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PAPER

Image Quality Assessment Based on Multi-Order Local Features
Description, Modeling and Quantification

Yong DING†a), Member, Xinyu ZHAO†, Zhi ZHANG††, and Hang DAI†††, Nonmembers

SUMMARY Image quality assessment (IQA) plays an important role
in quality monitoring, evaluation and optimization for image processing
systems. However, current quality-aware feature extraction methods for
IQA can hardly balance accuracy and complexity. This paper introduces
multi-order local description into image quality assessment for feature ex-
traction. The first-order structure derivative and high-order discriminative
information are integrated into local pattern representation to serve as the
quality-aware features. Then joint distributions of the local pattern rep-
resentation are modeled by spatially enhanced histogram. Finally, the im-
age quality degradation is estimated by quantifying the divergence between
such distributions of the reference image and those of the distorted image.
Experimental results demonstrate that the proposed method outperforms
other state-of-the-art approaches in consideration of not only accuracy that
is consistent with human subjective evaluation, but also robustness and sta-
bility across different distortion types and various public databases. It pro-
vides a promising choice for image quality assessment development.
key words: image quality assessment, image quality degradation, local
pattern representation, feature extraction, visual perception

1. Introduction

With the widespread use of digital images, images are usu-
ally affected by a wide variety of distortions during acqui-
sition, compression, storage, transmission and reproduction,
resulting in perceptual quality degradation [1]–[5]. Quantifi-
cation and assessment for such degradation of image quality
play an important role in image processing system. Image
quality assessment (IQA) can provide feedback for process-
ing system quality monitoring, evaluation and optimization.
It has become a hot topic [1]–[7].

IQA is categorized into subjective and objective assess-
ment. Subjective assessment by human observers can pro-
vide accurate results. However, it may be influenced by sev-
eral critical factors including the environment conditions,
motivations and mood of observers. Moreover, subjec-
tive assessment is a laborious, expensive, time-consuming
and non-repeatable process [8], [9]. Due to the weaknesses
of subjective assessment, recent researches are focused
on developing objective metrics to predict image quality
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automatically that are consistent with the subjective eval-
uation [1]–[3], [6]–[8].

Traditional objective assessment methods like peak
of signal-to-noise ratio (PSNR) and mean squared error
(MSE) are widely used. They can be easily computed and
have clear physical meanings but are challenged because
of low accuracy [10]. Over the last decades, various ef-
fective IQA methods have been explored in literature [11]–
[20], which are conducted in two directions. One is that
IQA is implemented by reflecting the way in which human
beings perceive images, as images are ultimately viewed
by human beings. Some meaningful human visual sys-
tem (HVS) oriented objective methods are proposed by tak-
ing advantage of the known characteristics of HVS includ-
ing multi-channel decomposition, just notable difference,
contrast sensitivity functions, spatial and frequency error
pooling, contrast and luminance masking, and so on. The
well-known method is visual information fidelity (VIF) [11]
which incorporates the HVS model into information fidelity
criterion (IFC) [12]. IFC and VIF achieve better perceptual
consistency in quality prediction for different types of distor-
tions [13]. However, their complexity is so high that limits
their applications. Besides, some interesting methods based
on other properties of HVS have been proposed [14]–[21].
Visual signal-to-noise ratio (VSNR) quantifies the visual
fidelity based on near-threshold and supra-threshold prop-
erties of human vision [15]. Weighted multi-scale meth-
ods are explored to evaluate the image quality at multi-
ple resolutions cohering with human perception [16], [17].
A four-stage perceptual approach is proposed in which vi-
sual features are extracted by 2-D Gabor filter and post-
processed by a divisive normalization transform to reflect
the nonlinear mechanism of HVS [18]. Divisive normaliza-
tion masking models are introduced into image quality as-
sessment [19]. Instead of simulating the functional compo-
nents of the lower level HVS, the methods in [20], [21] tend
to include higher level aspects of HVS, such as visual atten-
tion, in objective assessment. However, since there are too
many characteristics of the human visual system (HVS) un-
explored at present, it is difficult to model the complex and
rigorous HVS very well relying on the limited understand-
ing, which in turn does not work well in IQA. Furthermore,
computational efficiency becomes a significant issue result-
ing from the extremely complicated modeling.

State-of-the-art methods turn to the other direction that
manages to capture the statistical properties (features) from
an image and map them to the perceptual quality [3], [7],
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[16], [17]. Such feature-based methods are inclined to ef-
fectively extract quality-aware features and have achieved
notable success [4], [5], [13]. Among these feature-based
methods, structural similarity index (SSIM) [10] is quite
attractive and popular owing to its simplicity and excel-
lent performance, which is based on the hypothesis that
HVS is highly adapted for extracting structural information
from images. In SSIM, the luminance, contrast and struc-
ture comparisons obtained from the reference and distorted
images are involved for perceptual quality estimation [10],
[22]. More recently, there are several extensive methods
to improve its performance further, such as gradient-based
structural similarity [23], complex wavelet structural simi-
larity (CW-SSIM) index [24], content-partitioned structural
similarity index [25], and information content weighted
SSIM (IW-SSIM) [17]. However, it should be noticed that
SSIM based methods are less competitive in measuring the
quality of blurred images. A recent study demonstrates that
gradient information that captures both contrast and struc-
ture of an image allows more emphasis on distortions around
the edge regions [8], [23]. With the gradient similarity, the
change of contrast and structure in images are captured [8].
Based on the fact that HVS understands an image mainly
according to its low-level features, a feature similarity index
uses phase congruency as the primary feature and employs
the image gradient magnitude as the secondary feature [26].

From the analysis above, how to extract features ef-
fectively and map them to perceptual quality is the key is-
sue to feature-based IQA method development. With re-
spect to feature extraction, local description has received a
lot of attention in recent years [27]–[30]. Local features per-
form very well in many image applications including im-
age retrieval, object recognition and texture analysis. Such
success inspires us to introduce the local feature descrip-
tion into image quality assessment for quality-aware feature
extraction.

The main contributions of this paper include: (1) we
are the first to propose a multi-order local feature descrip-
tion method for IQA that the first-order structure derivative
and high-order discriminative information are integrated to
serve as the quality-aware features (Sect. 3.1); (2) we pro-
pose a new algorithm to exploit the optimal combination of
orders and optimal weighting factors for feature description
in IQA (Sect. 3.2 and 3.4); (3) we conduct experiments on
various distortions and different databases. The experimen-
tal results show that the proposed method outperforms state-
of-the-art methods in consideration of three aspects: accu-
racy, stability and computational complexity, which make
it very attractive and competitive for real-time applications
where the computing and battery-life resource constraints
should be considered carefully (Sect. 4).

The rest of this paper is organized as follows. Sec-
tion 2 provides some background work and a brief review
about local feature description. Sections 3 presents a ded-
icated method based on multi-order local features descrip-
tion and optimization process. Section 4 reports the ex-
perimental comparisons on different public databases with

state-of-the-art methods and discussions. Finally, the con-
clusions are drawn in Sect. 5.

2. Related Work

Local feature detection and description have received a lot
of attention in recent years [27]–[30]. With the success
in effectively representing the spatial structure information
of images, the importance of local descriptors such as lo-
cal binary pattern (LBP) [31] and local derivative pattern
(LDP) [32] has been well recognized in different application
areas (for example, the object recognition [33]). We will
first give a brief overview of LBP and LDP and then discuss
the introduction of local features into IQA.

2.1 Local Binary Pattern

Derived from a general definition of texture in a local neigh-
borhood, LBP is designed for texture description which is
defined as a grayscale invariant texture measure to model
images [31]. It has been successfully applied in face recog-
nition, texture classification, and background modeling.
The wide applications of LBP operator result from its in-
variance to monotonic gray-level changes and computa-
tional efficiency. The idea of LBP is to divide an image
into sub-regions which include the compositions of micro-
patterns [34]. By thresholding neighboring pixels with a
central pixel in 3 × 3 local region, the LBP operator labels
each pixel of an image and concatenates them into a binary
string. The basic LBP can be formally represented as

LBP(IC) =
N∑
i

sgn(Ii − IC) × 2i (1)

where IC is the gray value of the central pixel, Ii are the gray
value of the neighboring pixels surrounding the central pixel
in a given local sub-region with i being the index and N be-
ing the number of the neighboring pixels of IC as shown in
Fig. 1. And sgn(x) is a binary coding function which en-
codes the co-occurrence at different neighboring pixels as

sgn(x) =

⎧⎪⎪⎨⎪⎪⎩1 ∀x ≥ T

0 ∀x < T
(2)

where T is a threshold to determine the relationship between
the central pixel and its neighboring pixels. Figure 2 shows
an example of LBP for local structures and discriminating
information extraction with T being set to zero.

Fig. 1 IC and the neighbouring pixels
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Fig. 2 Example of LBP operator

Fig. 3 Example of second-order LDP operator

2.2 Local Derivative Pattern

LBP can be considered as the nondirectional first-order
circular derivative local pattern which is used to concate-
nate binary comparative results for generating the micro-
patterns [35]. Since the first-order derivative pattern fails to
combine the relationship of neighborhoods, to capture more
detailed discriminative information, the high-order deriva-
tive descriptor is proposed in [32]. The notable character-
istic of LDP is that it captures local information in 4 direc-
tions (0◦, 45◦, 90◦and 135◦) and concatenates the results into
a 32-bit binary sequence.

Similar to the definition of LBP, the second-order LDP
which captures the changes of first-order derivative informa-
tion along direction α among local neighbors is defined as

LDP(2)
α (IC) =

N∑
i

sgn(Gα,i ×Gα,C) × 2i (3)

where Gα,i is the gradient along α direction that is calculated
by a central pixel and its 4 neighbouring pixels, for example,
G0◦,C = I4 − IC , G45◦,C = I3 − IC , G90◦,C = I2 − IC and
G135◦,C = I1 − IC , where IC is the gray value of the central
pixel, I4, I2, I3 and I1 are the gray value of the right, up, up-
right and up-left neighbouring pixels, respectively. Thus, the
second-order local pattern information along 4 directions is

LDP(2)(IC) = {LDP2
α(IC)|α = 0◦, 45◦, 90◦, 135◦} (4)

An example of the second-order LDP computation is illus-
trated in Fig. 3. It is convenient to extend the second-order
LDP to form the nth-order pattern which describes the gra-
dient trend changes in a local region of directional nth-order
derivative as below, pattern information along 4 directions is

LDP(n)= { f (Gn−1
α (IC),Gn−1

α (I1)), f (Gn−1
α (IC),Gn−1

α (I2)),

. . . , f (Gn−1
α (IC),Gn−1

α (I8))|α=0◦, 45◦, 90◦, 135◦}
(5)

where Gn−1
α (IC) is the (n−1)th-order derivative of the current

pixel along α direction, and which encodes the (n−1)th-order
gradient transitions into binary patterns is defined as,

f (Gn−1
α (IC),Gn−1

α (Ii)) =

⎧⎪⎪⎨⎪⎪⎩0 (Gn−1
α (IC),Gn−1

α (Ii)) > 0

1 (Gn−1
α (IC),Gn−1

α (Ii)) ≤ 0

(6)

The high-order local patterns provide a stronger discrimi-
native capability in describing detailed texture information
than the first-order local pattern as used in LBP. The higher
order is, the more details that can be extracted from an im-
age by the local pattern operator [32], [35]. However, over-
detailed patterns tend to be noise instead of identity infor-
mation [32].

2.3 Local Feature for IQA

The local structural primitives in the early vision stage are
crucial to represent image semantic information in late HVS
process [36]. Structural information conveys the main vi-
sual contents of an image, and structural degradation will
directly impact on image perception. Therefore, local fea-
ture description has a significant potential in the application
of image quality assessment. In [37], LBP is introduced
for the calculation of spatial distribution structural distribu-
tion to develop a novel full reference IQA method. How-
ever, the performance of LBP is bounded to some extent
as a local structure descriptor since it lacks of magnitude
information. Therefore, [36] presents the generalized lo-
cal binary for quality-aware feature extraction. These local
structure descriptor based methods achieve good evaluation
results as well as computational simplicity. However, they
only use the first-order derivative pattern for feature extrac-
tion which results in comparatively low accuracy of image
quality quantification. As is well known, in image quality
perception, HVS is more sensitive to detailed information
than background in a scene [38]. That is to say, the high-
order information (high-order characteristics, co-occurrence
statistics etc.) is significant for image quality analysis and
evaluation. In this paper, we introduce LDP into IQA to
capture more detailed discriminative information. In the
proposed method, the distributions of local pattern repre-
sentation can be used as a feature descriptor. And the diver-
gence between the features modeled by spatially enhanced
histogram is taken as a measure of image quality degrada-
tion. Moreover, the optimal combination of orders for fea-
ture description is explored.
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3. Image Quality Assessment Based on Multi-Order
Local Description

3.1 Overview of the Proposed Framework

The proposed method is based on the hypothesis that vi-
sual perception is highly adapted for extracting structural
information from a scene. Figure 4 illustrates the over-
all framework of the proposed image quality assessment
method based on multi-order local description. Briefly, it in-
cludes three phases: feature extraction phase (Sect. 3.2) and
similarity quantification, quality mapping phase (Sect. 3.3)
and weighting factors optimization (Sect. 3.4). In feature ex-
traction phase, we introduce multi-order local descriptor to
obtain more detailed structure discrimination information.
Then such first- and high order information is combined and
encoded to construct the local pattern representation. In the
similarity quantification and quality mapping phase, spatial
histogram is employed to model the distributions of the local
representation. Subsequently, similarity of the distributions
between the reference and distorted images is quantified by
a measure of chi-square distance. Finally, the similarity of
all the histogram bins is synthesized with a pooling strategy
to generate an objective distortion index.

3.2 Quality-Aware Features Extraction

There are three stages in feature extraction for image qual-
ity assessment: (1) pre-processing; (2) feature extraction in-
cluding the first- and high-order local information; (3) rep-
resentation combination. Figure 5 is an example of feature
extraction based on multi-order local pattern description.

Fig. 4 Framework of the proposed method

To overcome the shortcoming of traditional local pat-
tern methods, such as small spatial support area being not
able to capture larger scale structure, low robustness against
variations in position information and pixel-wise compari-
son being sensitive to noise, in our framework, there is a
multi-scale block pre-processing procedure. The multi-scale
block processing is used to extend the local region for local
pattern description in which computations are done based
on average values of block sub-regions, instead of individual
pixels. It can make the subsequent operations very flexible
to deal with the processing in different scales. In addition,
the pre-processing has an advantage that it makes the sub-
sequent process more computationally efficient. As shown
in Fig. 5, the image is divided into patches with the fixed
size of 30 × 30, and the total number of these patches are
denoted as M. Then we down-sampled the 30×30 patch us-
ing a 3 × 3 filter so that pixels in each non-overlapped 3 × 3
sub-patch were averaged arithmetically. As a result, we get
a down-sampled patch with the size of 10 × 10.

After the pre-processing, with thresholding, the first-
order structure features f (1) are extracted from local 3 × 3
regions by the distribution of LBP operator as shown in
Eq. (1). Then, for more detailed discriminative information
extraction, the higher-order local information along 4 direc-
tions (α = 0◦, 45◦, 90◦ and 135◦) is captured with the distri-
butions of Eq. (3) and its extension. Furthermore, the high-
order features f (2), . . . and f (n) are obtained by Eq. (4) and its
extension where n is the order of local pattern descriptors.
The high-order local patterns provide a stronger discrimi-
native capability in describing detailed texture information
than the first-order local pattern. It can be visually observed
from Fig. 5 that as the order increases, more and more de-
tails are extracted from the image.

In most cases, a single measure cannot provide enough
information about the amount and spatial structure. Better

Fig. 5 Example of feature extraction
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Fig. 6 Illustration of distribution divergence

structure discrimination should be obtained by considering
joint occurrences of two or more features [39]. In this paper,
the codes of local first- and high-order are combined and en-
coded into a binary string to construct the local pattern rep-
resentation and the distributions of them are weighted with
different factors,

f = {λ1 × f (1) + λ2 × f (2) + · · · + λn × f (n)} (7)

where λ1, λ2, . . . and λn are the weighting factors for f (1),
f (2), . . . and f (n), respectively. In order to achieve the
best performance, the weighting factors (λ1, λ2, . . . , λn)
of these different order components should be optimized,
which will be introduced in Sect. 3.4.

3.3 Similarity Quantification and Quality Mapping

In image quality assessment domain, the appearance of an
interested region can be well characterized by the distribu-
tion of its local representation. As well known that his-
togram, a global representation of the image pattern, is in-
variant to translation and rotation [40]. However, it is not
sufficient due to its weakness in encoding spatial distribu-
tions. For the purpose of enhancing the discrimination abil-
ity, spatial histogram is an alternative because it is more
robust against variations in pose or illumination than other
methods [32], [34]. In this paper, we employ spatial his-
togram, which uses spatial templates to preserve informa-
tion of both the appearance and the spatial relations in local
regions. Except for the first-order features f (1), the higher-
order local features f (n)

α are extracted from a direction α
(α = 0◦, 45◦, 90◦ or 135◦) with the nth-order operator.
And then a histogram of the multi-order features is com-
bined by all these features with the size of K × D, where
K is the total number of binary sequences encoded from
local first- and high-order representation and D is denoted
as the distribution of K in a patch. That is, when n is set
to 2, local first-order representation and local second-order
representation are concatenated into 40-bit binary sequences

and the value of K is 5 × 28. As mentioned above, the im-
ages are divided into M patches that are corresponding to M
histograms. Subsequently, these M histograms are concate-
nated to generate the spatially enhanced histogram with the
size of M × K × D. Thus, the spatial histograms f (m, α, n)
are obtained as

f (m, α, n) = { f (n)
α (Rm)|m = 1, . . . , M;

α = 0◦, 45◦, 90◦, 135◦;
n = 1, . . . , N}

(8)

where M is the total number of patches, and N refers to the
highest order in operator. In the meanwhile, f (n)

α (Rm) is the
histogram extracted from the nth-order operator in a direc-
tion α and computed independently within the mth patch.

Thus, we can get three different levels of local de-
scription: structure information histograms, discriminative
information histograms along four directions and concate-
nation of regional histograms for global image representa-
tion. As examples, Fig. 6 exhibits the joint histogram dis-
tributions of a reference image and a series of Gauss blur
(Gblur) distorted images in which the first- and second-
order local information is employed as features. Intuitively,
the histograms of distorted images are quite different from
that of the reference image. Moreover, the histograms vary
with the degree of distortion. For instance, chi-square dis-
tance (introduced below) is used to show the differences
numerically. The distances between the histogram of ref-
erence image and the histogram of the image filtered by a
circular-symmetric 2-D Gaussian kernel of standard devia-
tion 14.99972, 1.479136 and 0.820280 are 2.2521, 0.7119
and 0.2109, respectively. It is reasonable that such diver-
gence between histograms may be taken as a measure for
assessing image quality. That is, the quantification of this
divergence can be regarded as a good approximation of per-
ceived distortion in image quality.

Many similarity measures for histogram matching
have been proposed, such as histogram intersection,
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log-likelihood measure and chi-square distance [31]. Since
the chi-square distance is simple in operation and our ex-
perimental results demonstrate its good performance outper-
forming the other methods, in this paper, it is use for measur-
ing the similarity between two histograms in corresponding
patches of the reference and distorted images. In this way,
distortion index of an image is estimated as the dissimilarity.

Index =
M∑

m=1

wm∑M
m=1 wm

× (
1
K

K∑
k=1

(Rm,k − Dm,k)2

Rm,k + Dm,k
) (9)

where M is the total number of patches, K is the total num-
ber of binary sequences encoded from local first- and high-
order representation. Rm,k and Dm,k are distribution of local
representation as shown in Eq. (7) of the mth patch in the
reference and distorted images, respectively. And wm is the
weight of different patch for pooling strategy to imitate that
HVS is more sensitive to the irregular and erratic parts in
an image. Since HVS does not pay an equivalent attention
to different regions in an image, each region may not bear
the same importance as others. For example, the weights of
different patches in pooling strategy can be generated with
a visual saliency map produced by a successful saliency de-
tection model based on natural statistics [41]. The motiva-
tion behind such a saliency-based pooling approach is that
visual attention is attracted to distinctive saliency regions in
an image, and thus more weights should be given.

3.4 Weighting Factors Optimizaiton

The Pearson linear correlation coefficient (PLCC) and the
Spearman rank-order correlation coefficient (SRCC) are
used to measure the correlation between the predicted qual-
ity score and the subjective quality score. To remove any
nonlinearity due to a subjective rating process and to facil-
itate method comparisons in a common analysis space, the
objective distortion index obtained by Eq. (9) is mapped to
a predicted image quality via a five-parameter logistic func-
tion [42],

Q(x) = β1(
1
2
− 1

1 + exp[β2(x − β3)]
) + β4x + β5 (10)

where x is the image distortion index obtained by Eq. (9),
the parameters β1, β2, β3, β4, and β5 are determined by min-
imizing the sum of squared differences between the mapped
predicted image quality Q and the subjective quality score
for optimization. Then PLCC and SRCC are defined as

PLCC =

∑n
i=1(Qi − Q)(Si − S )√∑n

i=1(Qi − Q)2
√∑n

i=1(Si − S )2

(11)

where n is the number of the distorted images, Qi and Si are
the predicted quality score and the human subjective qual-
ity score, respectively. Q and S are the mean of Q and S,
respectively.

SRCC = 1 − 6
∑n

i=1(Qi − Si)2

n(n2 − 1)
(12)

The difinations of variables are the same as Eq. (11). In this
paper, a user-defined performance metric in terms of PLCC
and SRCC is introduced to serve as the optimal target for
optimizing the combination of orders.

ST = γ1 × PLCC + γ2 × SRCC (13)

where γ1 and γ2 are user-defined weights. PLCC and SRCC
are indicators of prediction accuracy and monotonicity, re-
spectively. Therefore, S T is the weighted summation of
prediction accuracy and monotonicity. The procedure is ex-
ecuted to maximum such a certain performance target for
optimization. And when the performance starts to degrade,
the training process will stop.

As shown in Algorithm 1, the features input refer to
the distributions with the weights normalized of multi-order
local representations from all distorted images and the cor-
responding reference images. When the total number of dis-
torted images is Z, the size of these parameters, as D(n), is
determined to M × K × Z. In the meanwhile, the input pa-
rameters include the maximum order n and the subjective
scores DMOS. When the maximum order is 1, there are only
first-order features involved in the following calculation. We
use Eq. (9) to get Index that is the raw objected image qual-
ity: with the structure features weights normalized, the first
mean operator get the dissimilarity between corresponding
patches from reference image and distorted image, and the
next mean operator is used to get chi-square distance in the
whole image, which is the raw objective predicted quality.
In this case, in order to get STopt, the distortion index is put
into Eq. (10), Eq. (11), Eq. (12) and Eq. (13) successively.
Specially, Matlab function corr() is employed to calculate
PLCC and SRCC. And when the order increased, the pro-
cedure is divided into three steps. The first step is to use
Eq. (7) to get the features that contain structure information
from different orders with weighting factors λ1, λ2, . . . , λn

combined in W. And the next step is aimed at ST , which
could refer above. The last step is comparison containing
two levels. The first level is to find out the parameters to
obtain the largest STtemp in each order. And the next com-
parison of STtemp among all input orders is to acquire the op-
timized parameter STopt. In the meanwhile, optimal weights
are represented by λ vector.

Such binary pattern representation combines local tex-
ture information and high-order sensitive characteristic of
HVS successfully which can reflect various distinctive spa-
tial relationships in a local region. As shown in Fig. 5, the
combined representation of the distorted image is quite dif-
ferent from that of the reference image. It may be potential
to serve as effective features for image quality measurement.
However, over-detailed patterns with high computing cost
tend to be sensitive to noise. Considering the balance of
computing cost and identification accuracy, it is reasonable
to use limited high-order patterns for detailed information
extraction. In Sect. 4, we will discuss the effectiveness of
local representation for image quality assessment and de-
termine the optimal orders and weighting factors by using
Algorithm 1 on different databases and distortions.
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Algorithm 1 Pseudocodes for optimal proportions-Grid search()

Input: the first-, second-, . . . , nth-order features in distorted and
reference images D(1), D(2), . . . , D(n) and R(1), R(2), . . . , R(n),
respectively, the detected maximum order n and subjective
scores DMOS.
Output: Optimal weights λ
Initialize: STopt ← 0, λ← zeros(1, n)
for i← 1 : n do

if i==1 then
R← R(1)

D← D(1)

Index←mean(mean( (R−D)2

(R+D) ,2),1) //Matlab fuction mean ()
Q← logistic fitting(Index) //logistic function fitting
PLCC,SRCC← corr(Q,DMOS) //Matlab function corr ()
STopt ← γ1×PLCC+γ2×SRCC
λ(1, 1)← 1

else
l← [1 : 100]
STtemp ← 0
λtemp ← zeros(1, n)
temp←combnk(l,i) //Matlab function combnk ()
for p←1:size(temp,1) do

W←[W; perms(temp(p,:))]
end for
W←[W; ones(1,i)] //produce combination of weights
W N←size(W,1)
for j← 1 :W N do

R← zeros(size(R(1)))
D← zeros(size(D(1)))
for t ← 1 : i do

R← R(t)×W( j, t) ÷ sum(W( j, :)) + R
D← D(t)×W( j, t) ÷ sum(W( j, :)) + D

end for
Index←mean(mean( (R−D)2

(R+D) ,2),1)
PLCC, SRCC← corr(logistic fitting(Index),DMOS)
S T← γ1×PLCC+γ2×SRCC
if ST > STtemp then

STtemp ← ST
λtemp(1, 1 : i)← W( j, :)

end if
end for
if STtemp > STopt then

STopt ← STtemp

λ← λtemp

end if
end if

end for
return λ

4. Experimental Results and Discussions

4.1 Database and Criteria for Evaluation

Experiments are conducted on four comprehensive data-
bases including LIVE [43], CSIQ [44], TID2008 (TID) [45]
and TID 2013 [46] (with enough samples, distortion types
and observers), which have been widely used to evaluate the
performance of various IQA methods. Each database con-
sists of hundreds of color images contaminated by a variety
of distortion types as well as their corresponding reference
images. The characteristics of these databases are listed in

Table 1 Databases for performance evaluation

Database Reference Distorted Distortion Subjects

name images images types number

LIVE 29 779 5 161

TID2008 25 1700 17 838

TID2013 25 3000 24 917

CSIQ 30 866 6 35

Table 2 LIVE database

Distortion type Distorted images Meanings

�1 87
JPEG

�2 88
JPEG compression

�1 87
JP2K

�2 82
JPEG2000 compression

WN 145 white noise contamination

Gblur 145 Gauss blur

FF 145 fast fading wireless

Table 1. These distortions reflect a broad range of image im-
pairments that might occur in real-world applications, from
smoothing to structured distortion, image dependent distor-
tions, and random noise. And for each image, databases
provide subjective evaluation results by human subjects un-
der controlled conditions, differential mean opinion scores
(DMOS), which are obtained by psychometric tests. LIVE
database is typical. In the database, there are 779 distorted
images developed from a set of 29 high resolution color im-
ages that are quite representative in the content, structure,
and lighting condition, and there are five types of distortions
at different distortions levels including JP2K, JPEG, WN,
Gblur and FF listed in Table 2.

Three criteria are employed for quantitative perfor-
mance evaluations, i.e., PLCC, SRCC and RMSE (root
mean square error). SRCC measures the prediction mono-
tonicity of an IQA method, which only computes the rank-
ing of samples. PLCC is an indicator of prediction accuracy.
And RMSE is an index of prediction consistency with sub-
jective scores.

RMS E =

√√
1
n

n∑
i=1

(Qi − Q)2 (14)

Where n is the number of the distorted images, Qi is the
predicted quality score and Q is the mean of Q.

Both PLCC and RMSE are computed by the regression
analysis methodology shown as Eq. (10). The larger values
of PLCC and SRCC as well as the smaller value of RMSE
mean better performance of IQA method.

For performance comparison, the proposed method
is compared with some representative methods includ-
ing VIF [1], MAD [4], MS-SSIM [4], GSM [8], SSIM [10],
NSER [14], IW-SSIM [17], FSIMc [26], NR-GLBP [36],
SILD [47] and GMSD [48].
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Fig. 7 PLCC comparison of different combinations

4.2 Parameters Optimization

There are some parameters should be chosen to optimize the
performance of the proposed method including the size of
multi-scale block in the preprocessing, the patch size of im-
age division, the component of local structure information
and their proportions in Eq. (7), and the weights of differ-
ent patches in Eq. (9) for chi-square distance calculation. To
make a good trade-off between computing cost and accu-
racy, in this paper, the multi-scale block is denoted as 3 × 3,
patch size of image division is set to 30 × 30.

Regarding to the component of local structure infor-
mation, how many orders of local patterns are involved in
the combined local pattern representation is investigated in
the extensive experiments. For individual distortion dataset,
Fig. 7 shows the performance comparison of different com-
ponents in local representation in terms of PLCC, where
′Com-1′ represents there is only the first-order pattern in the
local representation, ′Com-2′ is a combination of the first-
and second-order patterns, ′Com-3′ is a combination of the
first-, second- and third-order patterns, ′Com-4′ is a com-
bination of the first-, second-, third-, and fourth-order pat-
terns, and ′Com-5′ is a combination of the first-, second-,
third-, fourth-, and fifth-order patterns. In LDP opera-
tor [32], with the first-order pattern representing the first-
order gradient directions information, the change of deriva-
tive directions among local neighborhoods is extracted by
the second-order pattern, and the turning point in a given di-
rection is encoded. The more detailed relationship in local
neighbors is abtained from the higher-order LDP patterns.
Moreover, it is proved that compared with the first-order op-
erator, higher-order operator extracts additional directional
information in [49]. In this case, we combined these pat-
terns to reserve more detailed discriminative information.
It can be observed from Table 3 and Fig. 7 that ′Com-1′,
′Com-2′, ′Com-3′, ′Com-4′, and ′Com-5′ revealed incon-
sistency as for evaluating different diction types. For JP2K
and JPEG, ′Com-1′ is the best; for WN, Gblur and FF, the
champion is ′Com-5′, ′Com-4′ and ′Com-2′, respectively. It
is worth mentioning that the method with combinations of

Table 3 Databases for performance evaluation

JP2K JPEG WN Gblur FF

Com-1 0.9702 0.9677 0.9611 0.9695 0.9776

Com-2 0.9696 0.9668 0.9671 0.9775 0.9812

Com-3 0.9673 0.9652 0.9694 0.9803 0.9805

Com-4 0.9655 0.9633 0.9710 0.9805 0.9787

Com-5 0.9648 0.9616 0.9721 0.9797 0.9768

Fig. 8 Comparisons of different orders on the whole database

′Com-3′ and ′Com-4′ achieve better performance improve-
ments over that with only the first-order pattern, validat-
ing that the high-order information can improve the per-
formance significantly. However, this trend will not con-
tinue when the fourth or much higher order information
is involved in the local representation as shown in Fig. 8
which is conducted on the whole database. The reason of
the performance drops when it reaches to the fourth order
is that high-order local patterns are sensitive to noise which
may make the structure features in an image indiscernible.
From above, to balance the identification accuracy and fea-
ture length, we select a combination of ′Com-3′ for detailed
discriminative information extraction in image quality as-
sessment. After proportions opmizations with Algorithm 1,
the proportions of the first-, second- and third-order local
patterns are confirmed as 0.52, 0.13 and 0.35.

4.3 Performance Comparison on Different Databases

After the parameters exploration, to provide quantitative
measure on the performance of our proposed method, there
are some comprehensive comparisons between the state-
of-art methods and proposed method. To validate the
performance and robustness of IQA schemes on different
databases, the comparison on all types of distortions in the
four databases is demonstrated in Table 4. The best results
have been highlighted in boldface for each database.

From Table 4, it is obvious that with lower RMSE and
higher PLCC and SRCC on LIVE and TID2013 databases,
the proposed method achieves the best performance, and it
performs better than the other methods except GMSD and
FSIMc on TID2008. Besides, the proposed method has a
comparable performance with CMSD on CSIQ database.
In accordance with neurons in the early visual areas, local
feature description extracts image features over small lo-
cal regions [50]. The first-order operator that extracts edges
information [51] and high-order operator conveying more
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Table 4 Performance comparison on different databases

Database Criteria PSNR SSIM MS-SSIM IW-SSIM FSIMc VIF GSM GMSD Proposed

LIVE PLCC 0.8723 0.9449 0.9409 0.8900 0.9503 0.9598 0.9437 0.9678 0.9760
SRCC 0.8756 0.9479 0.9513 0.8901 0.9599 0.9632 0.9554 0.9605 0.9653
RMSE 13.3597 8.9454 9.2593 7.3413 7.2002 7.6670 9.0376 7.6200 4.9604

TID2008 PLCC 0.5309 0.7732 0.8473 0.8579 0.8762 0.8090 0.8462 0.8788 0.8636
SRCC 0.5245 0.7749 0.8549 0.8559 0.8840 0.7496 0.8554 0.8907 0.8563
RMSE 1.1372 0.8511 0.7127 0.6895 0.6468 0.7888 0.7151 0.6404 0.6705

TID2013 PLCC 0.6748 0.7895 0.8367 0.8319 0.8769 0.7760 0.8229 0.8590 0.8732
SRCC 0.6869 0.7417 0.7853 0.7779 0.8510 0.6776 0.8019 0.8044 0.8530
RMSE 0.9149 0.7608 0.6789 0.6880 0.5959 - 0.7044 0.6346 0.5988

CSIQ PLCC 0.8276 0.8612 0.8983 0.9144 0.9192 0.9227 0.8979 0.9541 0.9260
SRCC 0.8389 0.8756 0.9121 0.9213 0.9310 0.9195 0.9126 0.9570 0.9205
RMSE 0.1474 0.1334 0.1153 0.1063 0.1034 0.0980 0.1156 0.0786 0.0997

Average PLCC 0.7264 0.8422 0.8808 0.8736 0.9057 0.8669 0.8777 0.9142 0.9097
SRCC 0.7315 0.8350 0.8759 0.8613 0.9065 0.8275 0.8813 0.9032 0.8988
RMSE 3.8898 2.6727 2.6916 2.2063 2.1366 - 2.6432 2.2434 1.5824

knowledge of texture regions [52] are combined to generate
more sufficient accurate quality-aware features. The exper-
imental results reveal that local feature description has sev-
eral properties that favor its usage in detailed discriminative
information extraction for image quality assessment.

The robustness of the proposed scheme on different
databases is also demonstrated in Table 4. Note that the
SSIM and VIF perform well on LIVE database but not
on TID2008 and TID2013 databases. Likewise, GSM is
good for TID2008 and TID2013 but is relatively poor on
CSIQ database. Overall, FSIMc, GMSD, and the proposed
scheme give more consistent and stable performances across
all the four databases in comparison with the other schemes.
Among the three schemes, GMSD performs slightly less
well on TID2013 and LIVE; FSIMc only gives a compa-
rable good performance on all the databases, whereas the
proposed one performs slightly less well on TID2008 and
CSIQ.

4.4 Performance Evaluation on Individual Distortion Type

To further examine the performance and robustness of the
IQA schemes on each distortion type, a thorough perfor-
mance evaluation of our method is conducted on LIVE
database. As shown in Eq. (10), a nonlinear mapping be-
tween objective scores obtained by the proposed objective
method and subjective quality ratings, is established by fit-
ting a logistic curve. Figure 10 exhibits the subjective rat-
ings of perception versus predicted values for each type of
distortion, where each point represents one distorted image.
And Fig. 9 presents the scatter plots of the objective scores
for the entire LIVE database of the proposed method versus
subjective DMOS. If the predicted score reflects the DMOS
faithfully, scatter plots should be close to the fitted curve. As
a result, the more scatter plots gather around the fitted curve,
the better the method is. It is evident that the scatter plots
in Fig. 9 and Fig. 10 are quite close to the fitted curve for
each of the distortion sets as well as for the entire database,
indicating that our proposed method is consistent well with
human perception.

Moreover, detailed comparisons in terms of PLCC,
SRCC and RMSE on different distortion types in LIVE
database are listed in Table 5. As illustrated in Table 5,

Fig. 9 Scatter plots of DMOS versus objective value on entire database

Table 5 Performance comparison with representative methods

Methods JP2K JPEG WN Gblur FF

SSIM 0.936 0.928 0.964 0.873 0.943

MS-SSIM 0.958 0.943 0.986 0.958 0.935

NSER 0.965 0.981 0.984 0.955 0.913

PLCC GSM 0.956 0.984 0.960 0.945 0.933

VIF 0.963 0.942 0.988 0.974 0.883

SILD 0.960 0.986 0.987 0.965 0.949

Proposed 0.974 0.972 0.985 0.975 0.981

SSIM 0.932 0.910 0.963 0.894 0.941

MAD 0.938 0.949 0.971 0.899 0.886

MS-SSIM 0.954 0.911 0.978 0.954 0.935

FSIMc 0.972 0.984 0.972 0.971 0.952

SRCC NSER 0.957 0.977 0.980 0.949 0.919

GSM 0.970 0.978 0.977 0.951 0.940

VIF 0.968 0.984 0.984 0.972 0.965

SILD 0.954 0.979 0.981 0.961 0.950

GMSD 0.971 0.978 0.974 0.957 0.942

Proposed 0.967 0.946 0.973 0.956 0.967

SSIM 6.424 6.509 5.135 5.861 8.430

RMSE
MS-SSIM 4.671 5.353 2.671 4.528 5.872

VIF 4.963 5.372 4.360 3.990 6.855

Proposed 3.642 4.466 2.739 4.358 3.848
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Fig. 10 Scatter plots of DMOS versus objective value across different distortions

Table 6 Execution time comparison (in second per image)

Method SSIM MS-SSIM SVR IW-SSIM GSM FSIM VIF Proposed

Time 0.1067 0.3176 22.0830 1.3522 0.2370 1.6181 3.8190 0.5429

FSIMc, SILD, VIF and the proposed method achieve more
competitive performance than MS-SSIM and SSIM. How-
ever, the factors used to scale each saliency region in FSIMc
are generated based on the subjective study carried out,
thus, it may not be easily applied to general situations.
By contrast, in the proposed method, the weights in pool-
ing strategy and the factors for feature fusion are gener-
ated adaptively and automatically by a saliency detection
model and a Grid-search Process. Furthermore, the quality-
aware representation in our approach combines local gra-
dient information and derivative information with direction
information. When local image information is distorted,
the corresponding distribution of the quality-aware repre-
sentation will be altered. Compared to NSER, GSM and
SILD which obtain less prominent results for some distor-
tion types, our scheme proves to be more effective across the
distortion types. Overall, the experimental results show that
the proposed method achieves comparatively higher PLCC
and SRCC while lower RMSE values demonstrating its bet-
ter performance not only within a given distortion type but
also across different distortion types. For an example, our
method maintains 2.18% to 11.68% higher prediction ac-
curacy and 25.6% to 54.4% higher prediction consistency
than SSIM. It should be noted that VIF achieves a notice-
able performance at the expense of its much high com-
putational cost, which can be found in the computational

efficiency comparison presented in the next Section.

4.5 Computational Efficiency Comparison

In real-time applications, it is desired that IQA methods
should not only have high accuracy but also have low com-
putational complexity. Especially for the cases of com-
puting and battery-life resource constraints, computing effi-
ciency has become a critical issue for IQA development. To
examine the computational complexity of different methods,
we measured the average execution time required to evalu-
ate an image of size 512 × 512 on a PC (3GHz Intel E5700
CPU with 2 GB RAM).

Table 6 reports the comparison of required time in sec-
onds per image of the proposed method with that of some
representational methods. In experiments, all the methods
are implemented with MATLAB. Since there is no code op-
timization in our MATLAB implementations, the results in
Table 6 are only rough estimates. It can be seen from Ta-
ble 6 that VIF takes more time than the other methods re-
sulting from its multi-scale wavelet decomposition and com-
plex training procedure. The proposed method, by contrast,
which takes 0.5429 second per image, only about 14.2%
of the time taken by VIF, is more computationally efficient
than VIF. Furthermore, it is faster than IW-SSIM, FSIM
and SVR since no multi-scale decomposition or Laplacian
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pyramid decomposition or support vector regression are in-
volved in the proposed method. On the other hand, although
SSIM and MS-SSIM take less average execution time, they
are not competitive approaches when taking all the perfor-
mance terms (Listed in Tables 4 and 5) into consideration.
In a word, our method achieves much high computational
efficiency as it exacts the local structural features with a few
operations in a small neighborhood and without any training
procedure.

Above all, considering the performance shown in Ta-
bles 4 to 6, resulting from its computational simplicity, the
proposed method is a good trade-off of accuracy, stability
and computational complexity, making it very attractive and
competitive for practical applications. These experimental
results confirm that local feature description has great power
that favors its usage in quality-aware features extraction for
image quality assessment.

5. Conclusion and Future Work

In this paper, local description is introduced into image qual-
ity assessment for quality-aware features extraction. With
integrating the first-order structure derivative and high-order
discriminative information into local pattern representation,
a novel IQA scheme is presented in which perceptual quality
degradation is estimated by quantifying the divergence be-
tween distributions of the local pattern representation. Com-
prehensive experimental evaluations on different databases
demonstrate that the proposed method achieves better per-
formances than the state-of-the-art methods in consideration
of accuracy, stability and complexity, which makes it qual-
ified to apply in practical systems. It is further confirm that
introducing multi-order local structure representation into
IQA is much meaningful. It provides a good choice for im-
age quality assessment development.

To improve the accuracy of image quality prediction
further, future work includes investigating a more sophisti-
cated weight generation mechanism based on the analysis
on characteristics of all types of distortions in the pooling
stage and exploring advanced statistical image models for
local information extraction.
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