
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017
857

PAPER

Phoneme Set Design Based on Integrated Acoustic and Linguistic
Features for Second Language Speech Recognition

Xiaoyun WANG†a), Student Member, Tsuneo KATO†, Member, and Seiichi YAMAMOTO†, Fellow

SUMMARY Recognition of second language (L2) speech is a challeng-
ing task even for state-of-the-art automatic speech recognition (ASR) sys-
tems, partly because pronunciation by L2 speakers is usually significantly
influenced by the mother tongue of the speakers. Considering that the ex-
pressions of non-native speakers are usually simpler than those of native
ones, and that second language speech usually includes mispronunciation
and less fluent pronunciation, we propose a novel method that maximizes
unified acoustic and linguistic objective function to derive a phoneme set
for second language speech recognition. The authors verify the efficacy
of the proposed method using second language speech collected with a
translation game type dialogue-based computer assisted language learning
(CALL) system. In this paper, the authors examine the performance based
on acoustic likelihood, linguistic discrimination ability and integrated ob-
jective function for second language speech. Experiments demonstrate the
validity of the phoneme set derived by the proposed method.
key words: second language (L2) speech recognition, unified acoustic and
linguistic objective function, reduced phoneme set (RPS), linguistic dis-
crimination ability

1. Introduction

With the current wave of rapid globalization, people have
more opportunities than ever before for speaking in foreign
languages in addition to their mother tongue (L1) [1], [2].
However, in comparison to native speakers, non-native
speakers have different pronunciation due to their L1 [3],
[4], less knowledge of grammatical structures, and a smaller
vocabulary size [5]. These issues result in non-native speak-
ers delivering mispronunciation or less fluent pronunciation,
confusing listeners with far-fetched sentences, and express-
ing themselves in basic words. Celce-Murcia et al. showed
that it is difficult to communicate effectively without correct
pronunciation because different phonetics and prosody ren-
der speech sounds unnatural to native speakers and impede
comprehension of the utterance [6].

Human beings can eventually understand non-native
speech easily because after a while the listener gets used
to the style of the talker, e.g., the various insertions, dele-
tions, and substitutions of phonemes or incorrect gram-
mar [7]. More problematic is when non-native pronuncia-
tions become an issue for spoken dialogue systems that tar-
get tourists, such as travel assistance systems, hotel reser-
vation systems, and systems in which consumers purchase
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goods through a network. The vocabulary and grammar of
non-native speakers is often limited and simple, but a speech
recognizer takes no or only little advantage of this and is
confused by the different phonetics. Hence, the recognition
of second language speech remains a challenging task even
for state-of-the-art automatic speech recognition (ASR) sys-
tems.

In order to make ASR systems more tolerant to the
acoustic and linguistic variations produced by second lan-
guage speakers, various methodologies have been proposed.
Livescu used an acoustic model interpolating with native
and non-native acoustic models to cover various pronunci-
ations and accents [8]. Schaden presented an extended lex-
icon adaptation method using a set of rewriting rules based
on the study of phonological properties of the native lan-
guage and the target language [9]. Oh et al. proposed an
acoustic model adaption method for second language speech
with a variant phonetic unit obtained by analyzing the vari-
ability of second language speech pronunciation [10]. We
also proposed a reduced phoneme set (RPS) created with
a phonetic decision tree (PDT) method [11]. This method
was applied to the recognition of English utterances spoken
by Japanese speakers and the experimental results demon-
strated that the reduced phoneme set was more effective than
the canonical one.

As mentioned previously, most of the ASR technolo-
gies have been developed to handle the subject of pronun-
ciation variations separately in acoustic modeling [8], [10],
[11], lexical modeling [12] and extended lexicon [9], and
grammatical relations in terms of language modeling [13]
for non-native speech ASR. Read speech produced by non-
native speakers has only different acoustic features in com-
parison to that by native speakers. On the other hand, ut-
terances produced by non-native speakers on their own have
different features from the native speech not only in acous-
tic features but also lexical or grammatical features. These
acoustic and linguistic features of non-native speech share
a close relation when it comes to the performance of ASR
systems, and both features should be taken into consider-
ation when designing non-native speech ASR systems. In
this paper, we propose a novel method that maximizes an
unified acoustic and linguistic objective function to derive
the phoneme set for second language speech recognition.

Our proposal is based on research results obtained
with our previously proposed reduced phoneme set and
is a natural extension for handling the acoustic and lin-
guistic features of non-native speech in a unified way.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers



858
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

The previously proposed reduced phoneme set [11] was
created with a decision tree based top-down sequential
splitting method that utilizes the phonological knowledge
among L1, target languages, and their phonetic features,
delivering a better recognition performance for non-native
speech. The reduced phoneme set alleviates acoustic dis-
crimination ability–the mapping between the sequence of
acoustic feature vectors and phonemes for the second lan-
guage (L2) speakers–but unfortunately it has in principle
a weaker linguistic discrimination ability–the mapping be-
tween phoneme sequences and word sequences–in compar-
ison to the canonical one. The effect of its improved acous-
tic discrimination ability outweighs the drop in its linguistic
one compared with the canonical phoneme set. Our new
approach considers both acoustic and linguistic features in a
unified way and optimizes the weighted total of both factors.
We evaluate the proposed method by using speech data col-
lected by our previously developed dialogue-based English
CALL system [14] in the form of a translation exercise for
Japanese students.

In Sect. 2 of this paper, we give an overview of the
phoneme set design. The procedure of the phoneme set de-
sign is introduced in Sect. 3. Section 4 reports the experi-
mental results. Section 5 is a discussion of the experimental
results. We close with a conclusion and a brief mention of
our future work in Sect. 6.

2. Overview of the Phoneme Set Design

In this work, we adopt maximization of the weighted total
of a phoneme set’s acoustic likelihood and its linguistic dis-
crimination ability to derive the optimal phoneme set S , as

ΨS = arg max[λ · �LS + (1 − λ) · F (S )], (1)

where �LS is the increased acoustic likelihood of the re-
duced phoneme set S compared with the canonical one,
F (S ) represents its linguistic discrimination ability, and ΨS

is the set of optimal reduced phoneme set over all reduced
ones with respect to the unified objective function. Details
are described in the following.

2.1 Acoustic Likelihood

We use as the acoustic objective function the accumulated
log likelihood of probabilities generating the second lan-
guage speech observation data Ot = [O1,O2, . . . ,OT ] by
the probabilistic density functions (pd f s) defined by the pa-
rameters μ̂ and σ̂. It is defined by

L(PS ) ≈
T∑

t=1

log[P(Ot; μ̂s, σ̂s)] · γs(Ot), (2)

where S represents a phoneme set and PS is the node pd f
of a phoneme set S . μ̂s and σ̂s represent the mean vector
and the covariance matrix of phonemes s assigned to the
phoneme set S , respectively. γs(Ot) is a posteriori probabil-
ity of the observation data Ot being generated by phoneme

s. In here, it is calculated by the canonical phonemes s typ-
ically used in Japanese-English speech utterances.

Consequently, increased acoustic likelihood �LS with
the reduced phoneme set is defined as

�LS = L(Ps) − L(Pc), (3)

where Ps and Pc represent the log likelihood defined in
Eq. (2) for the reduced phoneme set and the canonical
phoneme set, respectively.

2.2 Linguistic Discrimination Ability

Various words w1, w2, . . . , wn of originally discriminated
phoneme sequences ordered by the canonical phoneme set
are re-figured as one word wR of the same phoneme se-
quence by the reduced phoneme sets. Hence, the words
represented by the reduced phoneme set include more ho-
mophones, which are words with the same pronunciation
but different meaning and spelling, than those by the canon-
ical one. The phoneme sequences by the reduced phoneme
set worsen the word discrimination ability in the lexicon.

These homophones decrease linguistic discrimination
ability, but they are usually disambiguated with contextual
information in human-to-human communications and are
partly done with a language model in ASR. We should there-
fore consider the effect of language model that partly dis-
ambiguates homophones to measure linguistic discrimina-
tion ability of the reduced phoneme set by collecting a huge
transcription of non-native speech data, as word probabili-
ties in utterances by non-native speakers differ from those
by native speakers. Unfortunately, transcriptions of non-
native speech are less available than those of native speech,
so we use as an approximate approach, word discrimina-
tion ability – FLex(S ) – the ratio of perplexity PP(WMdi f f (S ))
of words with discriminated phoneme sequences in the re-
duced phoneme set S to perplexity PP(WN) of words with
discriminated phoneme sequences in the canonical one, to
define the linguistic discrimination ability in this study. The
word discrimination ability of the reduced phoneme set is
generally written as

FLex(S ) =
PP(WMdi f f (S ))

PP(WN)

=
2H(WMdi f f (S ))

2H(WN )
,

(4)

where WMdi f f (S ) is the words with discriminated phoneme se-
quences in the lexicon represented by the reduced phoneme
set S and WN is the words with discriminated phoneme se-
quences in the original lexicon represented by the canoni-
cal phoneme set. H(WMdi f f (S )) and H(WN) are the entropy
of words WMdi f f (S ) and that of words WN , respectively. As-
suming each word has a single pronunciation, the entropy of
words WMdi f f and WN can be calculated with

H(WM) = −
Mdi f f∑

m=1

P(wm)logP(wm)
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H(WN) = −
N∑

n=1

P(wn)logP(wn), (5)

where wm is the homomorphic word with different pronunci-
ation included in WMdi f f . wn is the homomorphic word with
different pronunciation included in WN .

Unfortunately, transcriptions of non-native speech are
less available than those of native speech, and it is extremely
difficult to collect enough data on each conversation topic by
a considerable number of non-native speakers with various
language proficiencies. Considering the difficulty of satisfy-
ing this requirement for non-native speech, the probability
of each word P(w) is simplified to be equal, and satisfies the
following condition in the phoneme set design, as

P(wm) =
1

Mdi f f (S )
, P(wn) =

1
N

(1 � m � Mdi f f (S ), 1 � n � N),
(6)

where Mdi f f (S ) is the total number of discriminated
phoneme sequences in the lexicon represented by the re-
duced phoneme set S . N is the total number of discriminated
phoneme sequences in the original lexicon represented by
the canonical phoneme set. The simple assumption of the
equal probabilities lead to a simplified FLex(S ) as,

FLex(S ) =
PP(WMdi f f (S ))

PP(WN)

�
Mdi f f (S )

N
,

(7)

Regarding the words with discriminated phoneme se-
quences in Eq. (5), wm has polyphonic ways of pronuncia-
tion. The entropies mentioned in Eq. (5) can be extended to
the following equations,

H(WMdi f f (S )) = −
Mdi f f∑

m=1

C(wm)∑

k=1

P(wm)
C(wm)

log
P(wm)
C(wm)

H(WN) = −
N∑

n=1

C(wn)∑

k=1

P(wn)
C(wn)

log
P(wn)
C(wn)

, (8)

In here, Mdi f f is the shorthand notation of Mdi f f (S ). C(wm)
is the number of pronunciations of a homomorphic word wm

with different pronunciation included in Mdi f f . C(wn) is the
number of pronunciations of a homomorphic word wn with
different pronunciation included in N.

2.3 Discrimination Rules

As discrimination rules for producing PDT, we used the
knowledge of phonetic relations between the Japanese and
English languages and the actual pronunciation inclination
of English utterances by Japanese. A total of 166 discrimi-
nation rules [11] was used to carry out the preliminary split-
ting process for both the acoustic discrimination ability and
the linguistic one. The set of rules was designed to catego-
rize each phoneme on the basis of phonetic features such as

Fig. 1 Phoneme cluster splitting with a PDT-based top-down method us-
ing both log likelihood (acoustic part) and word discriminating ability (lin-
guistic part) as criteria.

the manner, position of articulation, phonological properties
between the target language and the mother tongue. In the
splitting method, all phonemes listed in each discrimination
rule based on the phonetic features depict similar phonologi-
cal characteristics and have the possibility to be merged into
a cluster.

3. Procedure of the Phoneme Set Design

We followed an incremental procedure in our design of the
phoneme set with a PDT-based top-down clustering method
to obtain the optimal reduced phoneme set. Figure 1 shows
the overall procedural diagram of the phoneme cluster split-
ting with the unified acoustic and linguistic objective func-
tion mentioned in Sect. 2.

3.1 Initialization Conditions

� Initial phoneme cluster
To set a cluster including all phonemes of the canonical set
listed in Table 1 as a root cluster and use the mid-state of
the context-independent English HMMs of each phoneme
as their acoustic model.

� Lexicon
To prepare the words with discriminated phoneme se-
quences in the original lexicon represented by the canonical
phoneme set.

� Discrimination rules
To use the designed discrimination rules (detailed in
Sect. 2.3) to carry out the preliminary splitting process.
The cluster is split heuristically by the discrimination rules,
which were defined by the phonetic features and phonolog-
ical properties of Japanese-English on the linguistic level.
The preliminary splitting process based on designed dis-
crimination rules is used to further calculate log likelihood
of each phoneme cluster and word discrimination ability in
each renewed lexicon, as described in the following section.

3.2 Phoneme Cluster Splitting Procedure

Step 1 Calculate log likelihood
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Table 1 Canonical phoneme set of English in Arpabet notation and IPA
notation.

Assuming that the phoneme cluster s is partitioned into sy(r)
and sn(r) by one of the discrimination rules r, the increase
of log likelihood �Ls,r is calculated as

�Ls,r = L(sy(r)) + L(sn(r)) − L(s) (9)

�Ls,r is the increased log likelihood of the phoneme cluster,
which is calculated for all discrimination rules r applicable
to each cluster.

Step 2 Renew lexicon
The lexicon will be renewed by the current phoneme set
based on all discrimination rules r. Here, phonemes exist-
ing in the same clusters/rules will be temporarily merged
into one phoneme for renewing the lexicon.

Step 3 Calculate word discrimination ability
The probability of words with discriminated phoneme se-
quences in each renewed lexicon by one of the discrimina-
tion rules r is based on Eq. (6) and calculated as

FLex(s, r) =
Mdi f f (s, r)

N
(10)

where N is the total number of discriminated phoneme se-
quences in the original lexicon represented by the canonical
phoneme set and Mdi f f (s, r)) is the number of discriminated
phoneme sequences in the renewed lexicon represented by
the current phoneme set based on the discrimination rule r.

Step 4 Select the optimal splitting rule and phoneme cluster
to split
The rule r∗ and the phoneme culster s∗ are chosen when it
brings about the maximum of the following formula:

Ψ∗s∗,r∗=arg max
all s,r

[λ · �Ls∗,r∗+(1−λ) · FLex(s∗, r∗)] (0�λ�1)

(11)

Step 5 Split phoneme clusters
The phoneme cluster s∗ is split into two clusters, s∗y(r∗) and
s∗n(r∗), in accordance with rule r∗ selected in Step 4.

Step 6 Check convergence
Check whether the stop criterion is satisfied. If yes, the split-
ting process is terminated. If not, steps 1 to 5 are repeated.

4. Experiments

4.1 Phoneme Set

The phonemic symbols of the TIMIT database were used as

Table 2 English word and sentence sets spoken by 200 Japanese stu-
dents [19].

Set Size
Phonetically balanced words 300
Minimal pair words 600
TIMIT-based phonetically balanced sentences 460
Sentences including phoneme sequence difficult 32
for Japanese to pronounce correctly
Sentences designed for test set 100
Words with various accent patterns 109
Sentences with various intonation patterns 94
Sentences with various rhythm patterns 121

a reference set [15]. There are 41 phonemes in the canon-
ical phoneme set, including 17 vowels and 24 consonants.
Table 1 lists the phonemes of English in Arpabet notation
and IPA notation. The baseline is ASR using the canonical
phoneme set in the experiment.

For the initial phoneme cluster, an English speech
database read by Japanese students (ERJ) [16] was used to
train context-independent 3-state monophone HMMs of a
left-to-right state topology. This database includes pho-
netic symbols as well as prosodic ones assigned to vari-
ous words and sentences. It contains a total of 80,409 ut-
terances consisting of both individual words and sentences
spoken by 200 Japanese students (100 males and 100 fe-
males). All sentences and words were respectively divided
into 8 sets (about 120 sentences/part) and 5 sets (about 220
words/part). Each sentence and each word was read by
about 12 and 20 speakers, respectively. Table 2 lists the spe-
cific features of the ERJ speech database.

4.2 Learner Corpus

We used our previously developed dialogue-based CALL
system [14] to collect English speech data uttered by 65
Japanese students on topics related to shopping, ordering
at a restaurant, hotel booking, and others. Each partici-
pant uttered orally translated English speech corresponding
to Japanese sentences displayed on a screen. The utterances
were transcribed and their translation quality was evaluated
and scored one of five grades by native English speakers
with a subjective evaluation method used at the International
Workshop on Spoken Language Translation [17]. Expres-
sions regarded as ungrammatical and unacceptable in the
learner corpus were given comments for generating effec-
tive feedback.

4.3 Acoustic Model, Language Model, and Lexicon

The ERJ speech database mentioned in Sect. 4.1 was used to
train context-dependent state-tying triphone HMM acous-
tic models of various numbers of phoneme sets. We de-
veloped a bigram language model using about 5,000 tran-
scribed utterances taken from the learner corpus. We used
a pronunciation lexicon related to conversation about travel
abroad. It consisted of about 45,660 phoneme sequences
for 28,000 word types with different meanings. There are
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Fig. 2 Word accuracy of the canonical phoneme set and various reduced
phoneme sets by PDT only based on the acoustic likelihood and PDT based
on the proposed method.

approximately 43,100 discriminated phoneme sequences in
the original pronunciation lexicon represented by the canon-
ical phoneme set.

4.4 Evaluation Data

We collected speech from 20 participants uttering orally
translated English speech corresponding to visual prompts
from the CALL system as evaluation data. The participants
were Japanese students who had acquired Japanese as their
mother tongue and learned English as their second language.
Their speaking styles ranged widely from ones similar to
conversation to ones closer to read speech. The communi-
cation levels of participants in English were measured us-
ing the Test of English for International Communication
(TOEIC) [18]. Their scores ranged from 380 to 910 (990
being the highest score that can be attained). In this study,
there were a total of 1,420 utterances recorded by each par-
ticipant in response to 71 visual prompts.

4.5 Experimental Results

4.5.1 Speech Recognition Results

In order to verify the performance of the derived phoneme
set by the proposed method, we heuristically chose 25-,
28-, and 32-phoneme sets that had been verified as reli-
able proficiency-dependent phoneme sets in our previous
study [19]† and used them for recognition experiments. We
used the HTK toolkit [20] to compare the performance on
ASR implementing the proposed method with that of the
canonical phoneme set and the reduced phoneme sets gen-
erated by the PDT only based on the acoustic likelihood.
This was proposed in our previous study [11], which only
used as the splitting criterion the log likelihood given by an
acoustic model. The results of the reduced phoneme sets
created with the PDT only based on the acoustic likelihood

†The optimal RPS corresponding to the English proficiency of
speakers was determined to be 25-RPS for speakers with a TOEIC
score of less than 500, 28-RPS for those with a 500–700 score, and
a 32-RPS for those with scores higher than 700.

Fig. 3 The best recognition performance of various numbers of
phonemes corresponding to weighting factor of word discrimination ability
(FLex(s∗, r∗)).

can be achieved by using Eq. (1) when setting λ = 1.
Figure 2 shows the word accuracy of the canonical

phoneme set, the reduced phoneme sets by PDT only based
on the acoustic likelihood, and the reduced phoneme sets by
PDT based on the unified acoustic and linguistic objective
function. We observed the following:

• The reduced phoneme sets with the proposed method
delivered a better performance than the canonical
phoneme set and other reduced phoneme sets by PDT
only based on the acoustic likelihood.
• The recognition performance using the proposed

method was improved more for fewer numbers of
phonemes than for greater numbers of phonemes in
comparison to that only based on the acoustic likeli-
hood.

4.5.2 Efficiency of the Reduced Phoneme Set Based on the
Unified Acoustic and Linguistic Objective Function

In order to evaluate the efficiency of the proposed method
based on unified acoustic and linguistic objective function,
we investigated the relation between the recognition per-
formance of various numbers of phonemes and different
weighting factors.

Figure 3 shows the best recognition performance cor-
responding to the weighting factor (1 − λ) of word discrim-
ination ability (FLex(s∗, r∗) in Eq. (11)) for various numbers
of phonemes generated by our proposed method. It is clear
that

• The most efficient weighting factor of word discrimi-
nation ability is different depending on the number of
phonemes in the set.
• There is a trend of reducing the weighting factor of

word discrimination ability with numbers ranging from
41 to 1 in decreasing order for the best recognition per-
formance.

5. Discussion

In this section, we investigate from two aspects—one,
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phonemes generated by the proposal in comparison to
those generated only by using the acoustic likelihood, and
two, word discrimination ability considering equal/different
probability of occurrence of each word—to evaluate the ef-
ficiency of adopting linguistic discrimination ability for im-
proving speech recognition accuracy for the second lan-
guage speech.

5.1 Reduced Phoneme Set by Different Methods

The experimental results in Sect. 4.5.1 showed that the re-
duced phone sets by the proposed method delivered better
performance than those with PDT only based on the acous-
tic likelihood (λ = 1). To further clarify the efficiency of the
proposed method based on the unified acoustic and linguis-
tic objective function, we compare phoneme sets in the final
clusters created with the proposed method and PDT only
based on acoustic likelihood.

Figure 4 shows an example of phoneme sets in final
clusters, which are merged phonemes in the leaves of a de-
cision tree when generating 28-phoneme sets. The left fig-
ure depicts the clusters obtained by PDT only based on the
acoustic likelihood, and the right one depicts the results ob-
tained by our proposed method. Some phonemes are differ-
ently merged into phoneme sets in the left and right figures
depending on the difference of criterion of both methods.

One of the specific features of the proposed method
compared to PDT only based on the acoustic likelihood is
clear from the result that phonemes /P/, /T/, and /K/ are
differently merged in the right and left figures in Fig. 4.
Phonemes /P/, /T/, and /K/ have the same manner of articu-
lation (plosive), which forces them to be merged into a clus-
ter based on the acoustic feature, but they have a different
place of articulation (labial, dental, palatal). In the left fig-
ure, which shows the results with PDT only based on the
acoustic likelihood, phonemes /T/ and /P/ are merged be-
cause the place of articulation between /T/ and /P/ is nearer
than that between /K/ and /P/. On the other hand, phonemes
/K/ and /P/ are merged in the right figure on the basis of
proposed method. This difference can be explained by the
fact that the probability of homophones that have the same
phoneme strings when /K/ and /P/ are merged achieved 0.9%
absolute reduction in comparison to that of homophones that

Fig. 4 Final clusters of 28-phoneme sets generated by both PDT only
based on the acoustic likelihood (left) and PDT based on unified acoustic
and linguistic objective function (right). The different phonemes are shown
in bold. (Non-merged phonemes are not included in the figure.)

have the same phoneme strings when /T/ and /P/ are merged.
Experimental results show that the linguistic discriminating
ability decreases more when /T/ and /P/ are merged.

5.2 Word Discrimination Ability Considering the Equal/
Estimated Occurrence Probability of Each Word

The occurrence probability of each word is thought to be
largely different. Designing the reduced phoneme set in con-
sideration of the occurrence probability of each word would
affect the linguistic discrimination ability, although it is still
difficult to collect transcriptions of non-native speech. We
temporarily check the effect of the occurrence probability of
each word using a small corpus.

In the case of the equal occurrence probability of each
word, we utilized the same computational method for the
reduced phoneme set design (refer to Eq. (6)). In the case
of different occurrence probability of each word, we esti-
mated the probability using the text corpus of evaluation
data mentioned in Sect. 4.4 and the learner corpus men-
tioned in Sect. 4.2. The occurrence probability of each word
for each corpus satisfies

Mdi f f∑

m=1

P(wm) =
N∑

n=1

P(wn) = 1. (12)

Table 3 shows the word discrimination ability for the dis-
criminated phoneme sequences of all lexicon items by the
canonical phoneme set and various numbers of the reduced
phoneme sets, considering the equal probability of occur-
rence of each word. Even if the number of the phoneme set
is reduced to 25 (39% reduction of phoneme numbers), only
5.3% of lexical items are merged into a confusable word
class. Table 4 shows the word discrimination ability for dis-
criminated phoneme sequences of all lexicon items used in
the evaluation data by the canonical phoneme set and vari-
ous numbers of the reduced phoneme sets, considering word
occurrence probability estimated in the learner corpus. In
this case, 5.3% of lexical items are also merged into a con-
fusable word class. This is smaller than expected in light of
the number of reduced phonemes, which indicates that the
phoneme occurrence distribution is largely distributed.

The vocabulary size of the lexicon used in the exper-
iment is 28,000, which we feel is sufficiently large for the
productive vocabulary of second language speakers. The lit-
erature on English as a foreign language for Japanese learn-

Table 3 Word discrimination ability (%) for discriminated phoneme se-
quences of all lexicon items represented by the canonical phoneme set and
various numbers of phoneme sets considering the equal occurrence prob-
ability of each word. The reduction rate in comparison to the canonical
phoneme set is given in parentheses.

Number of Original Only based on
λ phonemes (Canonical acoustic Proposal

in the set set) likelihood

0.2 32 92.1 (2.3) 93.2 (1.2)
0.4 28 94.4 88.9 (5.5) 89.6 (4.8)
0.6 25 87.9 (6.5) 89.1 (5.3)
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Table 4 Word discrimination ability (%) for discriminated phoneme se-
quences corresponding to words used in evaluation data represented by
the canonical phoneme set and various numbers of ones considering oc-
currence probability estimated with the learner corpus. The reduction
rate in comparison to the canonical phoneme set is given in parentheses.

Number of Original Only based on
λ phonemes (Canonical acoustic Proposal

in the set set) likelihood

0.2 32 89.4 (3.2) 89.9 (2.7)
0.4 28 92.6 88.3 (4.3) 89.7 (2.9)
0.6 25 85.7 (6.9) 87.3 (5.3)

Fig. 5 Word accuracy of canonical phoneme set and various reduced
phoneme sets by proposed method with different vocabulary size of the
lexicon.

ers [21], [22] reported the mean vocabulary size of the aural
and written case to be approximately 5,000, consisting of
3,000 words with different categories. Therefore, we use
other vocabulary sizes for the lexicon, 14,000 and 7,000, to
verify the efficacy of the proposed method.

Figure 5 shows the word accuracy of the canonical
phoneme set and various reduced phoneme sets by the pro-
posed method with different vocabulary sizes of the lexicon.
Experimental results show that the lexicon with smaller vo-
cabulary size achieved better recognition performance than
the larger ones.

6. Conclusion and Future Work

In this study, we proposed a method of designing a phoneme
set for second language speech maximizing a unified acous-
tic and linguistic objective function of second language
speakers and implemented the method as a decision tree
to derive a reduced phoneme set. We applied the reduced
phoneme set developed with the proposed method to En-
glish utterances spoken by Japanese collected with a trans-
lation game type dialogue-based CALL system. The exper-
imental results showed that it achieved a greater improve-
ment in speech recognition performance than the canonical
phoneme set and the reduced ones by PDT only based on
the acoustic likelihood. We have verified that the proposed
method is effective for ASR that recognizes second language
speech when the mother tongue of users is known.

In future, we will carry on examining linguistic dis-
crimination ability based on more accurate word occurrence
probability in other corpora. Collecting a huge amount of

speech data of non-native speakers of various proficiencies
is still quite difficult, so we plan to use the occurrence prob-
ability of each word in a native speech corpus or its inter-
polation with the probability obtained in a small corpus of
non-native speakers as an approximate approach.
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