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Stochastic Dykstra Algorithms for Distance Metric Learning with
Covariance Descriptors

Tomoki MATSUZAWA†, Eisuke ITO†, Raissa RELATOR††, Jun SESE††, Nonmembers,
and Tsuyoshi KATO†a), Member

SUMMARY In recent years, covariance descriptors have received
considerable attention as a strong representation of a set of points. In
this research, we propose a new metric learning algorithm for covariance
descriptors based on the Dykstra algorithm, in which the current solution
is projected onto a half-space at each iteration, and which runs in O(n3)
time. We empirically demonstrate that randomizing the order of half-spaces
in the proposed Dykstra-based algorithm significantly accelerates conver-
gence to the optimal solution. Furthermore, we show that the proposed
approach yields promising experimental results for pattern recognition
tasks.
key words: covariance descriptor, metric learning, convex optimization,
stochastic optimization, Dykstra algorithm

1. Introduction

Learning through example objects characterized by a set of
several points instead of one point in a feature space is an
important task in computer vision and pattern recognition.
In recent years, covariance descriptors [1]–[4] have received
considerable attention as a strong representation of a set
of points. The performance of categorizing covariance
descriptors depends on the metric that is used to measure
the distances between them. To compare covariance de-
scriptors, various distance measures, such as affine invari-
ant Riemannian metric [5], Stein metric [6], J-divergence,
Frobenius distance [1], and log-Frobenius distance [7], have
been discussed in existing literature. A few of these are
designed from their geometrical properties; however, others
are not. Several of these distance measures are expressed in
the form

DΦ(X1, X2) := ‖Φ(X1) −Φ(X2)‖2F , (1)

where Φ is a function that maps a symmetric positive
definite matrix to a square matrix of the same size. If
Φ(X) := logm(X), where logm(X) is the principal matrix
logarithm of a strictly positive definite matrix, X, the log-
Frobenius distance [7] is obtained. Setting Φ(X) := Xp

yields the power-Frobenius distance [1], while Φ(X) :=
chol(X), where chol(·) produces the Cholesky decompo-
sition of X such that X = chol(X)chol(X)�, yields the
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Cholesky–Frobenius distance [8]. These metrics are pre-
defined before employing machine learning algorithms, and
are not adaptive to the data to be analyzed. For categorizing
vectorial data, supervised learning for fitting metrics to a
task significantly enhances the performance of distance-
based classifiers [9]–[11].

In this study, we introduce a parametric distance mea-
sure between covariance descriptors, and propose novel
metric learning algorithms to determine the parameters of
the distance measure function. The learning problem is
formulated as the Bregman projection onto the intersections
of half-spaces. This problem can be solved using the
Dykstra algorithm [12], [13], which selects a half-space in
cyclic order and projects the current solution onto the half-
space. We developed an efficient technique for projection
onto a half-space. Furthermore, we empirically found that
selecting the half-space stochastically, rather than in cyclic
order, significantly increases the speed of convergence to an
optimal solution.

Related work. Jayasumana et al. [1] defined a
positive definite kernel among covariance descriptors based
on the following two facts: the exponential of a conditional
negative definite kernel is positive definite, and the distance
function given in the form of (1) is a conditional negative
definite kernel. A disadvantage of using such a kernel is
that the feature space derived from the kernel is not always
provided explicitly. A few approaches reduce dimensional-
ity [14]–[16] by finding an informative subspace or learning
a more discriminant lower dimensional space. However, in
these methods, information relevant to the discrimination
may be discarded when projecting onto a lower dimensional
subspace, which may reduce classification performance.

Vamulapalli and Jacobs [3] introduced a supervised
metric learning approach for covariance descriptors. They
vectorized the matrix logarithms of covariance descriptors
to apply existing metric learning methods to the vectoriza-
tions of matrices. The dimensionality of the vectorizations
is n(n + 1)/2 when the sizes of the covariance matrices
are n × n. Thus, the size of the Mahalanobis matrix is
n(n+1)/2×n(n+1)/2, which is computationally prohibitive
when n is large.

The proposed approach is a generalization of the dis-
tance measure proposed by Huang et al. [2], which is based
on the Log-Euclidean metric, with the loss function being
a special case of the proposed formulation. They used the
cyclic Dykstra algorithm for learning the Mahalanobis-like
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matrix. Their primary finding is that projection onto a half-
space can be obtained analytically. However, their claim
does not hold because of incorrectly using the Woodbury
matrix inversion formula and deriving an incorrect closed-
form solution (In [2], Ak was treated as a one-rank matrix
and the Woodbury inversion formula was incorrectly ap-
plied.). Therefore, their algorithm does not ensure theoret-
ical convergence to the optimal solution. In this study, the
update rule that they used is corrected by presenting a new
technique that projects the current solution onto a half-space
within O(n3) computational time.

Yger and Sugiyama [4] devised a different formulation
of metric learning. They introduced a congruent transform
and measured the distances between the transformations
of covariance descriptors. An objective function based
on kernel target alignment [17] is employed to determine
transformation parameters. Compared to their algorithm,
the proposed algorithm can monitor the upper bound of
an objective gap, i.e., the difference between the current
and minimum objectives. This implies that the resultant
solution is ensured to be ε-suboptimal if the convergence
criterion of the algorithm is set such that the upper bound
of the objective gap is less than a very small number, ε.
As Yger and Sugiyama [4] employed a gradient method for
learning the congruent transform, the objective gap could
not be determined.

Contributions. The contributions of this study can be
summarized as follows:

• For metric learning on a positive semidefinite cone,
we developed a new algorithm based on the Dykstra
algorithm, in which the current solution is projected
onto a half-space at each iteration, and which runs in
O(n3) time (Fig. 1).

• We empirically determined that randomizing the order
of half-spaces in the proposed Dykstra-based algorithm
significantly accelerates convergence to the optimal
solution. In particular, the proposed approach allows
for using an almost hard margin (weak regularization),
whereas the classical approach can attain an optimum
within a practical time only when a strong regulariza-
tion is selected.

• We propose an upper bound for the objective gap,
which provides a stopping criterion and ensures opti-
mality of the solution.

• We show that the proposed approach yields promising
experimental results for pattern recognition tasks.

All proofs can be found in the supplements of our
conference paper [18] and our technical report [19]. The
difference between the current version and [18] is the addi-
tion of a new experimental result on electroencephalogram
(EEG) signal classification.

2. Metric Learning Problem

We introduce the following dissimilarity measure for covari-
ance descriptors X1, X2 ∈ Sn

+:

DΦ(X1, X2; W)

:=
〈
W, (Φ(X1) −Φ(X2)) (Φ(X1) −Φ(X2))�

〉
,

where W ∈ Sn
+ is the parameter of this function. Sn

+ and Sn
++

denote the sets of n × n positive semi-definite matrices and
strictly positive semi-definite matrices, respectively, and Rn

+

and Rn
++ denote the sets of n-dimensional real vectors with

non-negative and strictly positive entries, respectively.

Theorem 2.1: If W is strictly positive definite and Φ is
bijective, then, the dissimilarity measure, DΦ(·, ·; W) : Sn

+ ×
S

n
+ → R, is a distance metric.

To determine the value of the parameter matrix, W, we pose
a constrained optimization problem based on the informa-
tion theoretic metric learning (ITML) [9]. We consider a
multi-class categorization problem. Suppose (X1, ω1), . . . ,
(X�, ω�) is a training dataset, where Xi is the covariance
descriptor of the i-th example, and ωi is its class label. From
� examples, K index pairs, (i1, j1), . . . , (iK , jK), are selected,
and each pair is given the following constraint:

DΦ(Xik , X jk ; W)

⎧⎪⎪⎨⎪⎪⎩
≤ bubξk, if ωik = ω jk ,

≥ blbξk, if ωik � ω jk ,
(2)

where two constants bub and blb denote the upper and lower
bounds of the distances between two examples in the same
and different classes, respectively, when ξk = 1. We define
yk and bk for k = 1, . . . ,K as yk := +1 and bk := bub for
ωik = ω jk , and as yk := −1 and bk := blb for ωik � ω jk .
Under constraint (2), we want to find W and ξk such that
W is does not deviate significantly from the identity matrix
and ξk is close to one. Based on this, we pose the following
problem:

min BDϕ((W, ξ), (I, 1)),

wrt W ∈ Sn
++, ξ =

[
ξ1, . . . , ξK

]� ∈ RK
++,

subject to ∀k ∈ NK , ykDΦ(Xik , X jk ; W) ≤ ykbkξk,
(3)

where BDϕ(·, ·) : (Sn
++ × RK

++) × (Sn
++ × RK

++) → R+ is the
Bregman divergence. The divergence, BDϕ((W, ξ), (I, 1)),
becomes zero if (W, ξ) = (I, 1), and it increases if (W, ξ)
deviates considerably from (I, 1). The definition of the
Bregman divergence contains a seed function, ϕ : Sn

++ ×
R

K
++ → R, which is assumed to be continuously differ-

entiable and strictly convex. For some ϕ, the Bregman
divergence is defined as

BDϕ(Θ,Θ0) = ϕ(Θ) − ϕ(Θ0) − 〈∇ϕ(Θ0),Θ −Θ0〉 ,
forΘ,Θ0 ∈ Sn

++×RK
++, where 〈·, ·〉 denotes the inner product

defined as,

∀(W1, ξ1),∀(W2, ξ2) ∈ Sn
++ × RK

++,

〈(W1, ξ1), (W2, ξ2)〉 = 〈W1,W2〉 + 〈ξ1, ξ2〉 .
This implies that the magnitudes of the deviations of the
solution, (W, ξ), from (I, 1) depend on the definition of the
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seed function. In this study, the seed function is assumed to
be the sum of two terms, as follows:

ϕ(W, ξ) := ϕr(W) +
K∑

k=1

ckϕl(ξk),

where ck is a positive constant that trades off the importance
of regularization versus that of losses. Larger ck yields a
harder margin. The first term in the definition of the seed
function is defined as ϕr : Sn

++ → R, where ϕr(W) :=
−logdet(W). For the second term containing ϕl : R++ → R,
we considered the following three functions:

ϕis(ξk) := − log(ξk), ϕl2(ξk) :=
1
2
ξ2k ,

ϕe(ξk) := (log ξk − 1)ξk.

The Bregman divergences generated from the three seed
functions, ϕis, ϕl2, and ϕe, are referred to as the Itakura–
Saito Bregman divergence (ISBD), L2 Bregman diver-
gence (L2BD), and Relative entropy Bregman divergence
(REBD), respectively, where the ISBD is equal to the
objective function employed by Huang et al. [2].

3. Stochastic Variants of Dykstra Algorithm

We introduce the Dykstra algorithm [12], [13] to solve
the optimization problem (3). The original Dykstra al-
gorithm [13] was developed as a computational method
that finds the Euclidean projection from a point onto the
intersection of half-spaces. Additionally, the Dykstra al-
gorithm can be applied for finding the projection onto the
interaction of multiple convex sets. However, in this study,
we focus on the interaction of half-spaces with the aim of
utilizing the Dykstra algorithm for solving the proposed
metric learning problem. Censor & Reich [12] extended the
Dykstra algorithm for finding the Bregman projection from
a point, x0, to an intersection, C, defined by

argmin
x∈C

BDϕ(x, x0). (4)

In each iteration, the Dykstra algorithm selects a half-space
in cyclic order to project the current solution onto the
half-space (Fig. 1). The Dykstra algorithm ensures linear
convergence to a minimum.

In existing literature related to stochastic gradient
descent methods and variants [20]–[23] that minimize the
regularized loss averaged over a set of examples, it has
been shown empirically that example selection in stochas-
tic order, instead of cyclic order, significantly accelerates
convergence to the optimal solution.

Based on these facts, this study proposes the use of
stochastic selection of half-spaces in the Dykstra algorithm,
referred to as the stochastic Dykstra algorithm. The fol-
lowing three methods can be used to select half-spaces:
Cyclic: A half-space is selected in cyclic order at each
iteration. Rand: A half-space is selected arbitrarily at
each iteration. Perm: Prior to selection, the orders of

K half-spaces are permuted arbitrarily at the beginning of
each epoch. We employ the “Rand” option, even though
replacing this option with one of the remaining two options
is straightforward.

If we define the k-th half-space, Ck, as Ck :=
{x | 〈ak, x〉 ≤ bk}, it can be shown, using the Lagrangian
theory, that computing the Bregman projection from a point,
x0, to its boundary, bd(Ck), is equivalent to solving the
following saddle point problem:

max
δ

min
x

BDϕ(x, x0) + (〈ak, x〉 − bk)δ (5)

where δ ∈ R is the Lagrangian multiplier.

Algorithm 1 Stochastic Dykstra Algorithm.
1: begin
2: ∀k ∈ NK : αk := 0;
3: for t = 1, 2, . . . do
4: Pick k randomly from {1, . . . ,K};
5: Solve the following saddle point problem and let δt−1/2 be the

solution of δ:

max
δ

min
x

BDϕ(x, xt−1) + δt(〈ak , x〉 − bk); (6)

6: δt := max(δt−1/2,−αk); αk := αk + δt;
7: xt = ∇ϕ∗(∇ϕ(xt−1) − δt ak);
8: end for
9: end.

This enables us to rewrite the Dykstra algorithm with
the Rand option for finding the Bregman projection from a
point, x0, to the intersection of C1, . . . ,CK , as described in
Algorithm 1, where ϕ∗ is the convex conjugate [24] of the
seed function, ϕ. When applying Algorithm 1 to metric
learning problem (3), Step 5, which solves saddle point
problem (6), is the most important step. In this study, a high-
speed computational technique was devised for this step,
whose details are presented in the next section.

4. Efficient Projection Technique

We first show that solving optimization problem (3) is
equivalent to finding the Bregman projection from a point,
(I, 1) ∈ Sn

++ × RK
++, onto the intersection of multiple half-

spaces. Then, we propose a new high-speed technique for
solving sub-problem (6).

Let Ak be a positive semi-definite matrix expressed as

Ak :=
(
Φ(Xik ) −Φ(X jk )

) (
Φ(Xik ) −Φ(X jk )

)�
(7)

for k ∈ NK , to define a half-space

Ck :=
{
(W, ξ) ∈ Sn

++ × RK
++ | yk 〈Ak,W〉 − ykbkξk ≤ 0

}
.

(8)

Then, it can be shown that the intersection of K half-spaces,⋂K
k=1 Ck, is the feasible region of optimization problem (3).

This implies that the Dykstra algorithm can be applied to
solve problem (3). We assume that Ak is strictly positive
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Fig. 1 Dykstra algorithm chooses a half-space in each iterate to project a current solution to the half-
space. This study devised a new technique that performs the exact projection with O(n3) computation,
where naı̈ve method requires O(Ln3) computation, where L is defined in Sect. 4.

definite. This assumption can be satisfied by considering
Ak ← Ak + εI, where ε is a small positive constant.

Then, we propose an efficient technique for Step 5 in
Algorithm 1, which projects (Wt−1, ξt−1) ∈ Sn

++ × RK
++ onto

the k-th half-space, Ck, where (Wt−1, ξt−1) ∈ Sn
++ × RK

++ is
the model parameter after the (t−1)-th iteration. Performing
the projection is equivalent to finding the saddle point of the
function, Q : Sn

++ × RK
++ × R→ R, defined as

Q(W, ξ, δ) := BDϕ((W, ξ), (Wt−1, ξt−1))

+ δyk (〈Ak,W〉 − bkξk) .

Lemma 4.1: Let ξk,t−1 be the k-th entry in vector ξt−1. The
value of the function, Jt : R→ R, defined by

Jt(δ) :=
〈

Ak, (W−1
t−1 + δyk Ak)−1

〉
− bk∇ϕ∗l (∇ϕl(ξt−1) + δykbk/ck),

(9)

is zero at the solution, δ, of the saddle point of Q. The
solution, δ, must satisfy the strictly positive definiteness,

W−1
t−1 + δyk Ak � O, (10)

and the feasibility of the slack variables,

∃ ξk,t−1/2 s.t. ∇ϕl(ξk,t−1/2) = ∇ϕl(ξk,t−1) − δykbk/ck.
(11)

No closed-form solution was found for this projection
problem. Hence, numerical methods, such as the Newton–
Raphson method, are necessary for solving the nonlinear
equation, Jt(δ) = 0. Computing the value of Jt(δ) naı̈vely
requires O(n3) computational cost because Jt(·) involves
computation of the inverse of an n × n matrix. If we assume
that the numerical method calculates the value of the scalar-
valued function, Jt(·), L times, the naı̈ve approach will
require O(Ln3) computational time to find the solution of
the nonlinear equation, Jt(δ) = 0. Furthermore, the positive
definiteness condition in (10) and the feasibility condition
in (11) must be checked.

The proposed technique for finding the saddle point
is given as follows: Let d1, . . . , dn be the eigenvalues of
A−1/2

k W−1
t−1 A−1/2

k with d1 ≥ · · · ≥ dn. Then, we obtain

Jt(δ) =
n∑

i=1

1
di + ykδ

− bk∇ϕ∗l
(
∇ϕl(ξt−1) +

δykbk

ck

)
,

(12)

which implies Jt(δ) can be assessed within O(n) computa-
tional cost after d1, . . . , dn are obtained (the derivation of
(12) is given in Sect. A.1). Considering this with the fact
that it requires O(n3) time to obtain the n scalars, d1, . . . , dn,
the solution can be computed in O(n3 + Ln) time. We define
δb := ck/(bkξk,t−1). The interval of ykδ satisfying (10) and
(11) is given as (−dn, δb) for ISBD, and (−dn,+∞) for L2BD
and REBD. The theoretical results are summarized in the
following theorem:

Theorem 4.1: The saddle point of Q(W, ξ, δ) can be found
within O(n3 + Ln) time, where L is the number of times that
a numerical method calculates the value of Jt(·). Moreover,
a unique solution exists.

As L ∈ O(n2) in a typical setting, we can say that each
update can be performed in O(n3) computational time.

Convex Conjugate Functions: The proposed algo-
rithm requires the derivative of the convex conjugate of
the seed function, ϕl. The convex conjugates of the seed
functions generating ISBD, L2BD, and REBD are given as

ϕ∗is(g) =

⎧⎪⎪⎨⎪⎪⎩
+∞, for g ≥ 0,

−1 − log(−g), for g < 0,
(13)

ϕ∗l2(g) :=
1
2
g2, ϕ∗e(g) := exp(g), (14)

respectively. These derivatives are expressed as

∇ϕ∗is(g) =
1
g
, ∇ϕ∗l2(g) = g, ∇ϕ∗e(g) = exp(g). (15)

Stopping Criterion: We discuss how to determine
if the solution is already optimal and when to terminate
the algorithm. While running the algorithm, (Wt, ξt) may
violate a few constraints. The index set of the violated
constraints is denoted by Ivio := {k ∈ NK | (Wt, ξt) � Ck},
and ξ̄t ∈ RK

++ is defined such that the k-th entry is given by
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ξ̄h,t := 1
bh
〈Wt, Ah〉 for h ∈ Ivio and ξ̄h,t := ξh,t for h � Ivio.

Note that (Wt, ξ̄t) is a feasible solution, and ξ̄t = ξt when
(Wt, ξt) is feasible. The objective gap after iteration t is
bounded as follows:

BDϕ((Wt, ξ̄t), (I, 1)) − BD
 ≤∑
h∈Ivio

ch
(
ϕl(ξ̄h,t) − ϕl(ξh,t) − ∇ϕl(1)(ξ̄h,t − ξh,t))

−
K∑

h=1

αhyh
(〈Ah,Wt〉 − bhξh,t

)
,

(16)

where BD
 denotes the minimum objective value. Then,
this upper bound of the objective gap can be used as the
stopping criterion of the Dykstra algorithm.

Based on the above discussion, the proposed metric
learning algorithm for covariance descriptors is summarized
as Algorithm 2.

Algorithm 2 Proposed Metric Learning Algorithm with
Covariance Descriptors.
Input: A1, . . . , AK , b, c, ϕ, ε.
Output: ε-approximate solution of (W, ξ).
1: begin
2: ∀k ∈ NK : αk := 0; W0 = I; ξ = 1K ;
3: for t = 1, 2, . . . do
4: Pick k randomly from {1, . . . ,K};
5: Find the saddle point of the function L(W, ξ, δ) by solving the

nonlinear equation Jt(δ) = 0 using (12), where the solution must
satisfy ykδ ∈ (−dn, δb) for ISBD, and ykδ ∈ (−dn,+∞) for L2BD
and REBD, where δb = ck/(bkξk,t−1). Let δt−1/2 be the solution of δ:

6: δt := max(δt−1/2,−αk); αk := αk + δt;
7: Wt := (Wt−1 + δtyk Ak)−1; ξk := ∇ϕ∗(∇ϕ(ξk) + δtykbk/ck);
8: if (RHS of (16)) ≤ ε then terminate the algorithm;
9: end for

10: end

5. Experiments

We conducted experiments to assess the convergence speed
of the proposed optimization algorithms, the total computa-
tional time for learning, and the generalization performance
for pattern recognition.

5.1 Convergence Behavior of Optimization Algorithms

We examined the proposed algorithms for assessing conver-
gence speed. Artificial datasets were generated as follows:
Fifty matrices, Fk ∈ Rn×n (k = 1, . . . ,K where K = 50),
were generated, in which each entry was obtained from a
uniform distribution in the interval [−0.5, 0.5]. Then, we
set Ak := Fk F�k . The values of the variables, yk, were
arbitrarily selected from {±1} with the same probabilities.
We set b = 1 and c = 1/(λK).

Figure 2 shows the convergence behavior of the cyclic
Dykstra algorithm and the two stochastic Dykstra algo-
rithms with λ = 10−4 and n = 100. One epoch corresponds

Fig. 2 Convergence behavior of Dykstra algorithms. The stochastic
order reduced the objective gap BDt − BD
 and the RMSE ‖Wt −W
‖F
much faster, where BDt is the objective value at time t and W
 is the
optimal value of W.

to projecting onto a half-space K times. Typically, ISBD
converges faster than the other Bregman divergences. We
report the result for ISBD. For most values of λ and n,
the two stochastic Dykstra algorithms converge faster than
the cyclic algorithm. Particularly, when regularization is
weak (e.g., λ = 10−4), the cyclic algorithm is considerably
slow and cannot be put in practice. However, the stochastic
version attains an accurate solution, as shown in Fig. 2. As
the convergence performances of Rand and Perm do not
differ significantly, only the experimental results obtained
using Perm are reported.

5.2 Total Computational Time for Learning

Table 1 shows the computational times for metric learning of
W and compares the proposed projection technique (Sect. 4)
with the naı̈ve method, where the proposed technique re-
quires O(n3 + Ln) time for a projection, whereas the naı̈ve
method requires O(Ln3) time. The experimental settings
in Table 1 are similar to those in Fig. 2. For obtaining
the results shown in Table 3, we tested the data with
n = 5, 10, 50, 100, 500 and ε = 10−3. The runtimes were
measured on a Linux machine with an Intel(R) Core(TM)
i7 (3.6GHz) CPU and 32 GB RAM. We repeated the exper-
iments five times, and the average computational times are
shown in Table 1. The proposed technique was faster than
the naı̈ve method in all cases, and significant improvements
were achieved for larger values of n.

5.3 Generalization Performance for Pattern Recognition

We examined the generalization performance for the follow-
ing two image recognition tasks: texture recognition and
generic visual categorization.

For the texture classification task, we used the Brodatz
texture dataset containing 112 different texture images.
Each image had a size of 640 × 640 and was gray-scaled.
Each image was divided into four sub-images of equal sizes.
Two of the four sub-images were arbitrarily selected for
testing, and the remaining images were used for training.
For each training and testing image, the covariance descrip-
tors of 20 arbitrarily selected images were extracted from
128 × 128 patches. Then, 4480(112 × 2 × 20) covariance
descriptors were obtained for training and testing. For
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Table 1 Computational times.

n 5 10 50 100 500
Proposed (sec) 20.93 15.55 13.24 20.04 234.64

Naı̈ve (sec) 21.95 17.84 51.48 184.69 4166.01
# of Epochs 18.5 12.3 8.5 10.3 9.0

Table 2 Average accuracies (%) of the Proposed Method when using different losses and different
mapping functions for pattern recognition.

(a) Brodatz (b) ETH-80
Eye REBD L2BD ISBD

Id 73.08 79.55 79.29 79.33
Log 79.29 80.27 80.18 79.96
Sqrt 76.88 80.94 80.89 81.12
Chol 78.71 82.77 82.90 82.72

Eye REBD L2BD ISBD
Id 66.98 76.93 77.99 76.79

Log 94.40 96.12 96.35 96.12
Sqrt 88.26 88.96 89.32 88.74
Chol 90.88 91.64 91.85 90.83

Table 3 Mean recognition accuracies (%) with standard deviations. The underlined figures indicate
that the performance is not significantly different from the best accuracy at the significance level 1%
based on one-sample t-test.

Euclid Ours V&J [3] Huang et al [2]
Brodatz 79.29 ± 1.04 82.90 ± 1.18 65.63 ± 2.18 79.33 ± 1.59
ETH-80 94.40 ± 0.55 96.35 ± 0.49 93.40 ± 1.02 96.09 ± 0.44

EEG 55.04 ± 0.14 56.76 ± 0.15 53.48 ± 0.16 55.57 ± 0.14

evaluating generalized performance, the k-nearest neighbor
classifier was used, where the number of nearest neighbors
was set as three. We set K = 100 × nc, where nc is the
number of classes. Following [9], we set bub = 0.05, and
blb = 0.95. The reguralization parameter, λ, was chosen by
cross-validation within the training dataset.

For the generic visual categorization task, the ETH-
80 dataset containing nc = 8 classes was used. Each class
had 10 objects, each of which included 41 colored images.
For every object, 20 images were arbitrarily selected for
training, and the remaining images were used for testing.

One covariance matrix was obtained from each image.
We used the following four types of Φ: Id: Φ(X) = X,
Log: Φ(X) = logm(X), Sqrt: Φ(X) = X1/2, and Chol:
Φ(X) = chol(X). Parameter W is determined using the
metric learning algorithms with ISBD, L2BD, and REBD,
and compared with W = I, which we denote as Eye. Note
that DΦ(·, ·; I) = DΦ(·, ·). Table 2 summarizes the average
accuracies over ten repeated experiments. For each type of
Φ, supervised metric learning improved the generalization
performance for texture classification and for generic visual
categorization. For texture classification, the Cholesky
decomposition-based mapping, chol(·), exhibited the high-
est accuracy, while the matrix logarithm-based mapping,
logm(·), exhibited the highest accuracy for generic image
categorization.

We compared the proposed method with two existing
metric learning methods proposed by Huang et al. [2] and
Vemulapalli and Jacobs [3]. We used Huang et al.’s imple-
mentation available from their web site (http://www.vision.
ee.ethz.ch/˜zzhiwu/codes/LEML-v1.0.zip). The update rule
that they used does not ensure convergence of the algorithm,
and their study does not propose a stopping criterion. We
implemented Vemulapalli and Jacobs’s method in MAT-

LAB. We performed principal component analysis after
vectorization so that the degree of freedom in their study
coincides with that in our and Huang et al.’s works. As
shown in the first and second rows of Table 3, the proposed
metric learning algorithm is more accurate than existing
distances (1), and its performance surpasses that of the two
existing metric learning methods.

In addition, we examined the proposed methods for
EEG signal classification. We used the BCI Competition IV
dataset IIa [25]. This dataset contains EEG signals recorded
from nine subjects by attaching twenty-two electrodes to the
scalp, while they perform four different motor imageries,
including left hand, right hand, foot, and tongue, i.e., there
are four classes in this task. We arbitrarily selected 30%
of the data for testing and the remaining for training. This
was repeated ten times to obtain average performances. We
considered signals in a range of 0.5–2.5 seconds after the
onset of each cue. We used parameters bub = max(mean −
std, 0.01) and blb = mean+std, where mean and std represent
the average and standard deviation, respectively, of the
distances among the training data. We set other parameters
to the same values as those used in the image classification
tasks. Linear discriminant analysis was used as a classifier.
The result is shown in the last row of Table 3. The accuracies
represent the highest values among four mapping functions.
Sqrt was the most suitableΦ for Euclid, and a combination
of Log and ISBD was the most suitable for the proposed
methods. The performance of the proposed methods is
slightly better than that of existing methods.

6. Conclusions

In this study, we have devised several objective functions
for metric learning on a positive semidefinite cone, all
of which can be minimized using the Dykstra algorithm.
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We have proposed a new technique that performs each
update efficiently. We have empirically demonstrated that
the stochastic versions of the Dykstra algorithm are con-
siderably faster than the original algorithm, and the gen-
eralization performance for pattern recognition improves
significantly. A strong advantage of the proposed algorithm
is the existence of a stopping criterion that ensures sub-
optimality, even though a gradient method is frequently
employed for non-linear optimization. Future work involves
numerical comparison between our approach and the gradi-
ent approach.
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Appendix:

A.1 Derivation of Equation (12)

d1, . . . , dn are the eigenvalues of A−1/2
k W−1

t−1 A−1/2
k . Let U ∈

R
n×n have the corresponding n eigenvectors in its columns.

We define a diagonal matrix, D := diag({d1, . . . , dn}). Then,
we have UDU� = A−1/2W−1

t−1 A−1/2. The matrix, W, at the
saddle point can be expressed as

W = (Wt−1 + δyk Ak)−1

= A−1/2
k

(
A−1/2

k (Wt−1 + δyk Ak) A−1/2
k

)−1
A−1/2

k

= A−1/2
k

(
UDU� + δyk In

)−1
A−1/2

k

= A−1/2
k U (D + δyk In)−1 U�A−1/2

k .

Substituting this into the first term of (9), we obtain
〈

Ak, (Wt−1 + δyk Ak)−1
〉

=
〈

Ak, A
−1/2
k U (D + δyk In)−1 U�A−1/2

k

〉

=
〈
I, (D + δyk In)−1

〉
=

n∑
i=1

1
di + ykδ

.

The second term of (9) is the same as that of (12). Thus, the
equality of (12) is derived.
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