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PAPER

Energy-Aware Download Method in LTE Based Smartphone

Jie REN†, Member, Ling GAO†a), Hai WANG†, QuanLi GAO†, and ZheWen ZHANG†, Nonmembers

SUMMARY Mobile traffic is experiencing tremendous growth, and this
growing wave is no doubt increasing the use of radio component of mobile
devices, resulting in shorter battery lifetime. In this paper, we present an
Energy-Aware Download Method (EDM) based on the Markov Decision
Process (MDP) to optimize the data download energy for mobile applica-
tions. Unlike the previous download schemes in literature that focus on the
energy efficiency by simply delaying the download requests, which often
leads to a poor user experience, our MDP model learns off-line from a set
of training download workloads for different user patterns. The model is
then integrated into the mobile application to deal the download request at
runtime, taking into account the current battery level, LTE reference signal
receiving power (RSRP), reference signal signal to noise radio (RSSNR)
and task size as input of the decision process, and maximizes the reward
which refers to the expected battery life and user experience. We evaluate
how the EDM can be used in the context of a real file downloading ap-
plication over the LTE network. We obtain, on average, 20.3%, 15% and
45% improvement respectively for energy consumption, latency, and per-
formance of energy-delay trade off, when compared to the Android default
download policy (Minimum Delay).
key words: MDP, energy-aware, LTE, mobile devices, download method

1. Introduction

From laptop to smartphone, energy conservation always is
the key problem in the industry. The studies [1]–[3] have
shown that the majority of power consumption of smart-
phone can be attributed to the radio module when the mo-
bile applications transmit data via internet to guarantee the
good running and user experience. In addition, the recent
statistics [4] indicate that the Internet usage on mobile de-
vices exceeded that on desktop computers since 2014 and
mobile data traffic will grow at a compound annual growth
rate (CAGR) of 53 percent from 2015 to 2020, reaching 30.6
exabytes per month by 2020 [5]. There is no doubt that the
radio component will increase the battery burden.

The fast penetration of wireless network and richer
mobile applications [6] implies a growing need for high-
performance and energy-efficient mobile data download
strategy to ensure a continued end-user experience. The An-
droid default download scheme is the immediate response
when the user make a download request. However, this
download method will waste much energy under an ad-
verse network, and many users experience a higher battery
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drain when the mobile connected to the network. This pa-
per explores a robust method based on three aspects to re-
duce the energy expenditure of data download on the smart-
phone. Firstly, the EDM takes the RSRP (Reference Sig-
nal Received Power) and RSSNR (Reference Signal Signal
to Noise Radio) into account, they are two primary factors
in LTE signal strength which affect the energy-efficient and
user experience. Secondly, the user submit download re-
quests anytime, anywhere with any possible signal strength,
dose not think about the battery lifetime. Our goal is to
schedule these requests in an energy-efficient way. Thirdly,
many applications live with a delay-tolerant download capa-
bility. Actually, the users have different delay tolerance to-
ward different tasks, for instance, we want to receive a SMS
as soon as possible, even with a poor signal, and also be
able to tolerate some delay when downloading a large-sized
video in exchange for extending phone lifetime.

This paper presents a novel approach to exploit the en-
ergy efficiency for data download. To this end, we carried
out the following work. Firstly, we formulate the energy
management of data download problem as an optimization
formulation which minimizes the per byte energy expen-
diture and improve the user experience. The MDP frame-
work allows the application to incorporate user preference
and user profiles into decisions making at run time. Sec-
ondly, we profile the power draw of LTE in different states
for MDP model building and evaluation. LTE technology is
different from 3G technology in tail time for different states,
LTE without any tail energy in fully connected state which
named “Activity” and the overhead of “dormant” just ac-
counts for one third of “Activity” where the FACH makes up
50% of DCH [7]. Thirdly, we collect the context history data
to train the MDP model and evaluate it against other two ap-
proaches. All measurements and evaluations are conducted
on the LTE-based SAMSUNG GALAXY S5 smartphone.

The key contribution of this paper is a novel MDP
based model that can be used to optimize energy consump-
tion for data download on smartphones. We implement the
EDM on an online music player. We then compare it with
the state-of-art “concentrated download, low power, stable
link selection algorithm” (CLSA) [17] and Android default
download scheme. The result shows that the EDM outper-
forms the other two for reducing energy consumption and
latency, and achieves a better energy-delay trade off.
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Fig. 1 LTE state machine

2. Background and Motivation

The EDM is built on the LTE network, so we provide a brief
overview of LTE mechanism, and conduct a series of exper-
iments to illustrate how LTE works (Sect. 2.1). Following
that we explain what is important for the user experience
(Sect. 2.2).

2.1 Power States and Transitions of the LTE Radio

Figure 1 depits the state machine for all the LTE develop-
ment which is implemented by the Radio Resource Control
(RRC) protocol [9], and the RRC defines the following two
states for smartphones to control their radio interfaces.
RRC IDLE: The radio remains “IDLE” state in the absence
of any network activity and only listening to the control traf-
fic. No radio resources are assigned to the client within the
carrier network. The LTE radio draws nearly zero power
(8.844mA) in this state as Table 3 shows.
RRC CONNECTED: The transition from IDLE to CON-
NECTED caused by the data transfer event. At first, a
request will be issued to the RRC. Then the radio state
move to the “Activity”. Finally, a network context is es-
tablished between the radio tower and the LTE device. Be-
cause the “Activity” state requires a significant and highly
variable amount of power, multiple sub-states are available
for more efficient operations. Once the transmission is com-
pleted, the device will move to the “dormant” which con-
tains two sub-states, Short Discontinuous Reception (Short
DRX) and Long Discontinuous Reception (Long DRX). The
User Equipment only establishes network context without
any resources during the “dormant” state.

Figure 2 maps the LTE RRC states to the potential
power consumption. This figure plots the instantaneous
power consumption and time consuming in each state when
downloading a 3 MB file from a remote server to the smart-
phone. The “Activity” state takes 4.55 seconds which equals
to the download time as we measured, and the “dormant”
state lasts 20.15 seconds, including 1.9 seconds Short DRX
and 18.25 seconds Long DRX. Averaged over 10 iterations,

Fig. 2 Power consumption and time consuming in different states of LTE
for downloading a 3 MB file

Fig. 3 Power consumption and time consuming for downloading four 3
MB files with different arrival time

the “Activity” state aggregate power is 325 mA. Figure 3
shows the average power consumption for multiple down-
loads. Due to the little difference between Short DRX and
Long DRX, we calculate the average value as “dormant”
power. The graph shows that the first task takes 4.55 sec-
onds to complete, and the following two successive requests
which only spend 1.95 and 1.65 seconds respectively. Be-
cause the LTE device may first require anywhere from 10
to 100 milliseconds of latency to negotiate the required re-
sources with the RRC, this negotiation time (IDLE to CON-
NECTED) is specified as less than 100 milliseconds, but
it takes less than 50 milliseconds from “dormant” to “Ac-
tivity”. The second and third downloads consume much
less time than 4.55 seconds, not only the UE still in the
“dormant” state, but also all the files come from the same
server. After 19.75 seconds “dormant” state without any
other transmissions, the radio releases all the network re-
sources and goes back to the IDLE state, so that the last
download request takes 6 seconds, much longer than previ-
ous two tasks.

2.2 Insights for User Experience and Signal Strength

It is straightforward to relate the user experience (download
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Table 1 Signal strength

RSRP Level RSRP Value RSSNR Level RSSNR Value Signal Level Signal Value
GREAT >= −95 GREAT >= 45 GREAT 4
GOOD >= −105 GOOD >= 10 GOOD 3

MODERAT E >= −115 MODERAT E >= −30 MODERAT E 2
POOR otherwise POOR otherwise POOR 1

No S ignal Integer.MAX VALUE No S ignal Integer.MAX VALUE No S ignal 0

Fig. 4 PDF of download speed for different signal levels

rate) to the signal strength. As the users’ intuitive feelings
that the adverse network increases the download time com-
pared with the good network environment. In addition, there
is a lot of evidence that the mobile users have experienced
quicker battery drain with poor network, not only the extra
download time rises up the battery expenditure, the mobile
devices also have to strengthen the signal transmit power to
keep the connection when the signal is weak.

Except the above intuitive understanding, we have
rather limited research of the quantitative impact of sig-
nal strength on download speed. To study the relation-
ship between them, we consider different scenarios from
the user holds outdoor activities with good signal strength
to the user stay in the closed environment with poor signal
strength. Under different network environments, we down-
load the 3MB file by every 30 seconds and conduct 100 mea-
surements. Figure 4 shows the probability density function
(PDF) of download rate for different signal levels. As can
be seen from this diagram, the download speed of different
signals obeys the gauss distribution. The stronger the signal
strength is, the faster the speed will be. For simplicity, we
use the Android API to get the LTE signal level that con-
tains 5 different levels (no signal to good signal), and we
define the value of no signal level as 0, so that we can reject
the download request in such a poor network environment,
details are listed in Table 1. The Android operating system
defined the signal level depends on RSRP and RSSNR, the
source code as follows:

if (mRsrp==Integer.MAX_VALUE)
level=levelRssnr;
else if(mRssnr==Integer.MAX_VALUE)
level=levelRsrp;
else
level=(levelRssnr < levelRsrp) ? levelRssnr :

levelRsrp

3. MDP System Design

The EDM is based on the MDP for energy-efficient data
download. We choose MDP because it provides a mathe-
matical framework for modeling decision making in situa-
tions where outcomes are partly random and partly under
the control of a decision maker. So the different user pat-
terns can get benefit from the MDP. The input to our model
is the current state of the smartphone. The output of our
model is an action that indicates the best decision from the
global perspective. This section describes the EDM in de-
tails. At first, we introduce the general framework of MDP.
And then we discuss how we formulate the energy manage-
ment problem for mobile download as a Markov Decision
Process. The goal of EDM is to assign a dynamic download
decision to reduce the download overhead and improve the
user experience.

3.1 MDP Overview

In the typical definition, a Markov decision process is a 4-
tuple 〈S , A, P,R〉, where
• S is a finite set of states.
• A is a finite set of actions.
• P(s, s′, a) = P(st+1 = s′|st = s, at = a) is the probability
that the action a in the state s at time t will lead to the state
s′ at time t + 1.
• R(s, s′, a) or R(s′, a) is the immediate reward (or expected)
received after transition to state s′ from state s with action
a.

The core problem of MDP is to find a policy for the
decision maker. The algorithm to calculate this optimal pol-
icy requires storage for two arrays indexed by state: value
V , which contains real values, and policy π which refers
to actions. Then carry out the two kinds of steps, which
are repeated in some order for all the states until no further
changes take place. At the end of the algorithm, π will con-
tain the solution and V(s) will contain the discounted sum of
the rewards which is earned (on average) by following that
solution from state s. They are defined as follows:

π(s) := arg max
a
{
∑

s′
Pa(s, s′)(Ra(s, s′) + γV(s′))} (1)

V(s) :=
∑

s′
Pπ(s)(s, s′)(Rπ(s)(s, s′) + γV(s′)) (2)

3.2 MDP Model of EDM

Some mobile applications are delay tolerant, they consume a
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huge amount of traffic when users perform some operations,
such as watching the online YouTube videos and refreshing
the Instagram photos, which result in the rapid battery drain.
We take the advantage of the delay-tolerant to save the en-
ergy of downloading. We describe below how we formulate
the energy management problem for downloading data on
smartphones as a Markov Decision Process and define the
following notations.
t: current time slot.
T : total using time after charging complete.
It: time interval of T .
e: remaining battery (level).
edd: power for download action over LTE network.
edy: power for delay action (idle) over LTE network.
E: total energy.
Le: divide E into Le parts.
l: the level of LTE signal strength.
q: size of current queue backlog.
1) State Space
In our model, the state includes the current time, remaining
battery, signal strength, and the size of queue backlog.

s := (t, e, l, q) (3)

In the action space A, we define adownload as the action
for downloading data at current time slot, adelay as the action
for delaying the download request to the next time slot. We
formulate the action a in the action space A as follows.

A := (adownload, adelay) (4)

t: We divide T into n ticks, n is equal to T/It, for instance,
we set T as 1 hour, and the time interval is 1 minute, so t
includes 60 slots (60 states). The transition of t is defined
as:

P(t j|ti) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 i f t j = ti + 1
1 i f t j = ti = T

It

0 otherwise
(5)

e: Denote the remaining energy. We divide the E into Le

equal parts, so each part contains E/Le energy. The transi-
tion of e depends on the action that will be taken. And the
energy discrepancy is due to different actions. Similar to the
Jigsaw system [8], the probability of the battery level chang-
ing from the current level to the next level from time tick ti
to ti+1 is calculated as:

p(download) =
power(download)

E/Le
× T

T/It
(6)

The transition probability of e for different actions as
follows:

Pdelay(e j|ei) =

{
1 i f e j = ei

0 otherwise
(7)

Pdownload(e j|ei) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 e j = ei = 1
p(download) i f e j = ei − 1

1 − p(download) i f 1 < e j = ei < Le

0 otherwise

(8)

l: We define the LTE signal strength as l. In Google source
code, the signal strength of LTE owns five levels, from 0 (no
signal) to 4 (best signal strength), calculated by the RSRP
and RSSNR, the l state transition probability matrix is ob-
tained from users’ historical context data (Sect. 5.1).
q: We define three fixed download request probabilities, the
value p from 0.2 (light user) to 0.8 (heavy user) correspond-
ing to the different user patterns. And we assume the task
will be finished within one time tick if the action is down-
load:

P(q j|qi) =

{
p i f q j = qi − 1

1 − p otherwise
(9)

To reduce the complexity of the MDP, we assume that
the states t, e, l, q are independent from each other. Thus,
we define the overall system transition probability as:

Pa(s j|si) = P(t j|ti) × Pa(e j|ei) × P(l j|li) × P(q j|qi) (10)

2) Reward Function
We define the V(t, e, l, q) as the optimal value which is the
maximum total reward at the current state S (t, e, l, q) opti-
mized over all possible actions. If the action is download,
we define the optimal value as:

Vdownload(t, e, l, q) = V(t + 1, e − edd, l,N − X) + R(X)

(11)

R(X) is the immediate reward when downloading X
tasks, V(t + 1, e − edd, l,N − X) is the future reward. When
the action is delay, we have:

Vdelay(t, e, l, q) = V(t + 1, e, l,N + 1) (12)

In this paper, the reward function is the key component
of MDP and we set R(N) = N× l, as it will balance the over-
head and user experience. For example, an excellent signal
strength offers a good Internet experience and saves a lot of
energy as well, we come up with the relevant experiments
and evaluate the results in Sect. 5. Based on the above for-
mulation, we can obtain all context transition probabilities
using frequency counts and apply the Policy Iteration algo-
rithm [10] to learn the optimal policy.

4. Experimental Setup

All of experiments are conducted on the LTE-enabled SAM-
SUMG GALAXY S5 which runs the latest Android 6.0
Marshmallow operating system and using the China Mobile
LTE-TDD technology. We also develop a context profiling
application: EnergyProfiler, a background program to col-
lect run-time data, the collected information are high lighted
in Table 2. We use a DC power supply (Agilent 66332A) to
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Table 2 The collected information and description

Probe Description
Time Current timestamp

Bat tery The remaining battery level
Signal Leuel Current signal level

Queue Backlog The size o f download request queue

Fig. 5 The power consumption for screen and EnergyProfiler

Table 3 The power consumption for the smartphone in different states

Screen State Radio Power(mA)
Power with Ener-

gyProfiler(mA)
S creen O f f Airplane 2.773 16.967
S creen On Airplane 284.480 298.803

S creen O f f LT E 11.617 48.638
S creen On LT E 298.439 334.662

power the phone instead of the battery, and a multimeter
(Agilent 334410A) to get the real time current. For simplic-
ity, we represent power consumption by the current value
in milliampere. The actual power draw is the current value
multiplied by 5V (DC supply voltage).

Unless otherwise stated, we keep the smartphone’s
screen on during the experiment, so we need to subtract
the display and EnergyProfiler power from the total power
consumption. To quantify the display cost, we force the
phone into the airplane mode, kill all the background ap-
plications, and set the brightness to the maximum (255).
After doing above things, the phone goes to the idle state
with 284.48 mA. We then disable the display and get another
current value (2.77 mA). Averaged over 10 iterations, an av-
erage display aggregate power (280.242 mA) as Fig. 5 (a)
presents. Figure 5 (b) describes the EnergyProfiler power
consumption when the screen is off, the every 5 seconds
current pulse caused by the background sampling program.
To minimise the impact on battery life and system perfor-
mance, EnergyProfiler collects the information by using the
Android public APIs and the information stored locally, so
that no network usage is required. Table 3 presents the
power consumption for smartphone in details, when the ra-
dio is on (LTE) or off (Airplane mode) with the screen is on
or off. In addition, the power consumed in Airplane mode

(16.967mA) is much less than the LTE connection state
(48.638mA) when the EnergyProfiler is running in the back-
ground, except the power consumption to keep the LTE con-
nection, the additional overhead under LTE network caused
by the EnergyProfiler fetches the Signal Strength which is
not considered during the Airplane mode.

5. EDM Modelling and Evaluation

We follow a training-testing procedure to build the model
and evaluate the performance of EDM. We collect one
month log history for training the MDP model, and apply
the off-line built model in the music player for testing. We
compare the EDM against CLSA [17] and the Android de-
fault download policy (Min-Delay) through the real world
for 10 mobile users over one week, the result shows that our
approach delivers a better energy reduction than the other
two policies. Finally, we analyze the working mechanism
of our approach.

5.1 Modelling

The core of our EDM is the MDP model. We use an off-line
learning scheme to train the MDP model. We set T = 2
hours and each time tick is 30 seconds. So the total time
is divided into 240 parts, the smartphone simulates to dis-
charge from timestamp t = 0 to t = 240. In the simula-
tion, we use the following parameters from the power mea-
surement on SAMSUNG Galaxy S5 which runs the latest
Android 6.0 Marshmallow operating system. We define the
initial energy level is 10 unites (10% of the whole battery ca-
pacity). For simplicity, the energy impact of signal strength
is not considered, and the download power consumption is
325mA as described previously. In order to avoid the im-
pact of network load, we conduct the experiments during
the certain period of the day. We collect 10 mobile users
historical context data for training, and get the signal level
transition for each one. Figure 6 presents the CDF of sig-
nal level transition for user No.1. As we can see from this
diagram, the signal levels prefer to maintain the last state
(over 40% probability) from current time state to the next
time state. For the Good signal level, there are about 3%,
15%, 55% and 27% probabilities transfer to the Poor, Mod-
erate, Good and Great respectively. We collect the users’
signal level transition data to build their own MDP model.
Given the above mentioned parameters, we can obtain all
context transition probabilities and find the optimal decision
by Policy Iteration Algorithm [10]. We use Matlab [11] and
its Markov Decision Processes Toolbox to build the MDP
model. The output is a four-tuple decision table, the mobile
application can take the action < download, delay > accord-
ing to the current state < t, e, l, q >. Table 4 lists a piece of
the decision table from the No.1 user. Once the MDP model
has been built using all the available training data, no further
learning takes place.

Our Model can be easily built for many other mobile
devices with different user patterns through the on-line MDP
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Fig. 7 EDM average per-byte energy consumption between the light user (a), moderate user (b) and
heavy user (c) for downloading the same file compared to the CLSA and the Android default policy
Min-Delay.

Fig. 6 CDF of signal level transition for the No.1 user

Table 4 MDP decision table

t e l q Optimal Value Decision
22 7 3 9 34.370 Download
22 7 3 0 29.033 Delay
22 7 2 15 29.192 Download
22 6 1 12 15.709 Delay
22 6 1 15 21.605 Delay
22 6 1 30 34.552 Download

based optimisation system. The user can download our cus-
tomized music player application on the application reposi-
tory. The application will be profiled while users run it and
the performance and energy statistics will be periodically
sent back to the server when the device is powered. From
time to time, our system will generate MDP models based
on the collected information and send them back to differ-
ent users. Furthermore, the MDP models will be constantly
updated so that newly uploaded, unseen situations will be
optimised.

5.2 Deployment and Evaluation

Once we have built the model as described above, we ap-
ply it in the on-line music player for Android to decide
which action to take for a new, unseen download request.
In the testing stage, 10 users submitted download requests

randomly during the 2 hours. Then the EDM lookups the
MDP decision table according to the current time, energy
level, signal level and queue backlog size. Finally, the EDM
decides what action to take (delay or download).

To illustrate the performance of EDM, we compare it
with two alternative approaches, a state-of-the-art energy ef-
ficiency download mechanism CLSA [17] and Android de-
fault download policy Minimum Delay. CLSA uses the
Lyapunov optimization framework and optimal consumer
model to decide which wireless network interface to use
and whether to delay the download tasks. The approach is
used to select an energy-efficient and stable link to down-
load data by analyzing the information of smartphone and
network state. The core of CLSA is the parameter W, which
influences the energy and latency directly. The small W will
let the CLSA response the download request more quickly
but consume more energy. However, the big W will let the
user wait a long time, which causes the poor user experi-
ence. In the experiments, we set W = 22 as [17] defined. We
simulate various user patterns with different download prob-
abilities, the light user (p = 0.2), moderate user (p = 0.5)
and heavy user (p = 0.8). Then we compare the energy (E),
delay (D) and performance for three download schemes. E
is the average energy consumption for each byte. T (i) is the
required time to download the task i. D denotes the aver-
age latency for each byte. D(i) is the time from the user
make the download request to finish the request task. Fur-
thermore, we define a new metric performance to evaluate
the achieved degree of energy-delay trade off, which takes
the energy and latency into account by multiplying the E
and D.

E =

N∑
i=1

T (i) × Power

FileS ize × N
(13)

D =

N∑
i=1

D(i)

FileS ize × N
(14)

Performance = E × D (15)

Figure 7 plots the per-byte energy consumption for 10
smartphone users in different usage patterns. Compared
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Fig. 8 EDM average per-byte latency between the light user (a), moderate user (b) and heavy user (c)
for downloading the same file compared to the CLSA and the Android default policy Min-Delay.

Fig. 9 Achieved performance of EDM and CLSA over Android default
download policy Min-Delay

with the Min-Delay, there is a reduction of 28% (light user),
22% (moderate user) and 11% (heavy user) on energy re-
spectively when using the EDM. Compared with CLSA, an
average energy savings of up to 18% and 10% are possible
by EDM for light and moderate user patterns, and there is
no obvious difference in heavy usage pattern. Overall, our
approach outperforms CLSA with a better averaged reduc-
tion of 20.3% than Min-delay, and 9.3% than CLSA. Fig-
ure 8 compares the latency of each byte. In this scenario,
adaptive schemes (CLSA and our approach) can reduce the
average delay through dynamically adjusting the response
time. Here, the EDM takes least time for each byte. Com-
pared with the Min-Delay, the CLSA is able to reduce the
latency by 7.5% on average, and it is as not good as our
adaptive approach that gives a reduction of 15.3%. Figure 9
shows the performance of energy-delay trade off for EDM
and CLSA. Both adaptive schemes achieve improvement on
performance when compared to the Android default pol-
icy. Our approach gives improvement for 1.51x, 1.45x and
1.17x for light user, moderate user and heavy user respec-
tively. The performance of CLSA is not as good as EDM,
where still achieves 1.27x, 1.20x and 1.16x improvement
when compared to the Min-Delay. The reason that the EDM
outperforms the CLSA with a better energy-delay trade off
is because of the MDP focuses on the global optimization.

The reward function of MDP includes the signal level and
the queue backlog size, which considers the energy con-
sumption and user download experience. On the contrary,
CLSA is a local optimization algorithm, although it reduces
energy and latency to a certain degree by delaying the down-
load requests and concentrating responses, it does not con-
sider the user patterns so that it degrades the performance in
some situations. In the adverse network, the light users’ few
download requests can not incur the CLSA downloads data
effectively, the requests will be delayed for a long time until
a better network environment is available, or more download
requests are proposed by users. However, the reward func-
tion of EDM has a significant impact on energy and delay
which let the EDM performs more active under the adverse
network. With the increasing of download probability, the
difference for energy and latency is smaller between EDM
and CLSA.

In summary, the experiment shows that the adaptive
scheme significantly outperforms a fixed strategy. Further-
more, our approach outperforms CLSA with a better aver-
aged reduction of 20.3% and 15.3% on energy and latency
than Min-Delay. CLSA achieves an average improvement
of 1.21x on Per f ormance, which reflects the energy-delay
trade off degree, by contrast, our approach performs better
on both energy consumption and latency, and delivers up to
1.38x improvement, compared to the Min-Delay.

6. Related Work and Conclusion

Two preliminary pieces of work have inspired our own.
Chenren Xu et al. [12] presented a global power manage-
ment scheme for mobile devices. But they only build a
simple MDP model for display and GPS, and it is a high
cost project if they build a model for all the components
of smarphone. Tang Lung Cheung et al. [13] proposed a
WiFi radio power optimization strategy which focused on
the energy consumption of interface states, but had not taken
the signal strength into consideration which also has great
impact on user experience. And Bo Zhao et al. [14] pro-
posed an energy-aware approach for web browsing in 3G
based smartphones by reconstructing the computation se-
quence for opening webpage and building the DOM tree.
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Ning Ding [7] conducted the first measurement and mod-
eling study of the impact of wireless signal strength on
smartphone energy. Niranjan Balasubramanian et al. [15]
described a strategy for exploiting residual energy tail from
GPRS/EDGE and 3G radio communication, and then devel-
oped the TailEnder, a protocol that reduces energy consump-
tion of common mobile applications by batching schedul-
ing network requests internal to a single delay tolerant ap-
plication. BreadCrumbs [16] examined WiFi connectivity
changes over time and provided mobile connectivity fore-
casts by building a predictive mobility model. Jie Ren
et al. [17] proposed a power aware download algorithm
for energy-delay tradeoff using the Lyapunov optimiza-
tion framework. Gaurav Pande [18] and Riikka Susitaival
et al. [19] evaluated the performance of LTE network from
the Internet access and Communication aspects. No work
so far in the area has used MDP to optimize the energy con-
sumption of data download on the real LTE mobile system.
This work is the first to do so.

Other pieces of work, Pathak [20] presented the eprof,
the first fine-grained energy profiler for smartphone apps.
Eprof could find out the code bugs which cause the energy
dissipation in apps and then fix them. Pathak also focused
on the apps no-sleep bug that will let the I/O components
stay awake for a long time until a force suspend, then he
developed better programming language support to avoid
no-sleep bugs at programming time [21]. Matt Calder and
Mahesh K. Marina [22] described the pitfalls of scheduling
applications that mostly run in the background and proposed
a general batch scheduling algorithm which can save a sig-
nificant energy by maximizing sleep time of the phone via
overlapping the execution of recurrent applications.

In this paper, we propose a context-aware and low-
power model to optimize download process on LTE-enabled
smartphone using Markov Decision Process. The download
decision takes several factors into account: Time, Remain-
ing Battery, Signal Level and Request Queue Size. And
Then, we study the LTE machine state, measure the tail time
and power in different scenarios. Compared with the DCH
state of 3G with longer tail time for keeping the connec-
tion, the “dormant” state in LTE consumed less power. To
better understand the effect of signal level on user experi-
ence, we test the speed over varied signal level and find out
that the speed obeys the gauss distribution. Finally, the ex-
periments performed by 10 users with different download
probabilities, and the result shows that the EDM achieves a
better trade off between energy and delay, where achieves
over 20% improvement over the Android default policy for
energy consumption and per f ormance. Meanwhile, it con-
sistently outperforms a state-of-the-art power aware down-
load algorithm (CLSA). In future work, we intend to explore
further refinement to the energy-delay trade off, and also to
exploit the heterogenous architecture to perform optimiza-
tions.
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