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PAPER

Fast Reconstruction for Degraded Reads and Recovery Process
in Primary Array Storage Systems∗

Baegjae SUNG†a), Nonmember and Chanik PARK†b), Member

SUMMARY RAID has been widely deployed in disk array storage sys-
tems to manage both performance and reliability simultaneously. RAID
conducts two performance-critical operations during disk failures known
as degraded reads/writes and recovery process. Before the recovery process
is complete, reads and writes are degraded because data is reconstructed us-
ing data redundancy. The performance of degraded reads/writes is critical
in order to meet stipulations in customer service level agreements (SLAs),
and the recovery process affects the reliability of a storage system con-
siderably. Both operations require fast data reconstruction. Among the
erasure codes for fast reconstruction, Local Reconstruction Codes (LRC)
are known to offer the best (or optimal) trade-off between storage over-
head, fault tolerance, and the number of disks involved in reconstruction.
Originally, LRC was designed for fast reconstruction in distributed cloud
storage systems, in which network traffic is a major bottleneck during re-
construction. Thus, LRC focuses on reducing the number of disks involved
in data reconstruction, which reduces network traffic. However, we ob-
serve that when LRC is applied to primary array storage systems, a major
bottleneck in reconstruction results from uneven disk utilization. In other
words, underutilized disks can no longer receive I/O requests as a result
of the bottleneck of overloaded disks. Uneven disk utilization in LRC is
due to its dedicated group partitioning policy to achieve the Maximally Re-
coverable property. In this paper, we present Distributed Reconstruction
Codes (DRC) that support fast reconstruction in primary array storage sys-
tems. DRC is designed with group shuffling policy to solve the problem
of uneven disk utilization. Experiments on real-world workloads show
that DRC using global parity rotation (DRC-G) improves degraded perfor-
mance by as much as 72% compared to RAID-6 and by as much as 35%
compared to LRC under the same reliability. In addition, our study shows
that DRC-G reduces the recovery process completion time by as much as
52% compared to LRC.
key words: array storage systems, RAID, erasure codes, fast reconstruc-
tion

1. Introduction

The data protection technique of RAID [1] has been widely
deployed in primary disk array storage systems to manage
both performance and reliability simultaneously. RAID re-
covers data when a disk failure occurs by using redundant
data (e.g., erasure codes). The two performance-critical
operations of RAID during disk failures are known as de-
graded reads/writes and recovery process. If a disk failure
occurs, RAID starts the recovery process. The background
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recovery process reconstructs data of the failed disk and re-
builds data onto a replacement disk. Simultaneously, RAID
serves reads and writes from applications using data recon-
struction (i.e., degraded reads/writes). Therefore, fast re-
construction is the main operation that improves both the
performance of degraded reads/writes and the recovery pro-
cess.

In primary array storage systems, the performance of
degraded reads/writes during disk failure is critical in order
to meet stipulations in customer service level agreements
(SLAs). In addition, the performance of the recovery pro-
cess affects the period between fault and complete recovery,
thus affecting the reliability of storage systems.

Two approaches are used to support fast reconstruction.
The first approach [2]–[6] involves reducing the amount of
data read from disks for reconstruction. This approach fo-
cuses on finding coding coefficients for reconstruction or
optimizing a reconstruction algorithm while maintaining
the Maximum Distance Separable (MDS) property. There-
fore, this approach is known to achieve lower reconstruc-
tion performance than do non-MDS codes. The second ap-
proach [7]–[11] involves reducing the number of disks for
reconstruction. This approach focuses on constructing ef-
ficient erasure codes necessary for the trade-off between
storage overhead, fault tolerance, and the number of disks
involved in reconstruction under non-MDS. Among these
codes, Local Reconstruction Codes (LRC) [10], [11] are
known to offer the best (or optimal) trade-off.

Originally, LRC was designed for distributed cloud
storage service. Because network traffic is the cause of a ma-
jor bottleneck in the distributed environment, LRC focuses
on reducing the number of disks involved in reconstruction
in order to reduce network traffic. LRC has now been widely
applied to primary array storage systems [13], [14]. How-
ever, we have observed that, when LRC is applied to primary
array storage systems, a major bottleneck in reconstruction
results from uneven disk utilization. In other words, under-
utilized disks can no longer receive I/O requests as a result
of the bottleneck of overloaded disks.

In this paper, we present Distributed Reconstruction
Codes (DRC) to support fast reconstruction in primary ar-
ray storage systems. DRC uses a group shuffling policy to
solve uneven disk utilization without considerably sacrific-
ing reliability. The contributions of this paper are as follows:

1. We identified the reason for low reconstruction perfor-
mance on LRC in primary array storage systems: un-

Copyright c⃝ 2017 The Institute of Electronics, Information and Communication Engineers



SUNG and PARK: FAST RECONSTRUCTION FOR DEGRADED READS AND RECOVERY PROCESS IN PRIMARY ARRAY STORAGE SYSTEMS
295

even disk utilization.
2. We propose DRC, which supports fast reconstruction

in primary array storage systems.
3. We analyze the trade-off between degraded read per-

formance and the reliability of DRC.

This paper is organized as follows. Section 2 identifies the
reason for low reconstruction performance in array storage
systems when using erasure codes, RAID-6 and LRC. Sec-
tion 3 explains the design of our DRC and analyzes de-
graded read performance and reliability. Section 4 presents
an experimental evaluation. Section 5 lists related work on
erasure codes. Section 6 concludes our study.

2. Backgrounds and Motivation

2.1 RAID-6

RAID-6 uses multiple disks that are grouped together to
improve reliability and performance. The improvement is
achieved through the concepts of data striping and data re-
dundancy. Data striping places different parts of data on dif-
ferent disks. Each portion is often referred to as stripe,
whereas the parts are termed stripe units or chunks. The
two sets of redundancy data (or parity), which we call P par-
ity and Q parity, ensure all data are recoverable when no
more than two disk failures occur. The P parity is generated
by means of XOR-summing all data chunks, and the Q par-
ity is generated by means of Reed-Solomon (RS) coding.
Figure 1(a) provides a simple example of RAID-6 (4, 2) in
which four disks are used to store data chunks and two disks
are used to store parity chunks. Although for simplicity we
describe the examples without parity rotation, we assume
that multiple stripes exist and that all chunks are rotated be-
tween stripes. Thus, all disks will have the same workload.

Figure 1(b) shows the manner in which to reconstruct
missing data chunk d0 resulting from a failure of disk #0.
RAID reads data chunks d1, d2, d3 and parity chunk p0,
and then decodes the missing data chunk d0. The number
of chunks required to read during reconstruction is usually
called reconstruction cost. The reconstruction is performed
based on two conditions. First, the missing data chunk is re-
quired in order to operate read/write requests from applica-
tions. Second, the missing data chunk is required to rebuild
the replacement disk by means of the recovery process.

Fig. 1 Data layout and reconstruction on RAID-6 (4, 2).

Let us now consider degraded read performance. De-
graded reads occur a mixture of direct read (reading from
a surviving data chunk) and reconstruction read (reading
from a missing data chunk). On average, the same number
of read requests are then sent to each disk that stores data
chunks. We herein define a data disk as a disk that stores
data chunks. Figure 1(c) gives an example of read opera-
tions on degraded reads, and we assume that each data disk
receives a single read request. Each of the surviving data
disks #1, #2, and #3 performs two read operations: one for
a direct read and one for a reconstruction. Thus, we observe
that reconstruction generates additional read operations that
cause performance degradation. In summary, reconstruction
cost is 4, and each surviving data disk performs x2 read op-
erations.

2.2 LRC

LRC [10], [11] was originally proposed for fast reconstruc-
tion in distributed cloud storage systems. A configuration
of LRC is defined by three attributes (k, l, r), where k is the
number of disks used to store data chunks, l is the number
of disks used to store local parity chunks, and r is the num-
ber of disks used to store global parity chunks. Note that
k + l + r equals the total number of disks. Figure 2(a) pro-
vides a simple example of LRC (4, 2, 1). Data chunks d0

and d1 are protected by parity chunk p0, and data chunks d2

and d3 are protected by parity chunk p1. These two parity
groups are called a local group. In addition, all data chunks
d0, d1, d2, and d3 are protected by parity chunk q0. This
parity group is called a global group.

Local parity groups play a major role in reducing re-
construction cost. For example, in Fig. 2(b), let us assume
that data chunk d0 is lost. To reconstruct data chunk d0,
reading data chunk d1 and parity chunk p0 all within the lo-
cal parity group is sufficient. Its reconstruction cost is 2,
which is much smaller than that of RAID-6.

Figure 2(c) provides an example of read operations for
degraded reads. Unlike RAID-6, every surviving data disk
within a faulty local group performs x2 read operations. In
Fig. 2(c), data disk #1 is the only live data disk within the
faulty local group.

Regarding fault tolerance, each data chunk belongs to
two parity groups, that is, to one local parity group and to

Fig. 2 Data layout and reconstruction on LRC (4, 2, 1).
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Fig. 3 Parity-rotated data layout on LRC (4, 2, 1).

one global parity group. Thus, LRC (4, 2, 1) can tolerate
two arbitrary disk failures. In the event of three disk fail-
ures, LRC may recover data depending on the failed disk lo-
cation. If, when recovering three disk failures, all three par-
ities (e.g., two local and one global) are utilized, LRC can
recover the data; otherwise, it cannot. For example, LRC (4,
2, 1) cannot recover data if three failed disks are #0, #1, and
#2. We define pd as the recoverability ratio between recov-
erable and unrecoverable cases in three disk failures. LRC
(4, 2, 1) has a pd value of 0.77. This means that LRC (4,
2, 1) can recover data in only 77% of all three disk failure
cases. Thus, we can call pd the percentage of decodability.
Note that LRC builds multiple local groups and each local
parity group is disjoint from each other (we call this the ded-
icated group partitioning policy). Thanks to this dedicated
group partitioning policy, LRC achieves high recoverability.

LRC can control the trade-off between reconstruction
cost and fault tolerance by configuring the number of local
parity and global parity. For example, if we increase the
number of local parity in LRC, the reconstruction cost can
be reduced because each local parity group size is reduced.
Simultaneously, the pd value can be increased, resulting in
increased reliability. The number of global parity affects the
reliability of a storage system more considerably than the
number of local parity. However, increasing the number of
global parity highly degrades write performance.

2.3 Limitations of LRC for Array Storage Systems

The parity rotation technique may be easily applied to LRC
to improve performance without affecting the reliability of a
storage system. Figure 3 shows a parity-rotated data layout
of LRC (4, 2, 1).

To investigate the extent to which LRC can be applied
to a primary array storage system, we conducted an exper-
iment to measure degraded read performance on a primary
array storage system. (Refer to Sect. 4 for a more detailed
description of the experimental environment employed in
this study.) However, as shown in Fig. 4, the performance
improvement of degraded reads in LRC compared to that in
RAID-6 is insignificant: a mere 3% improvement on small
reads. This result exceeds our expectations because the per-
formance gain of LRC over that of RAID-6 (or RS) in de-
graded reads was reported as 29-32% in [10].

After careful analysis of the behavior of LRC in a pri-
mary array storage system, we identified the cause of the
problem: uneven disk utilization. Figure 5 shows the result-
ing disk utilization of LRC (4, 2, 1) when it is applied to a
primary array storage system. Note that the parity-rotated
data layout of LRC in Fig. 3 is used in the experiment. The

Fig. 4 Degraded read performance of RAID-6 (4, 2) and LRC (4, 2, 1)
during a single disk failure. Degraded read performance is normalized to
normal read performance. The results of distributed storage systems are
obtained from [10], and the results of array storage systems are measured
on our testbed (please refer to Sect. 4).

Fig. 5 Disk utilization of LRC (4, 2, 1) during a single disk failure (#0)
on a sequential read (128 KB) workload.

main reason disks #3, #4, and #5 are underutilized is that
underutilized disks can no longer receive I/O requests as a
result of the bottleneck of overloaded disks #1 and #2. For
example, in Fig. 3, assume that each of the disks from #0
to #5 receives two read requests during a failure of disk
#0. Each of the disks #1 and #2 performs four read oper-
ations (i.e., two for direct reads and two for reconstructions)
while each of the disks #3, #4 and #5 performs two read
operations. This means that each of the overloaded disks
performs x2 more read operations than each of the underuti-
lized disks. The number of outstanding requests sent to an
array storage system (or queue depth) is limited to a certain
threshold (e.g., 128), and no additional I/O requests can be
sent to the underutilized disks until overloaded disks com-
plete their assigned I/O requests. Therefore, reducing per-
formance degradation of overloaded disks is a major chal-
lenge to improving degraded read performance for array
storage systems.

3. DRC

3.1 Group Shuffling and Parity Rotation

We observe that uneven disk utilization during data recon-
struction in LRC is caused by the fact that local parity
groups are independently organized. In other words, data
disks of each local group are disjointed. To address this
problem, we must develop new code in which the data disks
of each local parity group are no longer disjointed.

In this paper, we present a novel erasure code DRC.
The main technique we employ is called group shuffling.
Note that, in LRC, local groups have disjointed sets of data
disks, and we call this dedicated group partitioning.
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Algorithm 1 Local group number decision algorithm for DRC (k, l, r)
Input the index of a data chunk n

// n is computed by logical block address/data chunk size //
Output local group number the input data chunk belongs to

// 0 ∼ l−1 //
i← n/k // stripe number of data chunk
j← n mod k // index of data chunk within a stripe
base← j/(k/l) // local group of data chunk in LRC
pos← j mod (k/l) // position of data chunk within local group
degree← i/lpos // the amount of shuffling applied to data chunk
group← (base + degree) mod l // local group for data chunk
return group

We next describe the manner in which data layout of
DRC is configured. First, similar to LRC, DRC is defined
by three attributes (k, l, r), where k is the number of data
chunks in a stripe, l is the number of local parity chunks in
a stripe, and r is the number of global parity chunks in a
stripe. That is because each stripe has a different data layout
in DRC, whereas every stripe has the same data layout in
LRC. We assume that k is divisible by l.

Given DRC (k, l, r), we must determine data layout
patterns in which k disks are equally involved in data re-
construction. Note that, regarding LRC, only k/l disks are
involved in data reconstruction. Algorithm 1 shows the
method used to decide which local parity group a given data
chunk belongs to. Algorithm 1 is invoked whenever write
requests are issued to disks or read requests are issued to
faulty disks. For each request, Algorithm 1 decides which
local group handles the request, and which disks are used to
store data chunks inside the local group.

Theorem 1. The data layouts of DRC (k, l, r) generated by
Algorithm 1 have the following properties:

1. data layout patterns repeat every l(k/l) stripes.
2. k disks of all local groups are equally involved in data

reconstruction.

Proof. We denote the local group number (LGN) for the
given data chunk of n as gi, j, where i= n/k and j= n mod k
from Algorithm 1.

(1) Define Ri = ⟨gi, j | 0 ≤ j < k⟩ as the sequence of
LGNs for data chunks in i-th stripe. We will show that Ri =

Ri+m×l(k/l) for m ≥ 1 and 0 ≤ i < l(k/l). From the algorithm, we
get gi, j = (base + ⌊i/lpos⌋) mod l, and gi+m×l(k/l), j = (base +
⌊i/lpos + m × l(k/l)/lpos⌋) mod l. Since 0 ≤ pos < k/l, m ×
l(k/l)/lpos mod l is always equal to 0. Hence, gi+m×l(k/l), j =

gi, j and Property 1 is satisfied.
(2) Without loss of generality, assume j-th data disk

fails. Define C j = ⟨gi, j | 0 ≤ i < l(k/l)⟩ as the sequence
of LGNs for data chunks in j-th data disk. Due to re-
peated data layouts of Property 1, it is enough to consider
gi, j for 0 ≤ i < l(k/l). Note that, in order to reconstruct l(k/l)

data chunks of j-th data disk, l(k/l) local parity chunks and
(k/l − 1) × l(k/l) data chunks are read. So, we will show that
l(k/l) local parity chunks and (k/l − 1) × l(k/l) data chunks are
equally distributed in l local parity disks and k− l data disks,
respectively.
First, we show that, for each local group p (0 ≤ p < l),

Fig. 6 Group shuffling on DRC (4, 2, 1) and DRC (6, 2, 1). In both cases,
two local parity groups exist: local groups 0 and 1. Two local parity groups
are defined in each stripe.

C j has l(k/l−1) LGNs satisfying gi, j = p. Since gi, j =

(base + ⌊i/lpos⌋) mod l, gi, j = p ⇔ ⌊i/lpos⌋ ≡ p −
base (mod l). Let x = ⌊i/lpos⌋. Because x is 0 ≤ x <
l(k/l−pos), the number of x satisfying x ≡ p − base (mod l)
is l(k/l−pos−1). Each value of x represents lpos LGNs, thus
there are l(k/l−1) LGNs satisfying gi, j = p. This means that
each of l local parity disks stores l(k/l−1) local parity chunks
for reconstructing l(k/l) data chunks of j-th data disk.
Second, we show that, for each working data disk j′

(0 ≤ j′ < k and j′ . j(mod k/l)), C j has l(k/l−1) LGNs
satisfying gi, j = gi, j′ . Since gi, j = (base + ⌊i/lpos⌋)
mod l, gi, j = gi, j′ ⇔ ⌊i/lpos⌋ ≡ ⌊i/lpos′⌋ + base′ −
base (mod l). Let x = ⌊i/lpos⌋ and x′ = ⌊i/lpos′⌋. Case
1) pos > pos′: The values of x′ mod l are equally dis-
tributed values from 0 to l − 1 while x does not change
(e.g., 0 ≤ i < lpos). This means that each value of
x has l(pos−1) LGNs satisfying x ≡ x′ + base′ − base
(mod l). The number of x is l(k/l−pos), thus there are
l(k/l−1) LGNs satisfying gi, j = gi, j′ ; Case 2) pos < pos′:
Same as Case 1; Case 3) pos = pos′: not possible
since j′ . j(mod k/l). Since 0 ≤ j′ < k and j′ .
j(mod k/l), the number of working data disks is k− l. That
is, each of k − l data disks stores l(k/l−1) data chunks for re-
constructing l(k/l) data chunks of j-th data disk. Therefore,
Property 2 is satisfied and Theorem 1 concludes. □

Figure 6(a) provides an example of group shuffling on
DRC (4, 2, 1) in which the layout pattern is repeated every
four stripes. DRC (6, 2, 1) is shown in Fig. 6(b) in which the
layout pattern is repeated every eight stripes.

We apply local parity rotation every l(k/l) stripes. If lo-
cal parity rotation is applied every stripe, Property 2 cannot
be met. Figure 7(a) shows an example of data layouts in
which local parity rotation is applied every four stripes, be-
cause l(k/l) becomes four in DRC (4, 2, 1). For stripes of 0,
1, 2, and 3, the data layouts are configured by Algorithm 1.
For stripes of 4, 5, 6, and 7, local parity rotation is applied
and the remaining data layouts are configured by Algorithm
1 as well.

In addition to local parity rotation, we consider global
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Fig. 7 Parity-rotated data layout on DRC (4, 2, 1) and DRC-G (4, 2, 1).
In both cases, parity rotation is applied every four stripes.

parity rotation. Figure 7(b) shows an example of data lay-
outs using global parity rotation in DRC (4, 2, 1), called
DRC-G. In DRC-G,k+l−1 disks are involved in data recon-
struction, whereas k disks are involved in DRC. Thus, we
can easily predict that the performance of data reconstruc-
tion of DRC-G is better than that of DRC. However, with
respect to reliability, DRC-G cannot recover any of three
disk failures. This means that the corresponding pd value of
DRC-G is 0. For example, the pd for DRC (4, 2, 1) is 0.43,
whereas for DRC-G (4, 2, 1) it is 0.

3.2 Analysis of Performance and Reliability

3.2.1 Degraded Read Performance

We consider two cases: degraded reads with and without
recovery processes running. The first case is the perfor-
mance of full degraded reads (denoted as PFDR). This rep-
resents the relative performance of degraded reads over nor-
mal reads without a recovery process. The second case is the
performance of effective degraded reads (denoted as PEDR).
This represents the relative performance of degraded reads
over normal reads while the recovery process is progressing.

PFDR is calculated by analyzing the performance
degradation in overloaded disks during disk failures. For a
simple analysis, the DRC (4, 2, 1) configuration is assumed.
Note that PFDR may vary depending on the location of faulty
disks. However, in this study, we focus on the worst perfor-
mance because of its direct effect on customer SLAs. There-
fore, the location of faulty disks resulting in the worst PFDR

is considered in each case.
Case 1. A single disk failure: assume a disk #0 is failure
while each of the disks #0, #1, #3, and #4 receives four read
requests in Fig. 8(a). Each of the overloaded disks #1 and
#4 performs two read operations to reconstruct the four data
chunks of faulty disk #0. This means that each of the over-
loaded disks performs six read operations while processing
four read requests. Thus, PFDR is 4/6∼0.67. In other words,
the number of read operations additionally issued to over-
loaded disks for data reconstruction, denoted as AR, is 2/4

Fig. 8 The number of read operations additionally issued to disks in or-
der to reconstruct the data chunks of faulty disks in DRC (4, 2, 1).

Table 1 The number of read operations additionally issued to overloaded
disks for data reconstruction (AR) on DRC (k, l, r), where k is any number
divisible by l, l is a number between 2 and 4, and r is any number. Note
that l is the only attribute that affects AR.

Number of Local Parities (l)
2 3 4

Number of
Faulty Disks
(F)

1 2/4 3/9 4/16
2 6/4 10/9 14/16
3 12/4 21/9 30/16
4 X 36/9 52/16
5 X X 80/16

per read request. Thus, PFDR is (1+2/4)−1∼0.67.
Case 2. Two disk failures: assume disks #0 and #1 are
failure while progressing the same workload of Case 1 in
Fig. 8(b). Each of the overloaded disks #3 and #4 performs
six read operations to reconstruct the eight data chunks of
faulty disks #0 and #1 while processing four read requests.
Note that, if the data chunks of two faulty disks belong to
the same local group (e.g., stripes of 0 and 3), all surviving
disks are read in order to reconstruct a single data chunk of
faulty disk. Thus, AR is 6/4 per read request, and PFDR is
(1+6/4)−1∼0.4.
Case 3. Three disk failures: assume disks #0, #1 and #3
are failure while progressing the same workload of Case 1 in
Fig. 8(c). The overloaded disk #4 performs twelve read op-
erations to reconstruct the twelve data chunks of faulty disks
#0, #1 and #3 while processing four read requests. Thus, AR
is 12/4 per read request, and PFDR is (1+12/4)−1∼0.25.

In the same manner, we calculate ARs of DRC using
three local parities and four local parities in Table 1. We now
generalize the manner in which to calculate AR of DRC with
an arbitrary number of faulty disks. Assume the number of
faulty disks is F. In Table 1, ARs of DRC can be derived as
(F + 1) × F/l2, (2 × F + 1) × F/l2, and (3 × F + 1) × F/l2

when ls are 2, 3, and 4, respectively. We can then calculate
AR of DRC and PFDR as follows:

ARDRC =
((l − 1) × F + 1) × F

l2
(1)

PFDR =
1

1 + AR
(2)

For a comparison, we also calculate AR of RAID-6 and
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Fig. 9 Full degraded read performance (PFDR) of DRC (k, l, r) and LRC
(k, l, r), where k is any number divisible by l, l is a number between 1 and
6, and r is any number. Note that l is the only attribute that affects PFDR.
(PFDR of RAID-6 (k, r) is the same as that of LRC (k, 1, r).)

LRC. If a single data disk fails, AR of RAID-6 and LRC is
1. Thus, PFDR is (1 + 1)−1 = 0.5. Moreover, AR of LRC
does not change in a configuration having a varying number
of local parity groups. Therefore, AR of RAID-6 and LRC
equation is obtained as follows:

ARRAID-6,LRC = F (3)

We can then calculate PFDR by Eq. (2) once we deter-
mine AR.

Figure 9 shows how PFDR of DRC and LRC vary ac-
cording to the number of local parities that include multi-
ple failures. PFDR of RAID-6 is exactly the same as that of
LRC, using one local parity. We observe that, unlike in LRC
with the same conditions, PFDR of DRC improves consider-
ably by increasing the number of local parities.

Let us now consider recovery processes in order to cal-
culate PEDR. The bandwidth allocated for recovery pro-
cesses is denoted as Brp. The more bandwidth allocated to
recovery processes, the less is available to handle outstand-
ing read requests in surviving disks. The recovery processes
consume Brp × AR of read bandwidth from each surviv-
ing disk and consume Brp of write bandwidth from a
replacement disk. Therefore, Brp can be increased to
min(Bread/AR, Bwrite), where Bread is the maximum read
bandwidth of a disk and Bwrite is the maximum write band-
width of a disk. We denote Urp as the utilization of over-
loaded disks caused additionally by the recovery process.
Then, Urp is derived as Eq. (4). Note that DRC requires
less Urp than does LRC because DRC generates smaller
AR for reconstruction in recovery process than does LRC.
PEDR is derived as Eq. (5) because the recovery process in-
terferes with degraded reads. Note that PEDR represents per-
formance of degraded reads while the recovery process is
progressing.

Urp =
Brp × AR

Bread
(0 < Brp < min(

Bread

AR
, Bwrite)) (4)

PEDR = PFDR ∗ (1 − Urp) (5)

Fig. 10 Markov model for reliability analysis of DRC (k, 2, 1); n denote
the total number of disks, λ the failure rate of a single disk, and µ the repair
rate of a disk.

3.2.2 Reliability Analysis

Mean time to data loss (MTTDL) is used to calculate the re-
liability of storage systems [10], [15]. To analyze MTTDL,
a standard Markov model is generally used, assuming that
disk failures are independent. For example, Fig. 10 plots the
Markov model for reliability analysis of DRC (k, 2, 1). The
number of each state represents the number of parity chunks
available to that state.

Let n, λ, and µ denote the total number of disks (i.e.,
k+2+1), the failure rate of a single disk, and the repair rate
of a disk, respectively. Two transitions from State 1 exist
in which two disk failures have already occurred. Depend-
ing on the recoverability ratio pd, an additional disk failure
can be recovered (i.e., transitioned to State 0) or cannot be
recovered (i.e., transitioned to State 0F).

To measure the failure rate of an array storage system
(λarray), we calculate the failure rate of the transition from
State 3 to State F (λ3→F) as well as the transition from State
3 to State 0F (λ3→0F). In addition, we compute the sum of
the two rates and thus, obtain Eq. (6) and Eq. (7), respec-
tively respectively (please refer [15] that explains how to
derive the equations). Combining these two equations by
considering pd allows us to obtain Eq. (8).

λ3→F =
n(n − 1)(n − 2)(n − 3)λ4 pd

µ3
(6)

λ3→0F =
n(n − 1)(n − 2)λ3(1 − pd)

µ2
(7)

λarray =
n(n−1)(n−2)

(
λ4(n−3)pd+λ

3µ(1−pd)
)

µ3
(8)

We can then derive MTTDL as λarray
−1. Note that the

mean time to repair (MTTR) is µ−1, and the mean time to
failure (MTTF) is λ−1. We can calculate MTTDL as follows:

MTT DL =

MTT F4

n(n−1)(n−2)
(
MTTR3(n−3)pd+MTTR2MTT F(1−pd)

)
(9)

Typically, MTTF is provided by disk manufacturers.
MTTR is determined by disk size (denoted as S disk) and
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Fig. 11 Relationship between degraded read performance and MTTDL
on RAID-6 (4, 2), LRC (4, 2, 1), DRC (4, 2, 1), and DRC-G (4, 2, 1).
Degraded read performance is normalized to the normal read performance
of RAID-6.

the amount of bandwidth allocated to the recovery process.
Thus, MTTR is calculated as follows:

MTTR =
S disk

Brp
(10)

3.2.3 Trade-Off between Performance and Reliability

Because the bandwidth is a limited resource, trade-off ex-
ists between degraded read performance and the reliability
of an array storage system. In this section, we analyze the
degree to which DRC effectively controls the trade-off be-
tween degraded read performance and reliability.

We assume DRC (4, 2, 1) and DRC-G (4, 2, 1). LRC
(4, 2, 1) and RAID-6 (4, 2) configurations are considered
for comparison. Note that the pd of DRC, DRC-G, LRC,
and RAID-6 are 0.43, 0, 0.77, and 0, respectively. Based
on the specification of SSD [16], we set Bread to 550 MB/s,
Bwrite to 520 MB/s, S disk to 240 GB, and MTTF to 2 million
hours. We assume a single disk failure.

Figure 11 shows variations in degraded read perfor-
mance based on MTTDL. Degraded read performance is
calculated by means of PEDR, which is based on the amount
of bandwidth of the recovery process necessary to satisfy the
given MTTDL. In this graph, degraded read performance is
normalized to the performance of normal reads of RAID-6.
DRC and DRC-G achieve much better degraded read per-
formance on the same MTTDL than does LRC. However,
because the bandwidth of the recovery process is limited to
the maximum read/write bandwidth of the disk, DRC and
DRC-G can support MTTDL by as much as 7.75E+14 and
4.42E+14, respectively. This means that LRC can only sup-
port MTTDL from 7.75E+14 to 1.92E+15. However, we
argue that this range of MTTDL is not applicable to primary
array storage systems because degraded read performance
drops to less than 20% against normal read performance.

4. Evaluation

We implemented the proposed erasure codes, DRC and
DRC-G, in a Linux MD layer [17]. For comparison pur-
poses, LRC was also implemented. By default, Linux MD

supports RAID-6. The Linux kernel version is 3.18.9. Test
configurations include RAID-6 (4, 2), LRC (4, 2, 1), DRC
(4, 2, 1), and DRC-G (4, 2, 1). RAID parameters such as
chunk size and queue depth are set to 128 KB and 128 re-
quests, respectively. For data reconstruction and the write
operation in the Linux MD layer, we must determine the
amount of memory (e.g., the number of page entries) and
the number of MD (kernel) threads. We reserve 8192 page
entries per disk and set 16 MD threads.

We tested every software operation on a DELL 720xd
server with two CPUs of Intel Xeon E5-2630 and 96 GB
memory of DDR3. The server was equipped with a host bus
adapter of LSI SAS 9300-8i [18] that supports bandwidth of
as much as 8 GB/s by eight lanes of PCIe 3.0 connectivity.
A Samsung SSD 850 Pro (256GB) [16] was used as a disk.

4.1 Synthetic Workloads

We used fio-2.2.10 (flexible I/O tester) [19] as a benchmark
with different access patterns. Each result was averaged
based on 10 experiments conducted under the same bench-
mark. Prior to each experiment, secure erase operations
were executed for every SSD to avoid any interference.

First, we measured the performance of degraded reads
and writes without recovery processes running. To utilize
full bandwidth, we tested throughput using eight jobs on the
workload of random 4 KB reads and one job on the other
three workloads: sequential 128 KB reads, random 4 KB
writes, and sequential 128 KB writes. We removed disks
determined to be faulty based on the number of disk fail-
ures, and we performed each workload. The results of each
test performance varied depending on the location of faulty
disks; therefore, we specified the performance result using
a range. We assumed that, on LRC and DRC, a disk was
exclusively used to store global parity.

The degraded read performance on random reads of 4
KB is shown in Fig. 12(a). In the case of a single disk fail-
ure, RAID-6 and LRC showed nearly 50% of normal read
performance. By contrast, DRC and DRC-G showed 68%.
In the case of two disk failures, the average performances of
LRC and DRC remained nearly the same, but we observed
that DRC was less sensitive to faulty disk positions than was
LRC. Moreover, the worst case performance of DRC was
20% higher than that of LRC.

Figure 12(b) shows the degraded read performance on
sequential reads of 128 KB. In the case of a single disk
failure, it shows nearly the same results as those of a ran-
dom read. Sequential reads workload incurs read requests
from data chunks on the same stripe. Requests merging
may be considered between direct read requests and read
requests for reconstruction. However, we observed few pos-
sible merges because of different sizes. For example, a di-
rect request reads a length of data of 128 KB and a request
for reconstruction reads a length of data of 4 KB. In the case
of two disk failures, we observed requests merging between
read requests for reconstruction. Thus, degraded read per-
formance was increased more than did random read. The
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worst performance of DRC remained 10% higher than that
of LRC.

The degraded write performance on random writes of 4
KB is shown in Fig. 13(a). In general, write requests require
parity updates, that is, both local and global parity. Thus,
as expected, the advantage of fast reconstruction is not con-
siderable in DRC. However, DRC-G performs better than
DRC because of its global parity rotation. Because of space
limitations, we omit a detailed behavior analysis.

Figure 13(b) shows the degraded write performance on
sequential writes of 128 KB. In the case of sequential writes
of large data, reconstruction may not be required to calculate
a new parity. Therefore, as shown in Fig. 13(b), the results

Fig. 12 Degraded read performance without a recovery process running
on RAID-6 (4, 2), LRC (4, 2, 1), DRC (4, 2, 1), and DRC-G (4, 2, 1).
(The results of three disk failures are omitted because each code handles
three-disk-failure cases differently; for example, RAID-6 and DRC-G
cannot recover any three-failure case, whereas LRC and DRC can recover
77% and 43% of three-failure cases, respectively.)

Fig. 13 Degraded write performance without a recovery process running
on RAID-6 (4, 2), LRC (4, 2, 1), DRC (4, 2, 1), and DRC-G (4, 2, 1).
(The results of three disk failures are omitted because each code handles
three-disk-failure cases differently; for example, RAID-6 and DRC-G
cannot recover any three-failure case, whereas LRC and DRC can recover
77% and 43% of three-failure cases, respectively.)

of all codes reveal nearly the same performance.
Second, we measured the performance of degraded

reads while maintaining the same reliability of an array
storage system. To maintain the same reliability, different
amounts of bandwidth are allocated to the recovery process
in each system of RAID-6, LRC, and DRC. To satisfy the
2.5E+13 MTTDL, the recovery process of RAID-6, LRC,
DRC, and DRC-G are configured to have 125, 60, 94, and
125 MB/s, respectively. We removed one disk as faulty, and
we replaced it with a new disk to start the recovery process.
Simultaneously, we performed a random read (4 KB) work-
load. The results are shown in Fig. 14.

Each performance improved gradually as time passed,
because already recovered data chunks (as a result of the re-
covery process) do not need to be reconstructed. RAID-6
starts with 500 MB/s and was 38% of the normal read per-
formance of 1310 MB/s. The lower bound of performance,
which was normalized to the normal read performance of
RAID-6, was 59%, 65%, and 47% on DRC, DRC-G, and
LRC, respectively. These results are accurate under a 4%
error against results of degraded read performance, which is
calculated in Sect. 3.2.3. In addition, the recovery process
of DRC and DRC-G was complete earlier than that of LRC.
The result showed that DRC returns to normal mode 36%
earlier than LRC, and DRC-G was 52% earlier than LRC.

4.2 Real-World Workloads

Four real-world workload traces (downloaded from the
Storage Performance Council [20]) were used to evaluate
the effectiveness of DRC. The characteristics of each trace
are listed in Table 2. The experiments were conducted while
maintaining the same reliability of an array storage system.

Fig. 14 Performance of a random read (4 KB) workload running on
RAID-6 (4, 2), LRC (4, 2, 1), DRC (4, 2, 1), and DRC-G (4, 2, 1) while
a recovery process progresses during a single disk failure. To maintain the
same reliability for comparative purposes, the bandwidth allocated to re-
covery process in RAID-6, LRC, DRC, and DRC-G is 125, 60, 94, and
125 MB/s, respectively.

Table 2 Trace characteristics.

Trace name Read ra-
tio (%)

Average request
size (KB)

Amount of
requests (GB)

Working set
size (GB)

WebSearch1 99 15.07 65.82 994
WebSearch2 99 15.4 62.59 1508
Financial1 15 3.37 17.19 182
Financial2 78 2.39 8.43 66
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Fig. 15 Degraded performance of real-world workloads running on
RAID-6 (4, 2), LRC (4, 2, 1), DRC (4, 2, 1), and DRC-G (4, 2, 1) while a
recovery process progresses during a single disk failure. Degraded perfor-
mance is normalized to the normal performance of RAID-6. To maintain
the same reliability for comparative purposes, the bandwidth allocated to
recovery process in RAID-6, LRC, DRC, and DRC-G is 125, 60, 94, and
125 MB/s, respectively.

Figure 15 shows the degraded performance of
real-world workloads during a single disk failure. In
this graph, results are normalized to normal performance
(i.e., under no disk failure) of RAID-6. WebSearch1 and
WebSearch2 are read-dominant over 99%, thus DRC and
DRC-G improved considerably with respect to degraded
performance. In WebSearch1, the degraded performance of
RAID-6, LRC, DRC, and DRC-G showed 36.1%, 46.4%,
57.9%, and 62.4%, respectively. This means that the de-
graded performance of DRC improved by 60% over that of
RAID-6 and 25% over that of LRC. In addition, DRC-G
achieved 72% improved performance over that of RAID-6
and 35% over that of LRC. A similar improvement appears
in the case of Financial2, which is also read-intensive but is-
sues small-sized requests. By contrast, because Financial1
is a write-intensive workload, the performance advantage of
DRC over LRC was insignificant: less than 3%.

Although all experiments were conducted using a solid
state drive (SSD), the results do not depend on SSD because
we observed identical situations for HDD and SSD.

4.3 Disk Utilization

We measured the disk utilization of degraded reads dur-
ing disk failures. The testing environment was same as
the experiment of sequential 128 KB reads in Fig. 12(b) of
Sect. 4.1.

Table 3(a) shows the disk utilization on sequential
reads of 128 KB during a failure of disk #0. The degraded
read performance of RAID-6, LRC, DRC, and DRC-G
was 1545, 1555, 2039, and 2402 MB/s, respectively. Note
that, for a single data reconstruction, four disks are read on
RAID-6 and two disks are read on LRC, DRC, and DRC-G.
On LRC, only disks #1 and #2 showed full utilization while
disks #3, #4, and #5 showed nearly 55% utilization. Un-
like on LRC, disks #1, #2, #4, and #5 showed full utilization
on DRC. This means that four disks are equally involved in
data reconstruction during reconstructing multiple data. On
DRC-G, the disk #6 is additionally utilized.

Table 3(b) shows the disk utilization on sequential
reads of 128 KB during failures of disks #0 and #1. The
degraded read performance of RAID-6, LRC, DRC, and

Table 3 Disk utilization (%) of a sequential read (128 KB) workload
running on RAID-6 (4, 2), LRC (4, 2, 1), DRC (4, 2, 1), and DRC-G (4,
2, 1) during disk failures.

(a) a single disk failure (#0)
#0 #1 #2 #3 #4 #5 #6

RAID-6 F 99.5 95.84 96.28 95.95 95.71 X
LRC F 99.36 99.26 55.31 55.59 56.02 0.03
DRC F 99.35 99.29 69.73 99.39 99.6 0.03
DRC-G F 99.66 96.01 78.23 89.08 95.88 95.52

(b) two disk failures (#0 and #1)
#0 #1 #2 #3 #4 #5 #6

RAID-6 F F 99.41 99.52 99.31 99.82 X
LRC F F 99.29 99.55 99.28 99.25 77.75
DRC F F 99.23 99.32 99.22 99.29 61.91
DRC-G F F 99.11 99.49 99.15 99.24 99.46

DRC-G was 1229, 1230, 1349, and 1456 MB/s, respec-
tively. Note that the results were the worst case performance
of each erasure code. In the worst case, five disks are read
for every data reconstruction on LRC. However, on DRC,
only two disks are read in half of all data reconstruction
cases. Thus, the performance of DRC showed 10% higher
than that of LRC, although the disk #6 of DRC showed
lower utilization than that of LRC. All disks showed full
utilization on DRC-G.

5. Related Works

Erasure codes for fast reconstruction: Two approaches
are used to support fast reconstruction. The first ap-
proach [2]–[6] involves reducing the amount of data read
from disks for reconstruction. This approach focuses on
finding coding coefficients for reconstruction or optimizing
a reconstruction algorithm while maintaining the Maximum
Distance Separable (MDS) property. Regenerating Codes
(RGC) [2] find coding coefficients. RGCs remain an active
and open research topic. RGC-based F-MSR [3] achieves
cost-effective reconstruction for a single failure, and Buffer-
fly codes [4] have recently been applied to and verified on
two popular distributed storage systems (HDFS and Ceph).
RDOR [5] is the recovery optimized codes of row-diagonal
parity (RDP). Rotated RS [6] modifies decoding algorithms
for fast reconstruction. However, existing practical solu-
tions [3], [6] achieve only approximately 20-30% savings
in terms of I/O and bandwidth, considerably less than DRC
(more than 50%) that is non-MDS.

The second approach, using non-MDS codes [7]–[11],
involves reducing the number of disks for reconstruction,
as in DRC. WEAVER codes [7] are extremely efficient,
but unfortunately require high storage overhead (2x and
greater). The storage cost of both HoVer codes [8] and
Stepped Combination codes [9] is less than 2x. Among
these codes, LRC [10], [11] is known to offer the best (or op-
timal) trade-off between storage overhead, fault tolerance,
and the number of disks involved in reconstruction. LRC
is adopted and verified on two distributed storage systems
(Windows Azure Storage [10] and HDFS [12]). However,
LRC has a problem of uneven disk utilization, causing low
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reconstruction performance on array storage systems.
Reconstruction optimization: PRO [21] recovers popular
data to diminish performance degradation during disk fail-
ures by means of workload analysis. D-GRAID [22] recov-
ers only blocks that contain live data. These two methods
can improve degraded read performance based on work-
loads because the recovery process interferes with degraded
reads. We believe that they can also be applied to our codes.
Partial Parallel Repair (PPR) [23] divides reconstruction op-
erations into smaller partial operations and then schedules
them on multiple nodes in order to mitigate congested net-
work traffic for data reconstruction. However, the benefits
of PPR only become obvious when network traffic causes a
bottleneck.

6. Conclusion

In this paper, we proposed erasure codes called DRC that
support fast reconstruction for array storage systems. The
main idea behind DRC is group shuffling, which reduces
the performance degradation of overloaded disks as many
as possible in a degraded mode. We showed that, in ar-
ray storage systems, DRC achieves a better trade-off be-
tween degraded read performance and reliability than does
LRC. Through experiments using real-world workloads, we
showed that the degraded performance of DRC-G improved
by 72% over that of RAID-6 and 35% over that of LRC un-
der the same reliability. In addition, we showed that DRC-G
reduces the recovery process completion time by as much as
52% compared to that of LRC.
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