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A New Automated Method for Evaluating Mental Workload Using
Handwriting Features

Zhiming WU†, Hongyan XU†,††, Student Members, and Tao LIN†a), Nonmember

SUMMARY Researchers have already attributed a certain amount of
variability and “drift” in an individual’s handwriting pattern to mental
workload, but this phenomenon has not been explored adequately. Espe-
cially, there still lacks an automated method for accurately predicting men-
tal workload using handwriting features. To solve the problem, we first
conducted an experiment to collect handwriting data under different mental
workload conditions. Then, a predictive model (called SVM-GA) on two-
level handwriting features (i.e., sentence- and stroke-level) was created by
combining support vector machines and genetic algorithms. The results
show that (1) the SVM-GA model can differentiate three mental workload
conditions with accuracy of 87.36% and 82.34% for the child and adult
data sets, respectively and (2) children demonstrate different changes in
handwriting features from adults when experiencing mental workload.
key words: handwriting feature, mental workload, automated evaluation

1. Introduction

Mental workload refers to the amount of mental demand
imposed on a person by a particular cognitive task, and it
can be attributable to the limited capacity of the person’s
working memory and his/her ability to process novel infor-
mation [1]. The last decade has witnessed a growing inter-
est in evaluating mental workload as a basic means of bet-
ter understanding and improving human-computer interac-
tions [2]–[4]. For example, Vertegaal and Chen used real-
time feedback of mental workload to devise adaptive strate-
gies of interruptions in a mobile phone [2]. Lin et al. [3]
and Wilson and Sasses [4] have also emphasized that men-
tal workload is a crucial user cost during interactions and
should be carefully considered from both a health and safety
point of view, since interaction techniques are becoming
more and more pervasive. More importantly, it is highly de-
sirable for intelligent training systems to evaluate learners’
mental workload and keep it at an appropriate level in order
to maximize their learning performance and motivation [5].

Current methods of evaluating mental workload can be
mainly divided into three main categories: subjective, per-
formance, and physiological measures. These technologies
have been widely used with some success, but they have
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their own advantages and disadvantages (see Sect. 2 for de-
tails). In our opinions, an ideal evaluation methodology for
mental workload should at least: (1) implicitly and continu-
ously gather data; (2) require no extra equipment; (3) eval-
uate mental workload objectively, quantitatively and accu-
rately; and (4) allow for automated evaluation and deploy-
ment in real-life scenarios. A little attention has recently
been paid to behavioral measures in order to develop such
an ideal method. Behavioral measures use changes in be-
havior patterns to indicate the levels of mental workload.
The major advantage of behavioral measures is that behav-
ioral data (e.g. handwriting process and speech) can often
be collected implicitly without extra equipment, thereby in-
creasing their applicability in real-world environments. Re-
cently, the feasibility of employing changes in handwriting
and verbal behavior to indicate mental workload has been
identified by a few empirical findings [6], [7]. In the study,
we are interested in handwriting behavior because it is per-
vasive in current educational environments.

Handwriting is a complex activity comprising cogni-
tive, kinesthetic, perceptual and motor components, and it
is often characterized by the information on pen-tip dynam-
ics (velocity and acceleration), pen orientation (azimuth and
altitude), pen-tip pressure, temporal (e.g. stroke duration on
paper and in air) and spatial measures (e.g. stroke length
and shape). Recently, a few studies (e.g. [8], [9]) have at-
tempted to use machine learning techniques to model the
relationship between mental workload and changes in hand-
writing features, but they still suffered from low classifica-
tion accuracy. The low classification accuracy may mainly
be attributed to one or more of the following issues: (1) the
individual differences in handwriting patterns were not con-
sidered when handwriting features were extracted; (2) the
features extracted to build the classifiers were limited to a
narrow range; and (3) the algorithms developed were not
effective enough for predicting mental workload.

The aim of this study was to develop a new automated
model which can predict mental workload with relatively
high accuracy. To achieve the goal, we first extracted ex-
tensive handwriting features from free text at two levels (i.e.
sentence- and stroke-level features). Then, a hybrid model
of Support Vector Machine and Generic Algorithm (here-
after SVM-GA) on the handwriting features was built and
validated. Specifically, the study sought to answer the fol-
lowing research questions:

Research Question 1: can the SVM-GA model be
used to predict mental workload of children and adults with
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relatively high accuracy?
Research Question 2: whether and to what extent can

classification accuracy be improved when individual differ-
ences in handwriting features are addressed?

Research Question 3: are there differences in hand-
writing patterns between children and adults when they are
experiencing mental workload?

Based on the answers to these research questions, our
contributions are to: (1) increase in-depth knowledge about
what detailed features are predictive of mental workload for
children and adults, and that complements what has been
found in previous empirical studies and (2) develop a model
on two-level handwriting features that can predict mental
workload with relatively high accuracy.

2. Related Work

The most common techniques for mental load evaluation
are subjective self-reports through questionnaires such as
NASA-Task Load Index (NASA-TLX) [10]. Subjective
techniques are good approaches to understanding the over-
all attitudes of participants, but they are usually adminis-
tered post hoc or during break points, which may disrupt the
normal flow of interaction. Moreover, subjective techniques
tend to suffer from limited evaluative bandwidth and fail to
evaluate mental workload at fine-grained level [11].

Performance measures evaluate mental workload from
users’ observable task performance index such as time to
complete a task, type and number of errors, and success
rates [12]. The most commonly used technique for perfor-
mance measures is the dual-task approach (i.e. secondary
and primary tasks) [11]. Task performance on the secondary
task is supposed to reflect the amount of mental workload
imposed by the primary task. The dual-task approach is
highly sensitive and reliable, but it is rarely applied in real-
world scenarios due to the following drawbacks [5]: (1) the
secondary task may interfere considerably with the primary
task, especially if the primary task is complex or if cogni-
tive resources are limited; and (2) they are not suitable for
real-time, automated deployment since they are usually cal-
culated post hoc.

Physiological measures (e.g. heart rate variability, gal-
vanic skin response, and pupil response) are objective and
quantitative methods. One major advantage of physiologi-
cal measures is the continuous availability of physiological
response data, allowing mental workload to be measured at
a high rate (high bandwidth) and with a high degree of sensi-
tivity, even in situations in which overt behavior is relatively
rare [1], [13]. However, physiological measures typically
are intrusive and require supplemental equipment. More-
over, processing of physiological signals is computationally
intensive and human expertise tends to be required to inter-
pret the resulting patterns from physiological data [1], [13].

Some efforts have been made to identify the feasibil-
ity of using handwriting information to detect mental work-
load by examining statistical differences in some handwrit-
ing features (e.g. mean duration of pen-tip on surface and

in the air) under different load conditions [7], [8], [14]. Al-
though the empirical findings have demonstrated promise
for using handwriting features to detect mental workload,
there is only a limited understanding of how to use changes
in handwriting behavior to indicate mental workload. For
example, there is still no general agreement on what detailed
handwriting features are predictive of mental workload [6]–
[8], [14]. The studies by Yu et al. [8] and Lin et al. [9] re-
ported that pressure-related features were good indicators
of mental workload, while Luria and Rosenblum [7] did not
find significant differences in pressure-related features un-
der three mental workload conditions.

In addition, a few studies attempted to use classifica-
tion models to automatically predict mental workload with
some success, but they still suffered from low classifica-
tion accuracy. For example, back-propagation neural net-
work (BPNN) [9] and Gaussian mixture models [8] have
been built on a limited range of handwriting features to pre-
dict mental workload, producing classification accuracy of
76.27% and 75.4%, respectively. The relatively low classifi-
cation accuracy may mainly be attributed to one or more of
the following reasons. First, the large individual differences
in handwriting patterns were not considered when handwrit-
ing features were extracted. Second, handwriting features
are generally divided into two levels: stroke- and task-level
features. To our knowledge, almost all previous studies have
only focused on a single level (stroke-level or task-level),
while the potential of the combined use of stroke- and task-
level features in indicating mental workload has not been
investigated. Finally, the classification algorithms adopted
were not effective enough for predicting mental workload.
At present, low accuracy has limited the use of these ma-
chine learning models in real-world applications.

3. SVM-GA Model for Predicting Mental Workload

Support vector machines (SVMs) with the Radial Basis
Function (RBF) kernel were used predict mental workload.
For an SVM, two issues should be addressed: how to select
the optimal input feature subset for the SVM and how to
set the best kernel parameters. These two issues are crucial
because the feature subset choice influences the appropriate
kernel parameters and vice versa [15], [16]. Therefore, ob-
taining the optimal feature subset and SVM parameters must
occur simultaneously. In previous studies (e.g., [15]–[17]),
genetic algorithms (GAs) have been used to select feature
subsets and determine SVM parameters simultaneously and
were proved to be useful for improving the performance of
SVMs. However, the efficacy of such GA-based SVM mod-
els on handwriting features in predicting mental workload
has not been explored. In this study, we developed SVM-
GA models on handwriting features to predict mental work-
load, inspired by a previous study [15]. That is, the two pa-
rameters of the RBF (the penalty parameter C and the gam-
mar (γ)) and feature subset were encoded as a binary string,
and were simultaneously optimized by a GA. The main steps
of the SVM-GA model are described as follows (see Fig. 1).



WU et al.: A NEW AUTOMATED METHOD FOR EVALUATING MENTAL WORKLOAD USING HANDWRITING FEATURES
2149

Fig. 1 The main steps of building the SVM-GA model.

Fig. 2 A chromosome comprises three parts, parameter C, γ and feature
subset.

(1) Data preprocessing. Each feature is linearly scaled
to the range [0, 1] by the max-min scaling technique [18]
and this can prevent the handwriting features in greater
numeric ranges from dominating those in smaller numeric
ranges.

(2) Encoding chromosomes and initializing GA. The
binary encoding system was used to represent the chromo-
some. The chromosome comprises three parts, C, γ and the
feature subset (see Fig. 2).

In Fig. 2, b1
C ∼ bnC

C represents the binary code of param-
eter C, b1

γ ∼ b
nγ
γ represents the binary code of parameter γ,

and b f
1 ∼ b f

n f represents the feature mask. nC is the num-
ber of bits representing parameter C, nγ is the number of bits
representing parameter γ, and nf is the number of bits rep-
resenting the features. nC and nγ can be chosen according
to the required calculation precision. For the chromosome
representing the feature set, the bit with value ’1’ represents
that the feature is selected, and ’0’ indicates that the feature
is not selected. The parameter settings for the GA are as
follows: population size (500), crossover rate (0.7), muta-
tion rate (0.02), nc (20), nr (20), and n f (the number of the
features).

(3) Decoding chromosomes. The chromosome repre-
senting the genotype of each parameter (C, γ) was decoded
into the phenotype (parameter values) by Formula (1) [15]:

p = minp +
maxp −minp

2n − 1
× d (1)

where minp, maxp, p, d and n refer, respectively, to the min-
imum and maximum values of a parameter and the pheno-
type, decimal value and length of a bit string.

(4) Evaluating fitness. The fitness of an individual in
the population was calculated according to the average clas-
sification accuracy of 10-fold cross validation, which is the
overall number of correct classifications from 10 iterations
divided by the total number of samples (n) in a data set. The
fitness value (F) is calculated by Formula (2):

F =
n∑

i=1

Hi/n (2)

where Hi is 1 if the predicted value of the SVMs equals the
actual class label, otherwise Hi is zero.

(5) Terminating GA. If the termination condition is sat-
isfied, the GA stops; otherwise, the GA continues with the
next generation. The termination criteria of the GA are that
the generation number reaches 600 or that the fitness value
does not improve during the last 100 generations.

(6) Performing genetic operations. Two-point
crossover, roulette wheel selection, and elitism replacement
techniques were used as the genetic operators.

4. Experiment

An experiment was conducted to collect the samples of
handwriting behavior that had been accurately labeled as the
behavior captured under different mental workload condi-
tions.

4.1 Participants

Two hundred participants (100 females and 100 males) were
recruited for the experiment. One hundred of the partic-
ipants are university students aged 18 to 31 (mean age =
22.83, SD = 2.24), and the other one hundred participants
are students aged 9 to 12 (mean age = 11.39, SD = 1.12)
in elementary schools. Before the experiment, all partic-
ipants were required to complete a background question-
naire about their experience with handwriting devices and
English learning, along with personal information such as
sex and handedness. English is not the first language for any
participants, but all of them have learnt English over three
years. All participants are right handed with normal cogni-
tive and physical ability. Participants were compensated for
their participation in the experiment.

4.2 Tasks

Each participant experienced four experimental conditions
comprised of one baseline condition (transcribing a sen-
tence) and three sentence-making task conditions. In-
spired by Ransdell and Levy’s experiments [19], we chose
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sentence-making training as the experimental task. Specif-
ically, after seeing a set of randomly selected words on the
screen, participants were required to write down the com-
posed sentences based on these given words in a single line
or multiple lines. All words were from the participants’ text-
book. They were advised to use the given words, but not
necessary in the given order.

The task difficulty was manipulated by the number of
the given words and the tasks become more difficult with
the increase in the number of the given words. Participants
completed the sentence-making tasks under three difficulty
conditions (based on one, two and three given words) and
these conditions were expected to cause three different lev-
els of mental workload, respectively. Every time the partici-
pant pressed the “start” key, the given words were displayed
on screen for a limited time before disappearing. The dura-
tion for displaying the words was one second for one-word
cases, two seconds for two words and three seconds for three
words. The participants were required to remember the dis-
played words and write a sentence with the given words.
There was no time limit for writing, but participants were
not allowed to write down the words before writing the sen-
tence.

4.3 Procedures

The experiment was divided into four phases: a welcome
phase, a practice phase, a task phase, and a debriefing phase.
During the welcome phase, all participants were required to
sign a consent form with a detailed description of the experi-
ment, its duration, and its research purpose. Each participant
also filled out a background questionnaire.

At the outset of the practice phase, instructions were
read to each participant describing the task rules, and each
participant was given a brief tutorial on how to complete
the task. Participants were then allowed to practice for sev-
eral minutes to ensure that they mastered the skill of using
the experimental device. In addition, the experiment coor-
dinator confirmed with participants that they understood the
meaning of each word which might appear in the tasks.

During the task phase, each participant was first re-
quired to normally transcribe one sentence as her/his base-
line condition. They then completed three sentence-making
tasks with different difficulty. The three task conditions were
randomly presented to participants to avoid the order effects.
After each task condition, participants had about 7 min to
rest and complete a questionnaire rating mental workload
to that task condition using an online NASA-TLX question-
naire system. After a participant finished one sentence and
proceeded to the next one, the writing space was cleared
automatically. At the conclusion of the experiment, partici-
pants were debriefed on their impressions of the experiment.

4.4 Data Collection

Handwriting process was recorded using a WACOM DTZ-
1200W tablet at 142 Hz. The device can provide almost the

Fig. 3 Handwriting data captured by a WACOM tablet.

Table 1 Sentence-level features of a sentence.

Category Description Abbr.

Dynamics
features
(DF)

Average velocity of writing a sentence (i.e. av-
erage writing velocity)

AV

Standard deviation of writing velocity SDV

Average writing velocity in X direction AVX

Standard deviation of writing velocity in X di-
rection

SDVX

Average writing velocity in Y direction AVY

Standard deviation of writing velocity in Y di-
rection

SDVY

Maximum writing velocity MV

Maximum writing velocity in X direction MVX

Maximum writing velocity in Y direction MYY

Average writing acceleration AA

Average writing acceleration in X direction AAX

Average writing acceleration in Y direction AAY

Maximum writing acceleration MA

Maximum writing acceleration in X direction MAX

Maximum writing acceleration in Y direction MAY

Average pen altitude AAL

Standard deviation of pen altitude SDAL

Maximum pen altitude MAL

Average pen azimuth AAZ

Standard deviation of pen azimuth SDAZ

Maximum pen azimuth MAZ

Temporal
Features
(TS)

Total duration of writing a sentence TD

Duration of pen-tip in the air DIA

Duration of pen-tip on writing surface DOS

Ratio of DIA to DOS RATS

Count of the pen-tip pauses longer than 300
(ms) (sensible pauses) between two successive
moves

SPC

Pressure
Features
(PS)

Average pen-tip pressure AP

Maximum pen-tip pressure MP

Standard deviation of pen-tip pressure SDP

Spatial
Features
(SF)

Total distance traveled by pen-tip on writing
surface

TDS

Total distance traveled by pen-tip in X direc-
tion

TDSX

Total distance traveled by pen-tip in Y direc-
tion

TDSY
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Table 2 Stroke-level features of a sentence.

Category Descriptions Abbr.

Temporal
Features
(TF)

Average stroke duration S AD

Standard deviation of stroke duration S SDD

Total stroke duration S TD

Spatial
Features
(SF)

Average stroke length S AL

Standard deviation of stroke length S SDL

Total stroke length S TL

Average stroke height (height refers to the di-
rect distance in the y-axis from the lowest to
the highest point of a stroke.)

S AH

Standard deviation of stroke height S SDH

Maximum stroke height S MH

Average stroke width (width refers to the di-
rect distance in the x-axis from the left side of
a stroke to the right side.)

S AW

Standard deviation of stroke width S SDW

Maximum stroke width S MW

Dynamics
Features
(DF)

Average stroke angular velocity (angular ve-
locity refers to the degrees through which pen
travels per second during writing a stroke.)

S AAV

Standard deviation of stroke angular velocity S SDAV

Maximum stroke angular velocity S MAV

Pressure
Features
(PF)

Average stroke pressure S AP

Standard deviation of stroke pressure S SDP

Maximum stroke pressure S MP

same writing experience as would be found in the pencil-
and-paper writing. Furthermore, the use of the device is so
simple that children can be familiar with it during a few min-
utes in the practice phase. Actually, at the debriefing phase,
all participants also reported that the use of the device im-
posed no or little load on them.

Handwriting raw data are a series of samples along the
pen trace with time-stamps and include the coordinate po-
sitions (x, y), pressure (0-1024 levels) of the pen-tip (p),
and the altitude and azimuth of the pen (θ, φ), as shown in
Fig. 3. Handwriting features for each sentence were calcu-
lated from these data sources.

4.5 Handwriting Features

Handwriting features were obtained at both the stroke-level
and sentence-level (i.e. task-level) for each sentence. Hand-
writing features at each level can be roughly divided into
four categories: temporal, spatial, dynamics and pressure,
as listed in Tables 1 and 2. Specifically, sentence-level fea-
tures were obtained by calculating statistics such as average
and standard deviation of handwriting measures across the
sentence (see Table 1).

A stroke is defined as the curve created by the move-
ment of pen-tip on the writing surface, in which pen-tip
pressure of all sampled data points is greater than 50 (non-

scale units). We ruled out outlier (very long or very short)
strokes which seemed extreme, as compared with other
strokes. That is, strokes of less than 50ms or more than
850ms duration were deleted. A sentence includes numer-
ous strokes. Stroke-level features of a sentence were ex-
tracted by calculating some statistics of handwriting mea-
sures across all strokes of the sentence. Table 2 lists the
extracted stroke-level features for each sentence.

Given the individual differences of handwriting behav-
ior, the raw data of handwriting were normalized per partic-
ipant per feature using Z-scores [18]. For each participant,
the baseline samples were used to calculate means and stan-
dard deviations per feature; then the samples under three
manipulation conditions were normalized using those val-
ues. The features extracted from the raw and normalized
data are called the raw and normalized features, respectively.
Both the raw and normalized features were investigated to
determine if accounting for individual differences by nor-
malizing data in this way would yield higher classification
accuracy.

5. Results

Handwriting data and subjective ratings were collected from
200 participants, but the data from four students of elemen-
tary schools and two university students had to be discarded
because they failed to complete all three tasks. The col-
lected data were divided into two data sets: child (96 ele-
mentary school students) and adult (98 university students).
All analyses were conducted on each data set separately.
In the study, mental workload participants perceived was
first evaluated through the overall NASA-TLX score to con-
firm whether the designed task conditions induced different
mental workload levels. Then, the SVM-GA models were,
respectively, built on the raw and normalized handwriting
features to classify different mental workload levels. The
development platform for our models was Intel Core CPU
i7-3770 (3.4 GHz, 4 cores), 8G RAM, Windows7 operat-
ing system. The development environment was MATLAB
(2012a) and the software of SVM was Libsvm (3.1).

5.1 Subjective Evaluation for Mental Workload

For the child data set, one-way ANOVA analyses showed
that there were significant differences in overall NASA-TLX
scores across the three task conditions (F(2,285) = 163.21,
p < 0.001). Post-hoc comparisons also showed that the
three-word tasks induced the greatest mental workload, fol-
lowed by the two-word task and one-word task (see Table 3).
For the adult data set, the same pattern (see Table 3) was
also found (F(2,291) = 157.64, p < 0.001). In addition,
when examined individually, the patterns were almost con-
sistent for all participants. At the debriefing phase, almost
all participants also reported that they felt it easy to compose
sentences with a single word, and challenging or especially
challenging for the three-word tasks.

The above results validate our experimental task design
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Table 3 Significant differences in the self-reported mental workload across the three tasks were con-
firmed. (* represents p < 0.01)

Data One-word Two-word Three-word
F

One-Two One-Three Two-Three

sets Mean (SD) Mean (SD) Mean (SD) t t t

Child 59.61(6.94) 68.84(9.82) 78.28(11.33) 163.21* 7.53* 17.12* 11.34*
Adult 49.36(5.55) 60.99(6.34) 72.08(9.73) 157.64* 6.61* 16.75* 9.13*

Table 4 The ten normalized features in descending order of importance
ranked by information gain.

Child

1 2 3 4 5

DIA SPC S AD AV S AP

6 7 8 9 10

AAL S SDP SDAZ S AAV AP

Adult

1 2 3 4 5

S SDD SPC DOS RATS AVY

6 7 8 9 10

S AAV S SDP S MP S AL S SDW

and confirm that the three task conditions indeed can elicit
different mental workload levels, which provides an impor-
tant benchmark for building the SVM-GA model to predict
mental workload.

5.2 Information Gain Analyses

To understand the relative importance of each feature for
building a classifier, an analysis of information gain was
conducted. Take the example of the normalized features.
Table 4 lists the top ten features in descending order of im-
portance and there are large differences in them between the
child and adult data sets.

The results in Table 4 provide positive support for Re-
search Question 3 and show something rather interesting:
(1) temporal features clearly offered the best promise for de-
tecting mental workload for each data set among four cate-
gories of features (i.e. dynamics, temporal, and spatial and
pressure features), but the child and adult data sets have dif-
ferent detailed features (child: DIA, SPC and S AD; adult:
S SDD, SPC, DOS and RATS); (2) two pen-orientation fea-
tures (AAL and SDAZ) were respectively ranked sixth and
eighth among the top ten features for the child data set, but
none of pen-orientation features was found among the top
ten important features for the adult data set; (3) dynamics
and pressure features also provide useful information for de-
tecting mental workload, but there were differences in the
detailed features and their order of importance between the
child and adult data sets (child: S AP, S SDP, S AAV and
AP; adult: AVY, S AAV and S MP); and (4) two spatial
features (S AL and S SDW) were respectively ranked ninth
and tenth for the adult data set, but none of spatial features
was found among the top ten important features for the child
data set. The findings for the raw features are similar to
those for the normalized features.

5.3 Accuracy of SVM-GA Models

The average classification accuracy of the SVM-GA models
on the child and adult data sets were calculated to answer
Research Question 1. The results show: (1) for the child
data set, the SVM-GA models could, respectively, classify
three mental workload levels with accuracy of 87.36% and
79.52% on the normalized and raw features; and (2) for the
adult data set, the SVM-GA models could, respectively, ob-
tain the accuracy of 82.34% and 78.69% on the normalized
and raw features.

Average classification accuracy of the two data sets was
compared (t-tests). The results showed that, whether for
the normalized or for raw features, the average classifica-
tion accuracy of the child data set was significantly higher
than those for the adult data set (normalized: t18 = 3.03,
p = 0.002; raw: t18 = 2.21, p = 0.047).

The results also showed that data normalization (Z-
score) which accounts for individual differences is gener-
ally helpful for improving the performance of the SVM-GA
models, but that this benefit is more pronounced for the child
data set. Specifically, using normalized features resulted in
an increase (just 2.65%) in classification accuracy for the
adult data set. In contrast, normalized features resulted in
a great increase (7.84%) in classification accuracy for the
child data set. We conducted paired t-tests on the classifica-
tion accuracies between the raw and normalized features for
the child and adult data sets separately. The results showed
that the improvement of accuracy for both the child and
adult data sets was significant (child: t9 = 3.47, p < 0.001;
adult: t9 = 2.52, p = 0.03). These results answer Research
Question 2 and show that individual differences should be
taken into consideration when developing machine learning
techniques to predict mental workload, especially if mental
workload of children is of interest.

Considering that the normalized features can produce
better results than the raw features for both the child and
adult data sets, we take the example of the normalized fea-
tures to describe the feature subset selected by the GA, as
listed in Table 5. The results in Table 5 show: (1) for both
the child and adult data sets, the feature subsets included
four categories of features (i.e. dynamics, temporal, spa-
tial and pressure features) and this identified the inference
by Luria and Rosenblum [7] that different handwriting mea-
sures can provide distinct information on mental workload;
and (2) for the child data set, two pen-orientation features
(i.e. AAL and SDZA) were selected as the input of its SVM-
GA model, but the feature subset for the adult data set did
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Table 5 The normalized features selected by the GA for each data set.
DF, TF, PF, and SF represent four categories of handwriting features (i.e.
dynamics, temporal, pressure and spatial).

Sentence-level features

DF TF PF SF

Child AV,AAL,AAX,SDAZ DIA,SPC AP,SDP

Adult AVY DRAT SDP

Stroke-level features

DF TF PF SF

Child S AAV S SDD S AP

Adult S AAV S AD S AP S AL,S SDW

Table 6 Performance comparison between SVM-GA and SVM-Grid
models on the normalized features.

Accuracy (%) Average Time (Seconds)

Child Adult Child Adult

SVM-GA 87.36 82.43 682.12 572.36

SVM-Grid 76.21 71.72 479.23 337.91

p-values 0.011 0.013 0.016 0.003

not include any pen-orientation features. The results also
provide positive answers to Research Question 3.

5.4 Performance Comparison between SVM-GA and
SVM-Grid

The Grid algorithm is also a common method for search-
ing for the best C and γ when using SVMs with the RBF
kernel function. We compared the classification accuracy
and the average time of searching for the best pair (C and
γ) of the GA-based approach with those of the Grid algo-
rithm. Considering that doing a complete grid-search may
be time-consuming, an improved Grid algorithm [20] with a
grid space (C:[2−5, 215]; γ:[2−15, 23]) was developed.

Similar to the SVM-GA models, the SVM-Grid mod-
els on the normalized features had higher accuracy than
on the raw features for both the child and adult data sets.
Therefore, t-test was used to compare the performance (i.e.,
accuracy and average search time) between the SVM-GA
and SVM-Grid models on the normalized features (see Ta-
ble 6). It can be seen from Table 6 that (1) the SVM-GA
obtained higher average accuracy than the SVM-Grid, pro-
ducing the increase of 11.15% and 10.71% on the child and
adult data sets, respectively; and (2) for the child and adult
data sets, the average time of searching for the pair (C and
γ) of the Grid algorithm was 202.89 and 234.45 seconds
shorter than that of GA-based approach, respectively. The
results showed that the average searching time of the GA-
based approach is slightly inferior to that of the Grid algo-
rithm (all p-values < 0.05), but it significantly improved the
classification accuracy (all p-values < 0.05). Note that the
software environment for the two approaches and the prede-
fined searching precision of the Grid algorithm may affect

the computational time.

6. Discussions

This study designed a hybrid model of GA and SVM (SVM-
GA) on handwriting features to predict mental workload
and it served the purpose well. Specifically, our results
showed that its classification accuracy on the normalized
features was significantly higher than those on the raw fea-
ture for each data set, producing the accuracy of 87.36%
and 82.74% on child and adult data sets, respectively. The
accuracy was also vastly superior to that obtained by the
SVM-Grid models. There is a considerable improvement in
classification accuracy compared with the result (76.27%)
in a recent study [9] that adopted the same experimental de-
sign and task. These results show that the SVM-GA models
are highly effective for classifying mental workload levels
when individual differences are addressed, especially when
mental workload evaluation of children is of interest. These
results answer Research Question 1. While the classifica-
tion accuracy for mental workload may not be comparable
to the accuracy obtained by physiological data, the current
approach has advantages over physiological measures be-
cause it requires no additional hardware, is unobtrusive, and
is less computationally intensive.

The SVM-GA models show good performance in the
study, which is partly attributed to their good capability to
model complex behavior patterns. For example, the poten-
tial of pressure-related features in detecting mental work-
load was not confirmed by MANOVA analyses in the study
by Luria and Rosenblum [7], but their values for evaluat-
ing mental workload were clearly identified by the SVM-
GA model. Pressure-related features were selected to con-
struct the SVM-GA models for both the child (AP, SDP and
S AP) and adult (AP, and S AP) data sets. The findings
were also supported by the results from information gain
analyses, which showed that several pressure-related fea-
tures (e.g., AP, S MP and S SDP) ranked as the top ten im-
portant features for evaluating mental workload for both the
child and adult data sets. These findings also further confirm
the judgment made by Luria and Rosenblum [7] that not all
handwriting features relate linearly to mental load and non-
linear models should be further considered when develop-
ing techniques to predict mental workload. In fact, we also
built other common classifiers (along with the correspond-
ing feature selection wrappers) to predict mental workload,
including Decision Trees (C4.5), BPNNs, k-Nearest Neigh-
bor, AdaBoost, and Linear Discriminant Analysis. How-
ever, the SVM-GA models consistently obtained the best
results for both the child and adult data sets.

In addition to the good modeling capability of the
SVM-GA model, the obtained high classification accuracy
may be attributed to the feature extraction technique at two
levels (i.e. sentence-level and stroke-level features). The
sentence-level features can provide the global handwriting
information during tasks and the stroke-level features can
describe handwriting pattern at a more detailed level. We
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believe that the features at the two levels can complement
each other well when used to predict mental workload. To
our knowledge, this is the first attempt to combine sentence-
and stroke-level features to build the automated model of
evaluating mental workload, and has shown the potential of
them in predicting mental workload.

The SVM-GA models were built on both the raw and
normalized features to determine whether accounting for in-
dividual differences would improve their classification per-
formance. The baseline condition and Z-score method were
used to normalize the raw data to address individual dif-
ferences in handwriting features, and the classification ac-
curacy on the normalized features was significantly higher
than those on the raw features for each data set, providing
a positive support for Research Question 2. These results
open a new door for how to improve classification accuracy
when classifiers are built on handwriting feature to predict
mental workload.

It is also important to note that the nature of the fea-
tures selected for the SVM-GA models of children and
adults may be not same, answering Research Question 3.
Take the example of the normalized handwriting features.
For the child data set, two pen orientation-related features
(AAL and SDZA) were selected as the input of its SVM-
GA model, while the feature subset for the adult data set did
not include any pen orientation-related features; this shows
that handwriting information on pen orientation may make
distinct contributions to predict children’s mental workload.
In contrast, two spatial features (S AL and S SDW) were
selected to construct the SVM-GA model of adults, while
the SVM-GA model for children did not include any spatial
features. In addition, information gain analyses also showed
that while pressure and dynamics features were useful for
evaluating mental workload, they had different importance
for the child and adult data sets. Therefore, we believe that
classifiers need to be trained for adults and children sepa-
rately to obtain better performance due to the differences in
handwriting patterns between them.

The SVM-GA model also obtained significantly higher
accuracy for the child data set compared with the adult data
set, producing the increases of 1.01% and 5.02% on the raw
and normalized features, respectively. The higher accuracy
on the child data set may be attributable to the following
two reasons. First, compared to the adults, the children ex-
perienced higher mental load for the same experimental task
due to their relatively low level of proficiency in English or
encountering more difficulty during the experimental pro-
cedure; the higher load might cause more obvious changes
in handwriting behavior, which made it possible to obtain
a higher accuracy. Second, handwriting performance be-
comes automatic with time, and children tend to have a
lower automatic level than adults. The less automatic hand-
writing is, the more variability there is in handwriting be-
havior [7], [21], [22]. For children, the dis-automatization
as a result of mental workload may be more obvious than
adults, enabling mental workload of children to be easily de-
tected. Due to the limitation of our experimental design, our

results could not conclude that changes in handwriting be-
havior caused by mental workload for children are more de-
tectable than those for adults, but this phenomenon have pro-
posed an interesting research problem that should be care-
fully examined in future work.

7. Conclusions and Future Work

To our best knowledge, machine learning techniques have
rarely been created on handwriting features for mental
workload evaluation. The exploratory study extends the
state of the art by (1) illustrating a new methodology of
combining SVM and GA algorithms to automatically eval-
uate mental workload levels with relatively high classifica-
tion accuracy; (2) showing the differences in handwriting
patterns between children and adults when they are expe-
riencing mental workload; (3) highlighting the importance
of addressing individual differences in handwriting features
when classifiers are adopted to predict mental workload; and
(4) providing knowledge about what detailed handwriting
features are predictive of mental workload for children and
adults, respectively.

The opportunities for future work are vast. The high
classification accuracy obtained by the SVM-GA model can
spur this method into practical applications in future work.
For children, most handwriting activities require the focused
attention, and the automated evaluation for mental workload
can help us to determine the mental efforts they are experi-
encing, and further give us hints on improving their writing
performance or developing adaptive writing interfaces.

Our further research will also work towards improving
the generalizability of our findings. Mental workload in the
study was induced by sentence-making tasks in laboratory
settings and participants were drawn from the population at
elementary schools and a university. Although our exper-
imental results show the potential of using SVM-GA and
two-level handwriting features to evaluate mental workload,
its effectiveness should be further validated across multiple
kinds of experimental tasks (e.g., writing numbers) and fine-
grained mental workload levels in real-world situations. In
addition, the size of the data set in the study is relatively
small for machine learning and a large number of samples
could allow for more accurate classification results.
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