 11 481 43
Tomcat 20 858 77 781 10

Table 4 The average μ and standard deviation σ of prediction models.

Model
MC1 PC1 PC2 PC3

μ σ μ σ μ σ μ σ

C4.5 0.626 0.039 0.722 0.023 0.588 0.066 0.658 0.024
KNN 0.673 0.011 0.703 0.016 0.566 0.043 0.650 0.023
LR 0.733 0.009 0.820 0.021 0.713 0.022 0.816 0.006

MLP 0.698 0.013 0.807 0.014 0.715 0.016 0.784 0.004
NB 0.699 0.006 0.765 0.010 0.740 0.011 0.753 0.005
RF 0.896 0.012 0.869 0.008 0.798 0.008 0.826 0.004

Model
Camel-1.0 Ivy-1.4 Jedit-4.3 Tomcat
μ σ μ σ μ σ μ σ

C4.5 0.498 0.057 0.501 0.035 0.512 0.071 0.652 0.018
KNN 0.608 0.025 0.541 0.019 0.695 0.017 0.656 0.014
LR 0.577 0.018 0.501 0.031 0.611 0.027 0.788 0.012

MLP 0.629 0.013 0.554 0.039 0.542 0.073 0.761 0.005
NB 0.727 0.007 0.672 0.013 0.592 0.011 0.799 0.003
RF 0.709 0.016 0.658 0.011 0.786 0.008 0.822 0.004

Fig. 3 The average performance of prediction models.

in Fig. 3. We find that the average performance of RF is
higher than other models, and C4.5 may be lower than other
models on most datasets. We also find that KNN is com-
parable to C4.5 on NASA datasets, but performs better than
C4.5 on PROMISE datasets. In addition, there is no signifi-
cant difference between LR and MLP.

When it comes to the performance stability, we would
first think of the standard deviation. As shown in Fig. 3,
when different prediction models are performed on the same
dataset, their average performance μ may be different. We
could not only apply the standard deviation σ to evaluate
their performance stability. In this paper, we apply C·V
to evaluate the performance stability of different models,
which represents the percentage of standard deviation σ and
average μ, thereby eliminating the effect of average differ-
ence on the comparison of performance stability. The calcu-
lation of C·V is shown in formula (4).

C·V = σ
μ
× 100% (4)

The higher the value of C·V is, the more unstable the
performance of one model is.

Based on the results in Table 4, we calculate the C·V
of prediction models as listed in Table 5. The last column
shows the total C·V on all datasets. We can conclude that
the total C·V of C4.5 (59.3%) is much higher than that of
other models, which indicates that its performance is unsta-
ble on most datasets. In contrast, the performance of NB
(9.6%) and RF (9.2%) are more stable than other models. In
addition, the distribution differences of datasets may affect
the performance stability of prediction models to a certain
extent. For instance, the performance of MLP is extremely
unstable on dataset Jedit-4.3 (13.5%) and Ivy-1.4 (7.0%),
but it is stable on other datasets.

To further explore the performance variation of differ-
ent prediction models with the increasing of IR, we use the
line charts as displayed in Fig. 4, where the x-axis represents
the value of IR, and y-axis represents the value of AUC.
When the value of AUC is 0.5, as shown with dash line in
Fig. 4, it represents the performance of random guess model.
Additionally, Table 3 shows that the values of IR are 42, 10,
45, 7, 25, 14, 43 and 10 respectively, so the lines vary in
length as shown in Fig. 4. What’s more, only half of the
values are marked with symbols.

From all subgraphs in Fig. 4, we can conclude that
the performance of C4.5 significantly decreases on most
datasets with the increasing of IR, and even worse than that



270
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

Table 5 The C·V of prediction models.

Model MC1 PC1 PC2 PC3 Camel-1.0 Ivy-1.4 Jedit-4.3 Tomcat Total
C4.5 6.2% 3.2% 11.2% 3.6% 11.4% 7.0% 13.9% 2.8% 59.3%
KNN 1.6% 2.3% 7.6% 3.5% 4.1% 3.5% 2.4% 2.1% 27.1%
LR 1.2% 2.6% 3.1% 0.7% 3.1% 6.2% 4.4% 1.5% 22.8%

MLP 1.9% 1.7% 2.2% 0.5% 2.1% 7.0% 13.5% 0.7% 29.6%
NB 0.9% 1.3% 1.5% 0.7% 1.0% 1.9% 1.9% 0.4% 9.6%
RF 1.3% 0.9% 1.0% 0.5% 2.3% 1.7% 1.0% 0.5% 9.2%

Fig. 4 The performance variation of prediction models.

of random guess model. That is to say, C4.5 is more vul-
nerable to the class imbalance problem. We can also con-
clude that the performance of RF is the most stable among
all prediction models. The reason is that RF is an ensemble
learning model of random trees, so its performance is more
stable than the single model. Similarly, the performance of
NB is also stable with the increasing of IR, which indicates
that NB could be insensitive to class imbalance.

In addition, we find that most prediction models show
the worst performance on dataset Ivy-1.4. The reason is that
dataset Ivy-1.4 contains only 241 samples, which may re-
duce the performance of prediction models due to lack of
historical data.

4.4 Comparison and Discussion

Based on the above experiments, we can conclude that there
are indeed some prediction models whose performance are
unstable on imbalanced datasets.

For example, we find that the performance of C4.5
is unstable when the dataset is imbalanced. Similarly,
Japkowicz and Stephen [13] proved that class imbalance

could also affect the performance of C5.0. It should be
noted that C4.5 and C5.0 are different versions of decision
tree model. Khoshgoftaar et al. [40] showed that Random
Forest performed better on imbalanced datasets. Our exper-
iments also show that the performance of Random Forest
is more stable on imbalanced datasets. It can be demon-
strated that our approach can effectively evaluate the per-
formance stability of different prediction models with class
imbalance. Compared with other methods, the advantage of
our approach is that it can show the performance variation
of prediction models with the increasing of IR.

Above all, based on our work, we can be aware of
the performance stability of different prediction models with
class imbalance. Furthermore, we can select reasonable pre-
diction models in empirical studies. For example, Catal and
Diri [23] investigated the effect of dataset size, metrics and
feature selection. The experiments were developed on sev-
eral models, such as C4.5, Naive Bayes and Random Forest.
These models were also implemented in Weka with default
parameters. However, according to our evaluation, C4.5 is
unstable when the dataset is imbalanced. In order to reduce
the effect of class imbalance on their experiments, C4.5 may



YU et al.: THE PERFORMANCE STABILITY OF DEFECT PREDICTION MODELS WITH CLASS IMBALANCE: AN EMPIRICAL STUDY
271

not be suitable, but Naive Bayes and Random Forest are
good choices.

In addition, He et al. [24] investigated the feasibility
of cross-project defect prediction. Similarly, C4.5 is also
used in their experiments, which may reduce the efficiency
of cross-project results to a certain extent. In this case, we
should choose such prediction models with better and more
stable performance as Naive Bayes and Random Forest in
empirical studies.

4.5 Threats to Validity

Based on our experiments, we conclude several threats to
the validity of our empirical study.

• Construct validity

The new datasets construction is the main threat to the
construct validity. Our approach is designed to convert the
original imbalanced dataset into a set of new datasets by ran-
dom sampling. In order to reduce the effect of random errors
of sampling as much as possible, we take the average of 100
times same experiments as the final results. Moreover, we
take no account of the distribution differences between the
original dataset and new constructed datasets.

• Internal validity

The parameters of prediction models may be the threat
to the internal validity. Considering that many researchers
are used to taking default parameters in empirical studies,
we also take the default parameters of prediction models in
Weka. Tantithamthavorn et al. [37] investigated that differ-
ent parameters indeed had an impact on the performance
of defect prediction models. Whether different parameters
could affect the performance stability of prediction models
should be discussed in the following work.

• External validity

Dataset quality may be the most important threat to the
external validity. In our experiments, we select eight imbal-
anced datasets from NASA and PROMISE. These datasets
are in different size and different levels of IR. Moreover,
they are commonly used in software defect prediction.

5. Conclusions

This paper presents an approach to evaluating the perfor-
mance stability of defect prediction models with class im-
balance. We evaluate the performance stability of six pre-
diction models in our experiments. The results show that the
performance of C4.5 is unstable on imbalanced datasets. In
contrast, the performance of Naive Bayes and Random For-
est are more stable than other models. Based on the results,
we can choose reasonable prediction models in empirical
studies.

We only evaluate the performance stability of six pre-
diction models, and more prediction models should be eval-
uated. In addition, we take default parameters of prediction

models in our experiments. The performance stability with
different parameters should be discussed in the following
work.

Acknowledgments

This work was partly supported by the National Natu-
ral Science Foundation of China (No. 61673384 and No.
61502497), the Guangxi Key Laboratory of Trusted Soft-
ware (No. kx201530), the China Postdoctoral Science Foun-
dation Project (No. 2015M581887) and the Scientific Re-
search Innovation Project for Graduate Students of Jiangsu
Province (No. KYLX15 1443).

References

[1] H. Wang, T.M. Khoshgoftaar, and A. Napolitano, “An empirical
study on the stability of feature selection for imbalanced software
engineering data,” Proc. 11th Int. Conf. Mach. Learn. & Appl., vol.1,
pp.317–323, Boca Raton, USA, Dec. 2012.

[2] A. Sun, E.P. Lim, and Y. Liu, “On strategies for imbalanced text clas-
sification using SVM: A comparative study,” Decis. Support Syst.,
vol.48, no.1, pp.191–201, 2009.

[3] M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker, and
G.D. Tourassi, “Training neural network classifiers for medical de-
cision making: The effects of imbalanced datasets on classification
performance,” Neural Networks, vol.21, no.2-3, pp.427–436, 2008.

[4] Y. Ma, G. Luo, and H. Chen, “Kernel based asymmetric learning for
software defect prediction,” IEICE Trans. Inf. & Syst., vol.E95-D,
no.1, pp.267–270, Jan. 2012.

[5] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” IEEE Trans. Reliab., vol.62, no.2, pp.434–443,
2013.

[6] Z. Sun, Q. Song, X. Zhu, H. Sun, B. Xu, and Y. Zhou, “A novel
ensemble method for classifying imbalanced data,” Pattern Recogn.,
vol.48, no.5, pp.1623–1637, 2015.

[7] L. Peng, H. Zhang, B. Yang, and Y. Chen, “A new approach for
imbalanced data classification based on data gravitation,” Inform.
Sciences, vol.288, pp.347–373, 2014.

[8] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera, “An
insight into classification with imbalanced data: Empirical results
and current trends on using data intrinsic characteristics,” Inform.
Sciences, vol.250, pp.113–141, 2013.

[9] J. Forkman, “Estimator and tests for common coefficients of varia-
tion in normal distributions,” Commun. Statist. – Theory & Meth-
ods, vol.38, no.2, pp.233–251, 2009.

[10] J.R. Quinlan, C4.5: Programs for machine learning, Morgan
Kaufmann Publishers, San Francisco, USA, 1993.

[11] G.H. John and P. Langley, “Estimating continuous distributions in
Bayesian classifiers,” Proc. 11th Conf. Uncertainty Artif. Intell.,
pp.338–345, Montreal, Canada, Aug. 1995.

[12] L. Breiman, “Random forests,” Mach. Learn., vol.45, no.1, pp.5–32,
2001.

[13] N. Japkowicz and S. Stephen, “The class imbalance problem: A sys-
tematic study,” Intell. Data Anal., vol.6, no.5, pp.429–449, 2002.

[14] T. Galinac Grbac, G. Mauša and B. Dalbelo-Bašić, “Stability of soft-
ware defect prediction in relation to levels of data imbalance,” Proc.
2nd Workshop Softw. Qual. Anal. Monit. Improv. & Appl., pp.1–10,
Novi Sad, Serbia, Sept. 2013.

[15] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An
empirical study of the classification performance of learners on
imbalanced and noisy software quality data,” Inform. Sciences,
vol.259, pp.571–595, 2014.

[16] D. Ryu, O. Choi, and J. Baik, “Value-cognitive boosting with a

http://dx.doi.org/10.1109/icmla.2012.60
http://dx.doi.org/10.1016/j.dss.2009.07.011
http://dx.doi.org/10.1016/j.neunet.2007.12.031
http://dx.doi.org/10.1587/transinf.e95.d.267
http://dx.doi.org/10.1109/tr.2013.2259203
http://dx.doi.org/10.1016/j.patcog.2014.11.014
http://dx.doi.org/10.1016/j.ins.2013.07.007
http://dx.doi.org/10.1080/03610920802187448
http://dx.doi.org/10.1016/j.ins.2010.12.016
http://dx.doi.org/10.1007/s10664-014-9346-4


272
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.2 FEBRUARY 2017

support vector machine for cross-project defect prediction,” Empir.
Softw. Eng., vol.21, no.1, pp.43–71, 2016.

[17] M.A. Tahir, J. Kittler, and F. Yan, “Inverse random under sampling
for class imbalance problem and its application to multi-label clas-
sification,” Pattern Recogn., vol.45, no.10, pp.3738–3750, 2012.

[18] Y. Qian, Y. Liang, M. Li, G. Feng, and X. Shi, “A resampling en-
semble algorithm for classification of imbalance problems,” Neuro-
computing, vol.143, pp.57–67, 2014.

[19] Ö.F. Arar and K. Ayan, “Software defect prediction using cost-
sensitive neural network,” Appl. Soft Comput., vol.33, pp.263–277,
2015.

[20] I.H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect predic-
tion using ensemble learning on selected features,” Inform. Softw.
Technol., vol.58, pp.388–402, 2015.

[21] D. Rodriguez, I. Herraiz, R. Harrison, J. Dolado, and J.C. Riquelme,
“Preliminary comparison of techniques for dealing with imbalance
in software defect prediction,” Proc. 18th Int. Conf. Eval. Assess.
Softw. Eng., pp.43:1–43:10, London, United Kingdom, May 2014.

[22] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F.
Herrera, “A review on ensembles for the class imbalance problem:
Bagging-, boosting-, and hybrid-based approaches,” IEEE Trans.
Syst. Man Cybern. Part C, vol.42, no.4, pp.463–484, 2012.

[23] C. Catal and B. Diri, “Investigating the effect of dataset size, metrics
sets, and feature selection techniques on software fault prediction
problem,” Inform. Sciences, vol.179, no.8, pp.1040–1058, 2009.

[24] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on
the feasibility of cross-project defect prediction,” Automat. Softw.
Eng., vol.19, no.2, pp.167–199, 2012.

[25] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on soft-
ware defect prediction with a simplified metric set,” Inform. Softw.
Technol., vol.59, pp.170–190, 2015.

[26] J. Nam and S. Kim, “CLAMI: Defect prediction on unlabeled
datasets,” Proc. 30th Int. Conf. Automat. Softw. Eng., pp.452–463,
Lincoln, USA, Nov. 2015.

[27] L. Li and H. Leung, “Mining static code metrics for a robust pre-
diction of software defect-proneness,” Proc. 5th Int. Symp. Empir.
Softw. Eng. & Meas., pp.207–214, Banff, Canada, Sept. 2011.

[28] K. Gao, T.M. Khoshgoftaar, H. Wang, and N. Seliya, “Choos-
ing software metrics for defect prediction: An investigation on
feature selection techniques,” Softw. Pract. Exper., vol.41, no.5,
pp.579–606, 2011.

[29] T.M. Khoshgoftaar, K. Gao, A. Napolitano, and R. Wald, “A com-
parative study of iterative and non-iterative feature selection tech-
niques for software defect prediction,” Inform. Syst. Front., vol.16,
no.5, pp.801–822, 2014.

[30] Y. Zhou, B. Xu, H. Leung, and L. Chen, “An in-depth study of the
potentially confounding effect of class size in fault prediction,” ACM
Trans. Softw. Eng. Method., vol.23, no.1, pp.10:1–10:51, 2014.

[31] D.W. Aha, D. Kibler, and M.K. Albert, “Instance-based learning al-
gorithms,” Mach. Learn., vol.6, no.1, pp.37–66, 1991.

[32] S. Le Cessie and J.C. Van Houwelingen, “Ridge estimators in logis-
tic regression,” Appl. Statist., vol.41, no.1, pp.191–201, 1992.

[33] J.-G. Attali and G. Pagès, “Approximations of functions by a multi-
layer perceptron: A new approach,” Neural Networks, vol.10, no.6,
pp.1069–1081, 1997.

[34] J. Huang and C.X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” IEEE Trans. Knowl. Data Eng., vol.17, no.3,
pp.299–310, 2005.

[35] Y. Jiang, J. Lin, B. Cukic, and T. Menzies, “Variance analysis in soft-
ware fault prediction models,” Proc. 20th Int. Symp. Softw. Reliab.
Eng., pp.99–108, Mysuru, India, Nov. 2009.

[36] E. Erturk and E.A. Sezer, “A comparison of some soft computing
methods for software fault prediction,” Expert Syst. Appl., vol.42,
no.4, pp.1872–1879, 2015.

[37] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, and K. Matsumoto,
“Automated parameter optimization of classification techniques
for defect prediction models,” Proc. 38th Int. Conf. Softw. Eng.,

pp.321–332, Austin, Texas, May 2016.
[38] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some

comments on the NASA software defect datasets,” IEEE Trans.
Softw. Eng., vol.39, no.9, pp.1208–1215, 2013.

[39] Y. Zhou, Y. Yang, B. Xu, H. Leung, and X. Zhou, “Source code size
estimation approaches for object-oriented systems from UML class
diagrams: A comparative study,” Inform. Softw. Technol., vol.56,
no.2, pp.220–237, 2014.

[40] T.M. Khoshgoftaar, M. Golawala, and J. Van Hulse, “An empirical
study of learning from imbalanced data using random forest,” Proc.
19th Int. Conf. Tools with Artif. Intell., vol.2, pp.310–317, Patras,
Greece, Oct. 2007.

Qiao Yu is a Ph.D. candidate at School of
Computer Science and Technology, China Uni-
versity of Mining and Technology. Her research
interests include software analysis and testing,
machine learning. She is a student member of
IEICE.

Shujuan Jiang received the Ph.D. degree
from Southeast University in 2006. She was a
visiting scholar at Georgia Institute of Technol-
ogy from September 2008 to April 2009. She
is a professor and Ph.D. supervisor at School
of Computer Science and Technology, China
University of Mining and Technology. Her re-
search interests include compilation techniques
and software engineering, etc.

Yanmei Zhang received the Ph.D. degree
from China University of Mining and Technol-
ogy in 2012. She is a lecturer at School of Com-
puter Science and Technology, China University
of Mining and Technology. Her research inter-
ests include software analysis and testing.

http://dx.doi.org/10.1007/s10664-014-9346-4
http://dx.doi.org/10.1016/j.patcog.2012.03.014
http://dx.doi.org/10.1016/j.neucom.2014.06.021
http://dx.doi.org/10.1016/j.asoc.2015.04.045
http://dx.doi.org/10.1016/j.infsof.2014.07.005
http://dx.doi.org/10.1145/2601248.2601294
http://dx.doi.org/10.1109/tsmcc.2011.2161285
http://dx.doi.org/10.1016/j.ins.2008.12.001
http://dx.doi.org/10.1007/s10515-011-0090-3
http://dx.doi.org/10.1016/j.infsof.2014.11.006
http://dx.doi.org/10.1109/ase.2015.56
http://dx.doi.org/10.1109/esem.2011.29
http://dx.doi.org/10.1002/spe.1043
http://dx.doi.org/10.1007/s10796-013-9430-0
http://dx.doi.org/10.1145/2556777
http://dx.doi.org/10.1007/bf00153759
http://dx.doi.org/10.2307/2347628
http://dx.doi.org/10.1016/s0893-6080(97)00010-5
http://dx.doi.org/10.1109/tkde.2005.50
http://dx.doi.org/10.1109/issre.2009.13
http://dx.doi.org/10.1016/j.eswa.2014.10.025
http://dx.doi.org/10.1145/2884781.2884857
http://dx.doi.org/10.1145/2884781.2884857
http://dx.doi.org/10.1109/tse.2013.11
http://dx.doi.org/10.1016/j.infsof.2013.09.003
http://dx.doi.org/10.1109/ictai.2007.46

