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PAPER

Text-Independent Online Writer Identification Using Hidden
Markov Models

Yabei WU†a), Student Member, Huanzhang LU†b), and Zhiyong ZHANG†c), Nonmembers

SUMMARY In text-independent online writer identification, the Gaus-
sian Mixture Model(GMM) writer model trained with the GMM-Universal
Background Model(GMM-UBM) framework has acquired excellent per-
formance. However, the system assumes the items in the observation se-
quence are independent, which neglects the dynamic information between
observations. This work shows that although in the text-independent appli-
cation, the dynamic information between observations is still important for
writer identification. In order to extend the GMM-UBM system to use the
dynamic information, the hidden Markov model(HMM) with Gaussian ob-
servation model is used to model each writer’s handwriting in this paper and
a new training schematic is proposed. In particular, the observation model
parameters of the writer specific HMM are set with the Gaussian compo-
nent parameters of the GMM writer model trained with the GMM-UBM
framework and the state transition matrix parameters are learned from the
writer specific data. Experiments show that incorporating the dynamic in-
formation is capable of improving the performance of the GMM-based sys-
tem and the proposed training method is effective for learning the HMM
writer model.
key words: online handwriting, text-independent writer identification,
HMM

1. Introduction

The identification of a person on the basis of online hand-
writing data is a useful biometric modality with application
in the environment of smart meeting rooms [1], [2] and con-
stitutes an exemplary study area within the research field
of behavioral biometrics. In comparison with physiologi-
cal biometrics (e.g., iris, fingerprint, hand geometry), hand-
writing is less invasive, but the achievable identification ac-
curacy is less impressive due to the large variability of the
behavior-derived biometric templates [3].

Research in online writer identification has received
significant interest in recent years due to its potential ap-
plicability. Arti Shivram et al. [4] propose a Latent Dirich-
let Allocation(LDA)-based approach. The edge-hinge fea-
tures [3], [5] are used in this system. Marcus Liwicki et
al. [1], [2] perform writer identification by modeling each
writer’s handwriting with a specified GMM. Both the above
systems assume that the features extracted at adjacent points
are independent. In the related application of online signa-
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ture verification, HMM has been used to model online hand-
writing data [6]–[9]. The constraint of left-to-right model
is usually imposed to incorporate the prior information that
online signature verification is a text-dependent task, i.e. the
text content of the query sample is known. To the best of our
knowledge, HMM has been not applied in text-independent
online writer identification. This is similar with the situa-
tion in speaker recognition. In text-dependent applications,
where there is strong prior knowledge of the spoken text, ad-
ditional temporal knowledge can be incorporated by using
HMMs. To date, however, use of more complicated likeli-
hood functions, such as those based on HMMs, has shown
no advantage over GMMs for text-independent tasks [10].

In this paper, a writer model based on HMM is intro-
duced and evaluated for text-independent online writer iden-
tification. Intuitively, the hidden states of HMM represent
some general writing style classes. The HMM models not
only the distribution of feature vectors in each style, but also
the distribution of style transitions using the state transition
matrix. The use of HMM for modeling writer identity is
motivated by the fact that style transition patterns provide
extra information for writer identification. For example, if
using the speed feature, two time-adjacent styles will con-
tain the acceleration information. And the state transition
matrix of HMM enables the use of these extra information
for modeling writer identity.

In text-independent tasks, GMM writer models trained
with the GMM-UBM framework are popular and have ac-
quired excellent performance. GMM uses Gaussian distri-
bution to model the features in each writing style as HMM,
but does not impose any Markovian constraints, which ne-
glects the dynamic information between writing styles. In
order to extend the GMM-UBM system to incorporate the
dynamic information between adjacent feature vectors for
writer identification, the HMM with Gaussian emission den-
sity is used to model writer identity and a new learning
method is proposed. The training method is performed by
setting the writing style class parameters of HMM with the
parameters of GMM writer model trained with the GMM-
UBM framework and then learning the style transition dis-
tribution parameters from the writer specific handwriting.
This method allows a clear investigation of the effect of the
temporal modeling between styles.

The proposed HMM writer model is experimentally
evaluated on the IAM-OnDB database consists of more
than 200 writers’ on-line data acquired from a white-board.
The performance comparison between the proposed HMM
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writer models and the GMM writer models illustrates that
temporal modeling between the writing style classes is
important for text-independent task and further improves
the writer identification performance. The performance of
HMM with GMM observation model trained using the user-
adapted UBM(UA-UBM) and the user-specific HMM(US-
HMM) method in [9] is also studied. The results show
that the proposed HMM writer model outperforms. As in-
dicated in [11], good initial estimates of the observation
model parameters are essential for training the HMM with
continuous observations. So the style classes learned with
the GMM-UBM framework are also good style classes for
HMM writer model and the proposed method provides an
effective way to learn HMM writer model.

The rest of the paper is organized as follows. We first
present the features used in this work in Sect. 2. The pro-
posed HMM-based system is presented in Sect. 3. Empirical
evaluation of our method is examined in Sect. 4, followed by
conclusions in Sect. 5.

2. Feature Extraction

Online white-board data are used in this paper. The text
written on the white-board is encoded as a sequence of time-
stamped (x,y)-coordinates. From this sequence, we extract
a sequence of feature vectors and use them to train the clas-
sifier. The text is composed of many strokes. A stroke starts
with a pen-down movement of the pen and ends with the
next pen-up movement. Thus a stroke is a sequence of points
during a certain time interval when the pen-tip touches the
white-board. Figure 1 illustrates the computing of the fea-
tures in this paper. Angle θi denotes the angle between the
horizontal line and the line (pi, pi+1), and angle ϕi+1 repre-
sents the angle between the lines (pi, pi+1) and (pi+1, pi+2).
For a given stroke consisting of points p1 to pn, the follow-
ing features for each point are computed.

• The speed at pi

vi =
∆(pi, pi+1)
∆t(pi, pi+1)

where ∆(pi, pi+1) is the distance between points pi and

Fig. 1 Illustration of the point-based features.

pi+1, ∆t(pi, pi+1) denotes the time between the two
points.
• The writing direction at pi, i.e. the cosine and sine of

angle θi

cos θi =
∆x(pi, pi+1)
∆(pi, pi+1)

sin θi =
∆y(pi, pi+1)

∆(pi, pi+1)

where ∆x is the horizontal distance while ∆y is the ver-
tical distance.
• The curvature at pi, i.e. the cosine and sine of angle ϕi

cos ϕi = cos θi−1 cos θi + sin θi−1 sin θi

sin ϕi = cos θi−1 sin θi − sin θi−1 cos θi

These features constitutes a 5-dimensional feature vector,
which is used in this paper for writer identification. This is
just the point-based feature set in [1], [2].

3. HMM Writer Model

Generative classifiers are used commonly in online writer
identification, which rely on building a generative model
to model the distribution of the features extracted from the
handwriting of one person [1], [2], [12]. During the train-
ing procedure, we get a model for each writer. In the testing
phase, a text of unknown identity is presented to each model.
Each model returns a log-likelihood score and the text is as-
signed to the person whose model produces the highest log-
likelihood score. In this work, HMM is used to model the
writer’s handwriting. But the training method of the HMM
is based on GMM trained with the GMM-UBM framework,
which is explained in the following section.

3.1 GMM Writer Model

In [2], GMM is used to model distribution of the feature
vectors extracted from a person’s handwriting. For a D-
dimensional feature vector x, the probability density is de-
fined as

p(x|λ) =
N∑

i=1

wiN(x|µi,Σi) (1)

where the mixture weights wi sum up to one, N is the num-
ber of Gaussian components. N(x|µi,Σi) denotes a multi-
variate normal probability density function with mean µi and
covariance matrix Σi. The parameters of a writer’s density
model are denoted as λ = {wi, µi,Σi}, i = 1, 2, · · · ,N. In the
GMM-based system for online handwriting identification, a
GMM λu is generated for each writer u.

In the GMM-UBM framework, the writer specific
GMM is obtained by a two-step training procedure. In
the first step, all training data from all writers are
used to train a single, writer independent GMM λUBM
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as UBM. The UBM is trained using the expectation-
maximization(EM) algorithm, which is denoted by λUBM =

{wUBM
i , µUBM

i ,Σi
UBM}, 1 ≤ i ≤ N. In the second step, for

each writer, the writer specific model is obtained by adapt-
ing the UBM to the training data from that writer using the
maximum a posteriori(MAP) adaptation. In this paper, only
the adaptation of the means is performed. The specifics of
the adaptation are as follows. Given the UBM λUBM and the
training vectors of writer u, Xu = {xk

1:Tk
}, k = 1 : K, where K

denotes the number of strokes in the data set and Tk denotes
the number of vectors in the stroke k, we compute the soft
count of samples belonging to the Gaussian mixture i

Ti =

K∑
k=1

Tk∑
t=1

p(i|xk
t ) (2)

And the maximum likelihood mean for mixture i is com-
puted as

µi =
1
Ti

K∑
k=1

Tk∑
t=1

p(i|xk
t )xk

t (3)

Then, the MAP mean of mixture i for writer u is computed
as

µu
i =

Ti

Ti + Tr
µi +

Tr

Ti + Tr
µUBM

i (4)

where Tr is a fixed relevance factor. A more complete MAP
formula description for GMM can be found in [10]. The
MAP approach is useful for dealing with problems posed
by sparse training data of each writer and has acquired im-
proved performance in comparison with the writer specific
GMM trained directly with the writer’s data.

3.2 Model Interpretations and Learning

An HMM assumes the observation sequence is generated by
an underlying discrete stochastic process that is not observ-
able(it is hidden). The joint probability of the hidden state
sequence z1:T and observation sequence x1:T is defined as

p(z1:T , x1:T ) = p(z1:T )p(x1:T |z1:T )

= [p(z1)
T∏

t=2

p(zt |zt−1)][
T∏

t=1

p(xt |zt)] (5)

where zt ∈ {1, 2, · · · ,N}, N denotes the number of states.
The HMM is characterized by λ = {π, A, B}. π = {πi}
denotes the initial state distribution, πi = p(z1 = i), 1 ≤
i ≤ N. A = {ai j} denotes the state transition distribution,
ai j = p(zt = j|zt−1 = i), 1 ≤ i, j ≤ N. B denotes the observa-
tion model parameters.

The use of HMM for modeling writer identity is mo-
tivated by the fact that two time-adjacent feature vectors
(xt, xt+1) can provide more discriminative information than
only one feature vector. For example, the features used
in this work are speed, direction and curvature. The co-
occurrence of adjacent speeds can provide the acceleration

information. The co-occurrence of directions provides the
curvature and the co-occurrence of curvatures provides in-
formation about the change of curvature. And HMM is ca-
pable of modeling writer identity using these dynamic infor-
mation due to its state transition matrix. Intuitively, the hid-
den states in HMM represent some general writer-dependent
handwriting styles. The HMM models not only the distribu-
tion of feature vectors in each style, but also distribution of
style transitions using the state transition matrix. Given the
HMM writer model, the state transition matrix shows which
style transition is preferred by this writer, i.e. which two
time-adjacent classes of feature vectors are preferred. And
the observation sequence generated by the style sequence
containing more high probability style transition patterns is
more likely to acquire a high score. So HMM is one way to
model the distribution of two time-adjacent feature vectors.

The GMM writer model trained with the GMM-UBM
framework has acquired excellent performance. Similarly
to HMM writer model, the Gaussian components of GMM
can also be interpreted as general handwriting styles. How-
ever, GMM models the distribution of the underlying styles,
which neglects the dynamic information between styles.
This work extends the GMM-UBM system to use the dy-
namic information between feature vectors for writer identi-
fication by modeling the temporal sequencing among these
underlying writing styles. This is performed by model-
ing writer identity with HMM with Gaussian observation
model, which uses Gaussian distribution to model the dis-
tribution of feature vectors in each hidden handwriting style
as GMM. This structure allows the HMM and GMM writer
model to possess the same underlying writing style classes.

The specific training schematic for HMM writer model
is showed in Fig. 2. First, the GMM writer model is trained
with the GMM-UBM framework, which has been explained
in Sect. 3.1. Second, the component parameters of the writer

Fig. 2 The training procedure of the writer specific HMM.
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Fig. 3 Comparison of the statistics of states in GMM and HMM for one writer. (a) shows the dis-
tribution of states in the GMM-based system, (b) shows the probability of the state transitions in the
HMM-based system.

specific GMM are used to set the observation parameters B
of an HMM with Gaussian observation model. The number
of hidden states in the HMM and the number of Gaussian
component in GMM writer model are the same. Finally,
the HMM are fitted into the writer specific handwriting us-
ing the Baum-Welch algorithm to acquire the writer specific
HMM. During the iterative process, the parameters of emis-
sion density B are unchanged. Only the initial state distribu-
tion π and state transition probability matrix A are changed.
This training method keeps the style classes learned with the
GMM-UBM framework unchanged and learns the temporal
structure between styles to use the dynamic information.

This training schematic restricts the underlying hand-
writing style classes in the writer specific GMM and HMM
to be the same, which allows a clear investigation of the
effect of the temporal modeling between styles. This is
the motivation of using the HMM structure and the train-
ing method. The proposed system helps cope with the data
sparsity problem for each writer. Setting the B parameters
of HMM with the observation model parameters of GMM
reduces the parameters of HMM to be fitted and less param-
eters need less data to fit.

According to the training method, the only difference
between the proposed HMM-based writer model and GMM-
based writer model trained with the GMM-UBM schematic
is that different statistics of states are used as the prior infor-
mation of the writer. Figure 3 shows the statistics of GMM
and HMM for one writer in the experiments. In (a), the
distribution of states in GMM is shown. We can see that the
observations generated from which states are more preferred
by this writer. While in (b), from the state transition matrix
of HMM, we can see that the two time adjacent observations
generated from which two states are more preferred by this
writer.

During the testing phase, given a text X = {xk
1:Tk
}, k =

1 : K, where K is the number of strokes, the log-likelihood
score for writer u is computed as

log p(X|λu,HMM)=
K∑

k=1

log p(xk
1:Tk
|λu,HMM) (6)

where p(xk
1:Tk
|λu) is computed with the forwards algo-

rithm [11]. The writer giving the highest score is identified
as the result. Commonly, the time between the the end point
of one stroke and the start point of the next stroke is usually
far longer than the time between two adjacent points in one
stroke, so we assume the feature vectors in different strokes
are independent.

4. Experiments

In the experiments, we use the IAM On-line English Hand-
written Text Database(IAM-OnDB) [13]. IAM-OnDB con-
sists of on-line data acquired from a white-board. The texts
are of diverse nature, ranging from press and popular litera-
ture to scientific and religious writing. The database consists
of more than 1700 handwritten forms from over 220 writers.
It contains over 86,000 word instances with around 11,000
distinct words extracted from more than 13,000 text lines.
For each writer, there are eight paragraphs of text. A para-
graph of text consists of eight text lines in average. A text
line contains 627 points and 24 strokes in average. The task
in our experiments is to identify which person out of 200
individuals has written a given text.

4.1 Evaluation of the Time Information

The target of this paper is to further improve the perfor-
mance of GMM-based system by incorporating the time in-
formation. In this section, the HMM trained with the pro-
posed schematic is compared to the GMM-based systems.
In order to investigate the effects of available data, the exper-
iments are performed at text line level and paragraph level.
In all the experiments, we use 4 paragraphs from each au-
thor’s data for training, 2 paragraphs for validating and the
rest 2 paragraphs for testing. Four fold cross validation is
performed to get a more reliable result. The number of
writers to be identified is 200. Both the number of states
of HMM and the number of components of GMM are 50,
which is the best performed parameter in [1]. During the
MAP adaptation to acquire the writer specific GMMs, the
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Table 1 Paragraph-level recognition result

Num System valid set average(%) valid set std(%) test set average(%) test set std(%)

1 HMM-M0-V0 65.75 2.14 63.50 2.53

2 HMM-M1-V1 95.31 3.32 95.31 1.62

3 HMM-M2-V1 95.44 2.68 95.69 2.25

4 GMM-M1-V1-W2 89.44 2.91 90.69 2.83

5 GMM-M2-V1-W1 88.69 3.25 90.25 3.68

6 GMM-M2-V1-W2 93.75 2.96 94.50 3.14

7 GMM-M2-V1-W1[2] 88.19 4.75 88.56 3.90

8 GMM-M2-V1-W1[1] 85.00

9 LDA+SVM [4] 93.39

Table 2 Line-level recognition result

Num System valid set average(%) valid set std(%) test set average(%) test set std(%)

1 HMM-M0-V0 48.81 3.30 48.00 2.84

2 HMM-M1-V1 73.97 4.08 73.84 2.57

3 HMM-M2-V1 77.17 4.55 76.28 2.56

4 GMM-M1-V1-W2 56.99 2.65 56.33 2.16

5 GMM-M2-V1-W1 60.79 3.78 60.90 3.53

6 GMM-M2-V1-W2 71.51 3.84 71.22 3.53

7 GMM-M2-V1-W1[2] 49.24 2.27 48.67 3.88

fixed relevance factor is set to 20. The right rate is used to
indicate the performance, which is the percent of right rec-
ognized test samples.

Table 1 shows the paragraph-level writer identification
results. In Table 2, the line-level results are displayed. We
investigate 6 different systems in our experiments, i.e. 3
HMM-based systems and 3 GMM-based systems(numbered
1–6 in the two tables). For the naming of these methods,
M and V denote the means and variances of the observa-
tion model for GMM or HMM and W denotes the weights
of GMM. 0 denotes the parameters trained with the writer
specific data directly, 1 denotes using the parameters of the
UBM and 2 denotes using the MAP parameters. For exam-
ple, HMM-M0-V0 represents the writer specific HMM is
trained with the writer’s data directly while HMM-M2-V1
denotes the means of the observation model are MAP means
and the variances are the UBM values. In the paragraph-
level experiments, our results are compared with the results
in [1], [2], [4]. The line-level results are compared to the
results in [2].

Firstly, we compare the performance of the GMM-M1-
V1-W2 model and the HMM-M1-V1 model, which have the
same observation model. Apparently, the HMM model per-
forms better in both the paragraph-level and the line-level
experiments. So modeling the hidden state sequence with
Markov model to incorporate time information improves
the performance. This viewpoint is further verified by the
comparison of GMM-M2-V1-W1, GMM-M2-V1-W2 and
HMM-M2-V1. These models possess the same observation
model. Similar with the above results, the HMM performs
better in the both level experiments. One interesting phe-
nomenon in the paragraph-level experiment is that the ac-

curacy difference between GMM-M2-V1-W2 and HMM-
M2-V1 is about 1%, but the accuracy difference between
GMM-M1-V1-W2 and HMM-M1-V1 is about 5%, which
is much larger. It is common that higher the accuracy, more
difficult the accuracy improvement. GMM-M1-V1-W2 has
acquired the accuracy of 94.5%, which may be approach-
ing the best accuracy allowed by the point-based features
used in this work. So further improving the accuracy is
more difficult than improving the accuracy from 90.69%. In
the line level experiments, the accuracy difference between
GMM-M2-V1-W2 and HMM-M2-V1 is clear. Comparing
the recognition rates of HMM-M0-V0 and HMM-M1-V1,
HMM-M2-V1, it is clear that the proposed training method
has acquired significantly better performance than the HMM
trained directly from the writer specific data in both the line
level and the paragraph level experiments.

4.2 Evaluation of Model Order

The robustness of the proposed method under different
model order is studied in this section. In this series of exper-
iments no cross validation is performed to reduce the com-
putational complexity. And only the recognition results on
the test set are reported. The training set consists of four
paragraphs, and the test set consists of two paragraphs. The
experiments are performed on the text line level and para-
graph level. The number of states N varies from 8 to 64. The
studied systems are GMM-M2-V1-W2 and HMM-M2-V1,
which are the best performed GMM and HMM system in the
previous section. We also investigate the performance of the
UA-UBM and US-HMM system in [9], in which the HMM
with GMM emission probability are used. The UA-UBM
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system also only adapts the means as the original paper.
Table 3 shows the paragraph level recognizing preci-

sion while Table 4 illustrates the line level results. N denotes
the number of states and M denotes the number of compo-
nents in the GMM emission probability for the UA-UBM
and US-HMM system. Comparing GMM-M2-V1-W2 and
HMM-M2-V1, in the line level experiments, their accura-
cies are similar. In the line level experiments, at different
number of states, HMM-M2-V1 performs significantly bet-
ter than GMM-M2-V1-W2. Considering the results at both
levels, HMM-M2-V1 performs better than GMM-M2-V1-
W2. This shows that incorporating the time information us-
ing the proposed method improves the writer identification
accuracy. In the case of the UA-UBM and US-HMM sys-
tem, with the increase of the number of Gaussian distribu-
tion in each state and number of states, the US-HMM system
outperforms the UA-UBM system in both level experiments.
This may be attributed to that the UA-UBM system restricts
the temporal sequence parameters of different HMM writer
models to be same. Only adapting the means may not suf-
ficient to model the dynamic difference between different
writers’ handwriting. Comparing UA-UBM, US-HMM and
HMM-M2-V1, in both the line and paragraph level experi-
ments and at different N, HMM-M2-V1 outperforms the two
systems. This shows that the proposed training method is ef-
fective for training writer specific HMM with single Gaus-
sian emission probability. The performance of the proposed
HMM system is robust to selecting of model order and the
amount of available test data.

Considering the complexities of the algorithms, for the
training of GMM, each EM iteration complexity is O(NT D),
where N is the number of components, T is the length of
the observation sequence, D is the samples’ dimension. As
indicated in [9], each Baum-Welch iteration complexity is

Table 3 Paragraph level results at different model order.

Method M
N

8 16 32 64
HMM-M2-V1 1 89.25 93.75 95 94.25

GMM-M2-V1-W2 91.75 93.75 94 94.5

UA-UBM
1 86 87.25 90 88.75
4 86 86 84 83.25
8 84 80.75 80 79.5

US-HMM
1 45 73.5 88.5 91.75
4 70 73 88 89.25
8 78 82.5 89.5 85

Table 4 Line level results at different model order.

Method M
N

8 16 32 64
HMM-M2-V1 1 63.69 73.27 75.64 76.4

GMM-M2-V1-W2 58.52 62.9 65.2 66.86

UA-UBM
1 52.71 56.52 60.29 58.67
4 51.66 55.43 55.20 53.7
8 52.68 54.52 53.47 52.91

US-HMM
1 32.13 50.23 62.59 68.25
4 47.4 54.41 66.21 67.83
8 53.62 59.65 68.02 63.71

O(N2T MD). For the proposed training method for HMM,
first, tens of EM iterations are needed to train to the GMM
UBM. Then one EM iteration is needed to acquire the writer
specific GMM. Finally, tens of BW iterations are needed to
acquire the writer specific HMM. However, only the π and
A parameters are adapted during the BW iterations, so the
values of p(xt |zt = i), t = 1 : T, i = 1 : N are unchanged
and computed once in the first BW iteration. Other BW it-
erations’ complexity is O(N2T ). Apparently, additional BW
iterations cause that the proposed method takes more time
for training writer specific models than GMM-UBM system.
In the case of UA-UBM system, tens of full BW iterations
are needed to train the HMM UBM, which takes far more
time than only adapting the π and A parameters. So with
the same number of states, the training complexity of UA-
UBM system is higher than the proposed system. If con-
sidering HMM with Gaussian emission probability, the test
complexity of the proposed method and UA-UBM are the
same. In similar with the training case, the test complexity
of GMM-UBM is far less than the HMM based systems.

4.3 Evaluation of Reducing Training Data

The third set of experiments measures the influence of using
less data to train the HMMs. In this experimental setup, we
reduce the amount of data available for training from four
paragraphs to one paragraph in steps of one. The method
HMM-M2-V1 in investigated. The meta parameters consid-
ered in this setup are the number of states (varied from 8 to
64) . In this series of experiments no cross validation is per-
formed to reduce the computational complexity. And only
the results on the test data set are reported. The test set each
consists of two paragraphs. The experiments are performed
on the text line level and the paragraph level. The rest of the
experimental setup is identical to the ones of the previous
two sets of experiments.

Table 5 shows the paragraph level results while Ta-
ble 6 shows the line level results. N denotes the number
of states for writer specific HMM. In the case of the para-
graph level experiments, from training data of one para-
graph to four paragraphs, the best performance acquired

Table 5 Paragraph level results at different amount of training data.

Amount of training data
N

8 16 32 64
One paragraph 83.5 86.5 69.25 49.5
Two paragraphs 89.75 91.5 90 90

Three paragraphs 92 93.5 94.5 94.25
Four paragraphs 90 93.25 95.5 94.25

Table 6 Line level results at different amount of training data.

Amount of training data
N

8 16 32 64
One paragraph 59.31 60.94 50.83 41.06
Two paragraphs 61.24 66.63 70.02 67.8

Three paragraphs 66.25 71.64 72.93 74.77
Four paragraphs 64.13 72.91 75.27 76.71
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are 86.5%(N=16), 90%(N=32 or 64), 94.5%(N=32) and
95.5%(N=32). And when there are more than two para-
graphs, the accuracy at N = 32 and N = 64 are very
similar. The best performance of line level experiments
are 60.94%(N=16), 70.02%(N=32), 74.77%(N=64) and
76.71%(N=64) with the increase of the training data. The
results show that reducing the number of paragraphs for
training from four to two paragraphs does not significantly
reduce the writer identification rate. Analysing the influence
of the model order, with the increase of the available train-
ing data, higher order are needed to acquire the best perfor-
mance. When one paragraph of training data is available,
N > 16 will cause dramatic decrease of identification per-
formance, which indicates a result of data overfitting. With
more available training data, too low the model order will
not be able to model the information contained in the data
sufficiently.

5. Conclusion

In this paper, we have analysed the influence of dynamic
information for text-independent online writer identifica-
tion by modeling each writer’s handwriting with an HMM.
Based on the well performed GMM-UBM system, a new
training schematic is proposed for writer specific HMMs in
which the observation parameters of the HMM are set with
the parameters of the GMM and only the left parameters are
fitted. So the dynamic information is incorporated by mod-
eling the distribution of state transitions. This helps cope
with the data sparsity problem of each writer’s handwriting.

In the experiments, the proposed HMM-based system
performs better than the popular GMM-based system in
both the paragraph and line level experiments, which indi-
cates that the time information is also important for text-
independent tasks. The performance of the UA-UBM and
US-HMM system [9] are also investigated. The results show
that the proposed system performs better. This indicates
the observation model parameters of GMM trained with the
GMM-UBM framework are good initial estimates of the B
parameters of single Gaussian HMM and the proposed train-
ing method in an effective method for training writer spe-
cific HMMs. Analysing the training and texting complexity
of the GMM-UBM, UA-UBM and the proposed method, if
with the same number of states, the training and testing com-
plexity of GMM-UBM is far less than the other two systems.
However, the training complexity of the proposed method is
far less than UA-UBM system.
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