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A Support System for Solving Problems of Two-Triangle
Congruence Using ‘Backward Chaining’*

Ryosuke ONDA', Yuki HIRAI'", Kay PENNY''", Bipin INDURKHYA "', Nonmembers,

SUMMARY  We developed a system called DELTA that supports the
students’ use of backward chaining (BC) to prove the congruence of two
triangles. DELTA is designed as an interactive learning environment and
supports the use of BC by providing hints and a function to automatically
check the proofs inputted by the students. DELTA also has coloring, mark-
ing, and highlighting functions to support students’ attempts to prove the
congruence of two triangles. We evaluated the efficacy of DELTA with 36
students in the second grade of a junior high school in Japan. We found
that (1) the mean number of problems, which the experimental group (EG)
completely solved, was statistically higher than that of the control group on
the post-test; (2) the EG effectively used the BC strategy to solve problems;
and (3) the students’ attempt to use both the forward chaining strategy and
the BC strategy led to solving the problems completely.

key words: secondary education, interactive learning environments, learn-
ing support system, problem-solving, backward chaining

1. Introduction

Japanese students begin to practice explaining their thoughts
to others in primary school, but most students do not prac-
tice generating logical proofs based on concrete reasoning
until junior high school. Generating logical proofs is one of
the most difficult tasks for junior high students [2]. In fact,
according to the National Assessment of Academic Abil-
ity conducted by Japan’s Ministry of Education, Culture,
Sports, Science and Technology (MEXT), only about half of
the students can correctly solve problems related to deduc-
tive proofs. For example, according to [3], only 49.2% of the
responses to a proposition-based proof problem in a 2008
test were correct, and the non-response rate was 36.1%.
Similarly, only 48.2% of the responses to a triangle congru-
ence proof problem in a 2010 test were correct. MEXT iden-
tified the need for improved lecture methods to address the
concepts for which the correct response rate on the tests was
lower than 70%. MEXT also pointed out that the students
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are not able to correctly design deductive proofs. According
to [4], MEXT suggested that students should practice mak-
ing outlines of proof and connecting the preconditions and
the conclusions of propositions in school. These needs and
suggestions have been reiterated in later MEXT reports [5]-
[7].

Forward chaining (FC) and backward chaining (BC)
are processes that can be used to ascertain whether a given
conclusion follows from a given set of preconditions. FC is
a deductive process in which one generates inferences from
the given preconditions, and further inferences from those
inferences until the desired conclusion is derived. In BC,
on the other hand, one starts with the given conclusion and
generates pre-conditions that are required to be true in order
for the conclusion to follow. Then these conditions are con-
sidered to be the conclusions and further pre-conditions are
generated that would support these conclusions. The pro-
cess is repeated until the necessary pre-conditions are found
to be in the given set, at which point the original conclusion
is considered to be proven. Both FC and BC have been used
to develop intelligent tutoring systems [8] and to automati-
cally prove mathematical theorems [9]—-[11].

A typical human approach to generating a proposi-
tional proof using BC is to find sub-goals, which are pre-
conditions of the conclusion [12], [13]. In [12] and [13], it
was revealed that (i) all students were familiar with the FC
strategy, (ii) students who solved problems well used the BC
strategy, and (iii) most students who could not solve prob-
lems did not use the BC strategy. In addition, they found that
(iv) a lack of BC strategy led to the inability to solve prob-
lems. The authors of [12] and [13] defined ‘to use FC or BC
for problem-solving’ as ‘to use the FC or BC strategy’. We
use the same definition in this paper.

According to [4], it is important for students learning to
generate proofs to consider the following factors: (a) What
conditions are missing to derive the conclusion of a propo-
sition? (b) What can be revealed from some preconditions?
and (c) What is missing to connect (a) and (b)? The third
factor (c) involves using the BC strategy. In [4], MEXT
expects that teachers provide their students opportunities
to practice considering (a) — (c) during classroom lessons.
However, the classroom lecture format limits interaction be-
tween a teacher and each individual student because of time
limitation. Hence, if students practice solving problems by
following the above (a) — (c) outside the classroom lecture,
they can learn more effectively.
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According to the curriculum provided by MEXT, the
target age for learning to solve two-triangle congruence
proof problems (TTCPPs) is junior high school. Several
systems have been developed to support students in solv-
ing TTCPPs[14]-[17]. However, some of them do not
support the students’ self-learning, and the others support
self-learning but do not support the use of BC strategy.
Furthrmore, as far as we know, there is no existing system
that supports the use of the BC strategy in solving TTCPPs.

Our goal in this research is to develop a self-learning
system that supports junior high school students’ use of the
BC strategy to solve TTCPPs. We chose to name this system
DELTA (Dialogue Environment for Learning Triangle Af-
fairs). We also aim to measure the efficacy of DELTA’s sup-
port for using the BC strategy. The DELTA system is stand-
alone and works on a personal computer equipped with a
web browser. Details are explained in Sect. 3.3.

The rest of this paper is structured as follows: In
Sect. 2, related work and systems are introduced. DELTA
and its behavior are explained in Sect. 3. The measurement
experiment using DELTA and a baseline system is described
in Sect. 4. Section 5 discusses the efficacy of DELTA’s sup-
port. Finally, we present our conclusions and suggestions
for future work in Sect. 6.

2. Related Work

Itoh [15] developed a system to support learners who are not
good at solving TTCPPs. This system can log the steps by
which learners solve the problems. However, it does not
offer any appropriate support to learners who are not able to
make any progress towards solving TTCPPs. This kind of
support is critical in any self-learning system.

The Netlessonlab website [17] allows learners to study
junior-high-school-level mathematics and other subjects in
Japan. Learners can study the teaching materials by answer-
ing fill-in-the-blank problems. If a learner makes an error,
some feedback is provided immediately. However, the web-
site does not provide concrete support, which is the infor-
mation needed to answer the problems. Hence, there is a
possibility that the learners will not be able to make any
progress towards answering the problems.

Based on the theory proposed by Wood et al. [18], Mat-
suda and VanLehn [16] developed a tool called Advanced
Geometry Tutor (AGT). AGT applies scaffolding strategies,
which adapt the tool to the learner’s competence. In other
words, the tool decreases support when the learner succeeds
and increases support when the learner fails. Matsuda and
VanLehn concluded that the FC strategy was more effective
for solving proof problems than the BC strategy. Though
they pointed out that the inferiority of the BC strategy is
caused by the difficulty of setting sub-goals with the BC
strategy, but AGT does not have any function to support the
setting of sub-goals.

In the tool ‘REasoning COntrol Matrix for the Proving
Process (RECOMPP)’ [14], learners can solve TTCPPs by
filling their thoughts in the blanks in ‘Sect. 1’ to ‘Sect.6’.
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The targets of the authors’ evaluation experiment were 15-
year-old students. Their research concluded that the stu-
dents who used RECOMPP developed better formal proof-
writing skills than those who did not. According to [14], the
learners’ thought organization led to their developing better
proof-writing skills. However, RECOMPP does not provide
adequate BC support though it gives outlines of proof.

Miyazaki and colleagues [19], [20] have developed a
web-based learning system based on ‘conceptions of con-
gruency’ including the perceptual conception of congru-
ency (PERC), the measure-preserving conception of con-
gruency (MeaP), the correspondence conception of congru-
ency (CORR), and the transformation conception of congru-
ency (TRANS). They concluded that their web-based proof
system might be used effectively during the introductory
stage of proof learning because the tasks provided by the
system are similarly designed to help learners to bridge be-
tween PERC or MeaP and CORR. In addition, they are fol-
lowing the MEXT suggestions like us. However, the system
does not support the use of BC strategy explicitly.

As mentioned above, all the existing systems have
some shortcomings for supporting self-learning. Students
do not currently have access to systems or tools for acquir-
ing the BC strategy needed to follow MEXT’s suggestions
for learning to solve TTCPPs. In our research, we devel-
oped a support system called DELTA to help students solve
TTCPPs outside classroom lessons.

3. Design and Implementation of DELTA

We have developed DELTA as an interactive learning en-
vironment to give learning opportunities outside classroom
lessons, which is an alternative to the teacher-based learn-
ing [21].

3.1 Content to be Learned

To solve TTCPPs, students need to understand the proof
procedure and acquire the knowledge related to ‘reasoning’.
In this context, reasoning refers to applying the definitions
and theorems in geometry that students have been studying
since primary school. Since TTCPPs are studied in units
during the second grade of junior high school in Japan, the
scope of DELTA is restricted to the units studied prior to this
grade (e.g., our system does not support units related to cir-
cles and auxiliary lines, which are studied during the third
grade of junior high school in Japan).

There are several proof styles for solving TTCPPs. In
our research, we follow the style shown in Fig. 1 because it
is adopted in many textbooks in Japan. According to [16]
and [22], a proof consists of a list of pairs, each of which
is composed of an equation and its reasoning. In fact, each
of rows 2 to 7 in Fig. 1 shows a pair of an equation and
its reasoning step. In this paper, we define the columns for
equations and reasoning steps as the ‘equation column’ and
the ‘reasoning column’, respectively. We also define a pair
consisting of an equation and its reasoning step as a proof
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1 In AABC and AEDC
BC=DC (@)

2 |From one of given preconditions,

AC=EC ()

3 |From one of given preconditions,
4 |Because of vertical angles, ZACB=ZECD |...(c)
5 |From (a) to (c), because of SAS, AABC =AEDC
ZABC=ZEDC

6 |Because of corresponding angles,

7 |Because alternative angles are equal, | AB// DE

Reasoning Column Equation Column

Fig.1 A proof-writing style for TTCPPs. Note that SAS means “side,
angle, side”.

Table 1  Proof-writing patterns in TTCPPs and their examples.
Pattern ~ Example of proof-writing g[;); Smef
A In AABC and AADC, 4

From one of given preconditions, AB = AD- - -(a)
From one of given preconditions, BC = DC- - -(b)
Because of common segments, AC = AC- - -(c)
From (a) to (c), because of SSS, AABC= AADC
B In AABC and ADCB, 5
From one of given preconditions, AB = DC- - -(a)
From one of given preconditions, ZABC = /DCB- - -(b)
Because of common segments, BC = CB- - -(c)
From (a) to (¢), because of SAS, AABC= ADCB
Because of corresponding segments of two congruence
triangles, AC = DB
C In AAOD and ABOC, 6
From one of given preconditions, AO = BO- - -(a)
From one of given preconditions, DO = CO- - -(b)
Because of vertical angles, ZAOD = /BOC- - -(c)
From (a) to (c), because of SAS, AAOD = ABOC
Because of corresponding angles of two congruence
triangles, /ZADO = /BCO
Because alternative angles are equal, AD // CB
Note: SAS = “side, angle, side”, SSS = “side, side, side”

step.

As shown below, TTCPPs are classified into three pat-
terns (A) — (C) based on the number of proof steps needed to
solve them. The number of proof steps depends on a given
problem:

(A) Prove the congruence of two triangles: 4 steps

(B) Prove equality of segments or angles after proving by
the pattern (A): 5 steps

(C) Prove a geometric property after proving by the pattern
(B): 6 steps

The TTCPPs on which we are focusing in our research
fit into these patterns. Table 1 shows examples of these
proof-writing patterns. For example, the problem shown in
Fig. 1, namely to prove the parallelism of two lines, is clas-
sified as a pattern-(C) problem.

3.2 System Design
3.2.1 Support of Backward Chaining

On the basis of findings mentioned in [16], we considered
that a lack of adequate BC support leads to the difficulty of
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setting sub-goals, and consequently to the failure in solving
TTCPPs. Hence, specific instruction and support for using
the BC strategy are needed. In our design, when DELTA
deems that a student is not making any progress towards
solving the problem, it encourages the student to use the
BC strategy. The detailed design of this support function is
explained in Sect. 3.3.4.

3.2.2 Towards More Flexible Proof-Writing

MEXT suggested that it is important for students to design
proofs in their own words to master the art of proof writ-
ing [23]. Therefore, we considered it to be important that
DELTA encourages students to design proofs in their own
words. Hence, we introduced free-writing forms for solving
TTCPPs in DELTA.

While students solve TTCPPs, the order of proof steps
may change (e.g., the rows 2 and 3 shown in the pattern
(A) of Table 1 are exchangeable.), the names of triangle
may also change (e.g., ABAC instead of AABC), and so
on. DELTA should judge whether the students’ proof is cor-
rect or not even if such changes occur. Hence, we designed
DELTA such that it accepts various proof-writing styles. For
example, students can input each of the rows 2 to 4 in Fig. 1
in random order and they can use ABAC instead of AABC at
row 1 in Fig. 1. DELTA judges all these inputs to be correct.

Thus, it is necessary to allow students to change
the order of proof steps and the expressions of trian-
gles/segments/angles. However, in Japanese mathematics
education, the latter change is sometimes not allowed so
that the relationship of the corresponding segments or an-
gles can be clarified. Therefore, there are some restrictions
in the students’ input to DELTA, as explained in Sect. 3.3.3.

In our initial design, students were to only use com-
puter keyboards, but because second-grade students in ju-
nior high schools are not always used to keyboards, we also
adopted mouse input to make DELTA easy to use. In our
final design, students can input with keyboards and mice.

3.2.3 Other Necessary Functions for Solving TTCPPs

When students solve TTCPPs on paper, they usually mark
or color equal segments, equal angles, parallel lines, two
triangles to be proved congruent, and so on. Some of
the existing systems provide TTCPPs that include these
marks and/or colors [15], while others do not have this fea-
ture [16], [17]. In some systems, no figures are provided in
solving TTCPPs [14], requiring students to draw figures on
their own piece of paper. DELTA includes features that en-
able students to place marks and put colors. The details are
explained in Sect. 3.3.2.

3.3 System Implementation
3.3.1 System Overview

We assumed that students would use DELTA outside class-
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Practice for TTCPPs
Problem Sentences ' Input Forms
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.
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Fig.2  Architecture of DELTA.

Practice for TTCPPs

[
Problem Sentences Area

Answer Area

Problem Figure Area || e

Hint Area

Functions Area

Fig.3  Screen layout (area names) of DELTA.

room lessons, such as in their homes. Therefore, assuming
that our target users are accustomed to using Web browsers,
we implemented DELTA using HTMLS and JavaScript.
Note that DELTA is a stand-alone system and it can be run
without Internet connection. Figures 2 and 3 show the ar-
chitecture of DELTA and the screen layout. The role of each
area on the screen is as follows:

e Problem Sentences Area: A problem is provided.

e Problem Figure Area: A figure is provided. When stu-
dents use support (= coloring, marking, or highlight-
ing) functions (see Sect.3.3.2), the results appear in
this area.

e Functions Area: Support functions are aggregated as
buttons here. The ‘Initialize’ button returns to the ini-
tial settings.

e Answer Area: Students can write proofs here.

e Hint Area: Some hints to solve TTCPPs are provided
here.

3.3.2  Coloring, Marking, and Highlighting Functions

If a student presses the ‘Coloring Segments’ button provided
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Segment

o

[ Markirg Angles | [ Finish |

£ Size: ©1 @2 O3
o N o |
[ Coboring Segments | [ Finish |

Fig.4  Coloring and marking functions. (a) Interface for segment color-
ing. (b) Interface for angle marking.

Target 1: 2
| Both | | Tareet 1

Target 2: /A
Target 2

| Finish |

Fig.5 Interface for highlighting triangle(s).

@ o

Fig.6  Use of coloring and marking functions (from (a) to (b)) or high-
lighting function (from (a) to (c)).

Given AABC, let M be the
middle point of the
segment AB, and P be on
the segment BC. Take Q
such that PM = QM.
Prove AQ // BP.

B P» C

Fig.7  An example problem.

in the Functions Area, the interface shown in Fig. 4 (a) is
displayed. If the student presses the ‘Marking Angles’ but-
ton, the interface switches to that shown in Fig. 4 (b). Using
these interfaces, the student can place some marks and/or
put some colors on the figure provided in the Problem Figure
Area. If a student presses the ‘Highlighting’ button in the
Functions Area, the interface shown in Fig. 5 is displayed.
The student can then put colors on each segment of the spec-
ified triangle(s) in the given figure.

Figure 6 shows the results after using the coloring and
marking functions (from Figs. 6 (a) to 6 (b)), or the high-
lighting function (from Figs. 6 (a) to 6 (c)).

3.3.3 Using DELTA

We explain here how DELTA is used based on the ex-
ample problem shown in Fig.7. When a student starts
DELTA, he/she will see the given problem sentences and
figure (something similar to the left side of Fig.2). He/she
can start to construct a proof by filling in the input forms
(Fig. 8) in the Answer Area one by one. These forms are
provided based on the patterns (A), (B), and (C).
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In e and Abmp

From:Eq.] ane of the precondtions [ x|, Anrz J [ = - (a)
From jT] —Ressor—— =], ? =" (b)
' =Zz——aan =
= A
Use | =Sz =
| !
udgement

Fig.8  Proof-writing forms for the problem shown in Fig. 7.

From |_Eq. one of the precondtions | = |, | See. | £ amg = £ bop " (a)
From ‘E_q‘ —Reasom—— e, Ang. ‘ = = (b

Fig.9 Form to input angles in equation column.

InAama and Abmp
N
+ L, [ans]

inn

—=r— -@

Form to input equations in reasoning column.

From [ st |

Fig.10

In the first row of the proof-writing form, the student
decides which two triangles are to be proved. For example,
if the student focuses on AAMQ and ABMP, he/she inputs
‘AMQ’ and ‘BMP’ into the form. If DELTA judges that the
student’s input is correct, it will make the next input form
available. The following forms behave in the same way as
this first form. In judging whether a student’s input is cor-
rect or not, DELTA does not distinguish between uppercase
and lowercase letters. In addition, even if the student inputs
‘MQA’ and/or ‘PBM’ in the above example, DELTA judges
that these inputs are correct. (The following forms behave
in the same way.) However, as for forms of the equation
column, the student needs to input corresponding segments
and/or angles (that are involved in the triangle which the
student input into the left side of first row) into the left side
of each equation form. For example, in Fig. 8, the student
needs to input segments and/or angles related to AAMQ in
the left side of each equation form. We expect that this limi-
tation will encourage students to write proofs that other peo-
ple can read easily.

In the second, third, and fourth rows, the student in-
puts three equations as reasoning steps for the congru-
ence condition of the two triangles input by him/her. If
the student presses a ‘Seg.’/‘Ang.” button, he/she can in-
put segments/angles (Fig.9). Also, if the student presses
a ‘St.’/*Eq. button, he/she can input a statement/equations
(Fig. 10). To prevent input mistakes, students can only type
two letters in the segment input and three letters in the an-
gle input. To facilitate DELTA’s automatic checking, we
adopted pulldown forms for the reasoning input.

In the fifth row, the student inputs the congruence con-
dition of two triangles using a pulldown form. In the sixth
row, the student inputs two congruent triangles. If the stu-
dent needs to prove the equality of segments or angles by
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What are revealed from the preconditions?
What are “preconditions”?
AMEBM MO=NP QA=PB
[C) £ AMI=Z£BMP ZNDA= L MPB ZOAM=ZPEM
(hase) ()

Fig.11  Example of a hint.
Table2  Hints for FC support on problem shown in Fig. 7.
No. Hint Space to Answer
1 Let us follow the conditions shown in the AM=[ |

problem sentences one by one. Where is the
segment AM equal to?

2 Where is the segment PM equal to? PM=[ ]
3 To prove AQ // BP, what should we prove? A 1=« ]
or/[ =« ]

- ‘We have finished following the conditions. Let
us find equal segments/angles to be proved. If
necessary, let us use the highlight function
and/or your textbook.

Note that a squared bracket ‘[ ]’ represents a textbox.

using two congruent triangles, she/he inputs them and the
reasoning steps in the seventh row. If the student needs to
prove a geometric property by using segments or angles in-
put in the seventh row, he/she inputs the property and the
reasoning steps in the eighth row.

3.3.4 Provision of Hints and Support of FC and BC Strate-
gies

When the student cannot make any progress to solve a given
problem, he/she can obtain some hints by pressing the ‘Dis-
play Help’ button in the Hint Area. As shown in Fig. 11,
each hint is provided by using a hint box, which consists of
a question sentence and an array of checkboxes, textboxes,
or radio buttons. The student inputs answers to the question
in the hint box, then presses the ‘Judge!” button. DELTA
judges whether the input answers are correct or not. If they
are correct, the student can obtain the next hint. Otherwise,
DELTA gives feedback as a dialogue and urges the student
to correct the answer. If the student cannot respond, DELTA
encourages him/her to use the coloring function, the mark-
ing function, the highlighting function, and/or textbooks.
DELTA provides some hints to support students’ use of FC
and/or BC strategies.

In supporting the use of FC strategy, DELTA provides
some hints so that the student can fill in the proof-writing
form from top to bottom. Table 2 shows an example set of
hints for the use of FC strategy. At first, DELTA provides
a hint so that the student can find the given preconditions
and input them into the proof-writing forms. Then, DELTA
encourages the student to find segments or angles necessary
to prove the congruence of two triangles. Finally, DELTA
encourages the student to input equal segments/angles for
the conclusion of the given problem.

If the student cannot make any progress to solve a given
problem for 20 seconds, DELTA provides the message: ‘Try
to consider from bottom to top’. When the student presses
the ‘From the Bottom’ button in the upper side of the An-
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Table 3  Hints for BC support on problem shown in Fig. 7.
No. Hint Space to Answer
1 Let us consider a proof of this proposition from [ 1
the conclusion. What is the conclusion in this
problem?

2 To prove the conclusion, what should we prove? /A 1=<0 1
or/[ J=¢[ 1]

3 Let us find a pair of triangles, including the Al T1=a[ ]

segments/angles selected in the last hint, that
may be congruent.

4 What are revealed from the preconditions? 0AM = BM
oMQ = MP
0QA =PB
o /AMQ = /BMP
o /MQA = /MPB
0 /QAM = /PBM

Sa Based on the equations selected in the last hint, o SSS

what is possible congruent condition(s)? O SAS
O ASA

5b Which condition do you use? o SSS
o SAS

6a (This hint is shown when a student selects SSS o AM = BM

in the hint #5b.) o MQ = MP
To adopt the congruent condition, which 0QA=PB
equation(s) should we prove? o /AMQ = /BMP
o /MQA = /MPB
o0 /QAM = /PBM
6b (This hint is shown when a student selects SAS O AM = BM
in the hint #5b.) oMQ = MP
To adopt the congruent condition, which 0QA=PB
equation(s) should we prove? o L/AMQ = /BMP
o /MQA = /MPB
0 /QAM = /PBM
Let us prove the equation(s) selected. If
necessary, let us refer to your textbook.
Note that a squared bracket ‘[ ], a square 0, and a circle o represent a textbox,

a checkbox, and a radio button, respectively.

swer Area, DELTA supports the learner’s use of the BC
strategy. At that time, he/she solves the problem by working
from the conclusion backward; thus, the student inputs from
the bottom to the top of the proof-writing form. In this case,
if DELTA judges that the student’s input is correct, it will
make the input form in the previous row available. When
the student is working in this case, the ‘From the Bottom’
button changes to a ‘From the Top’ button. Students can
press the button to switch modes anytime.

In the ‘From the Bottom’ mode, DELTA supports the
BC strategy. Table 3 shows an example set of hints for the
use of BC strategy. DELTA provides hints along the follow-
ing six steps:

(1) Confirming the conclusion of a given problem:
First, DELTA makes the student extract the conclusion from
the given problem sentences.

(2) Defining a sub-goal (for the pattern (C) only): The
student should recognize a sub-goal to derive the conclu-
sion.

(3) Finding a pair of triangles (for the patterns (B) and
(C)): To solve the given problem, DELTA makes the student
select a pair of triangles on which to focus.

(4) Considering what are revealed from the given pre-
conditions: DELTA asks the student to clarify which seg-
ments or angles are equal and input the corresponding equa-
tions, based on the given preconditions.

(5) Presuming an appropriate congruent condition:
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Based on the equations input in the step (4), DELTA asks
the student to presume an appropriate congruent condition.
For example, if the equality of two pairs of segments is re-
vealed, possible congruent conditions are ‘side, side, side
(SSS)’ and ‘side, angle, side (SAS)’.

(6) Finding equations necessary to adopt the congruent
condition: DELTA then asks the student to find the pairs
of segments and/or angles whose equality should be proved
and to find the appropriate equations for that proof.

4. Efficacy of DELTA: Empirical Evaluation
4.1 Procedure

We conducted an evaluation experiment to measure the effi-
cacy of the BC strategy support provided by DELTA. The
experiment included 36 students who were in the second
grade of a public junior high school. We conducted two
description-style examinations, a pre-test and a post-test,
and a questionnaire survey.

After conducting a 20-minute pre-test, we divided the
students into two groups such that mean and variance of the
pre-test scores were balanced across both groups. In other
words, we tried to match pairs of students with equal scores
and put one into each group. Each group consisted of 18 par-
ticipants. One group was the experimental group (EG) who
used DELTA. The other group was the control group (CG)
who used a baseline system (BS), which excluded the BC
strategy support from DELTA. Participants in each group
practiced solving TTCPPs for 30 minutes by using the as-
signed system. Immediately after the practice, we carried
out a 20-minute post-test and the questionnaire.

Both the pre- and post-tests were description-style ex-
aminations, where one point was assigned to each correct
equation derivation and each correct reasoning step in each
problem. If an equation was incorrect, no points were given
either for the equation or the reasoning step. No points were
given for the conclusion. In summary, full marks were six
points for a pattern-(A) problem, eight points for a pattern-
(B) problem, and 10 points for a pattern-(C) problem. Each
examination consisted of one pattern-(A) problem as P1,
two pattern-(B) problems as P2 and P3, and one pattern-
(C) problem as P4. Hence the full marks for each examina-
tion were 32 points. When we set the examination prob-
lems, we referred to two textbooks and a study-aid web-
site [24]-[26]. The difficulty of the problems was similar to
the practice problems or end-of-chapter problems in these
textbooks. The post-test problems were more difficult than
the pre-test problems, because probably it was harder for the
participants to find two triangles that should be proved to be
congruent in the post-test.

In the practice session, each participant in the two
groups addressed the same problems in the same order. We
prepared 10 problems, which consisted of four pattern-(A)
problems, four pattern-(B) problems, and two pattern-(C)
problems. The BS supported only the FC strategy. It did not
provide the ‘From the Bottom’ button and provided hints
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Table4 Mean score on pre- and post-tests.
Group (N) Pre-test Post-test
Mean+S.D. (Median) Mean+S.D. (Median)
EG (18) 18.17+£10.84 (22) 18.11£11.50 (22)
CG (18) 18.33+10.73 (22) 17.05+9.54 (19.5)
Mann-Whitney’s U-test ~ p=0.91 p=0.50
Table 5 Mean score on pre- and post-tests except for results of FMNP
(full-mark and no-point) participants.
Group (N) Pre-test Post-test
Mean=+S.D. (Median) Mean=+S.D. (Median)
EG (14) 21.07+7.63 (22) 21.0749.13 (22.5)
CG (14) 19.00+8.54 (22) 17.36+8.67 (19)
Mann-Whitney’s U-test ~ p=0.56 p=0.17
Table 6 Mean number of problems on which a participant got full marks

(on pre- and post-tests).

Group (N) Pre-test Post-test

Mean=+S.D. (Median) Mean=+S.D. (Median)
EG (14) 1.93+0.88 (2) 1.50+1.12 (1)
CG (14) 1.36+0.97 (2) 0.64+0.72 (0.5)
Mann-Whitney’s U-test ~ p=0.18 p=0.04

only for the FC strategy. Concerning the ethics of putting
participants in the CG (that is, depriving them of the op-
portunity of getting the benefit by using DELTA), we would
like to note that they would have been deprived anyway be-
cause DELTA is not yet generally available [27]. However,
we addressed this issue by allowing the CG participants the
opportunity to use DELTA after our experiment.

4.2 Result
4.2.1 Results of Pre- and Post-Tests

Table 4 shows the mean scores of EG and CG on the pre- and
post-tests. A Mann-Whitney’s U-test revealed no significant
difference in pre- and post-tests. However, some partici-
pants in both groups obtained full marks (FM) or obtained
no points (NP) on the pre-test. We called these participants
‘FMNP participants’. There was a possibility that the abil-
ity of FMNP participants could not be correctly measured
in the experiment: because the post-test scores of the FM
participants cannot exceed their pre-test scores, we cannot
measure the effect obtained by their use of DELTA. Simi-
larly, because we cannot expect that the NP participants have
equivalent performance on the pre-test, we cannot measure
their increase from the pre-test to the post-test. Therefore,
FMNP participants were excluded from the analysis, leaving
14 participants for the following analyses. Table 5 shows
the mean scores of each test with the FMNP participants ex-
cluded. A Mann-Whitney’s U-test revealed no significant
difference in this grouping.

Tables 4 and 5 include the partial points received to
measure whether or not the participants could consider the
factors (a) and (b) of MEXT’s suggestion. In addition, we
needed to measure whether or not they could consider the
factor (c). Hence, we analyzed the mean number of prob-
lems on which students got full marks on the pre- and post-
tests. Table 6 shows these means. A Mann-Whitney’s U-test
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M is the middle point of the segment AB. The segments
AC and DB are parallel. Prove AACM = ABDM.
(a) Because M is the middle of the segment AB, AM =

BM.
(b) Because of AC / DB, ZCAM = /DBM. L
(c) Which congruent condition can I use in this problem? o

(d) What is lacking to prove this problem?
(e) Because of vertical angles, ZAMC = ZBMD.
(f) Others ( )

Fig.12  Example questionnaire (Underlined sentence is BC strategy for
this problem.)

Table 7  Number of problems on which each EG or CG participant tried
to use BC strategy (on post-test)

Participant’s ID EG(N=14) CG(N=14)
1 2 problems 1 problem
2 2 4

3 4 0

4 0 1

5 3 0

6 2 4

7 2 1

8 0 4

9 4 1

10 4 1

11 2 4

12 3 1

13 0 0

14 0 0
Mann-Whitney’s U-test ~ p=0.45

Table8  Number of participants who tried to use FC and/or BC strategies
on each problem given in post-test

Attempt to Use Pl P2 P3 P4

Strategies EG-CG EG-CG EG-CG EG-cg ot

Neither 0-0 3-1 0-3 4-5 16

FC only 8- 10 5-8 8-7 0-0 46

BC only 0-0 0-1 0-0 0-0 1

Both 6-4 6-4 6-4 10-9 49

revealed no significant difference between EG and CG in
pre-test. On the other hand, the same test revealed that there
was a significant difference between EG and CG in post-test
(U =56, p =0.04). From these results, we can observe that
the participants obtained different effects depending on the
system used. We discuss this effect in Sect. 5.

4.2.2 Questionnaire

Next, we investigated the strategies that the participants tried
to use for each problem in the post-test. We enumerated the
possible thinking processes to solve the problems and classi-
fied them as using FC or BC strategies based on [12]. One of
the questionnaires is shown in Fig. 12. In the questionnaire,
we asked the participants to check the processes that they
tried to use. There are 4 problems provided on the post-test.
Table 7 shows the number of problems on which each EG or
CG participant tried to use BC strategy. Table 8 shows the
number of participants who attempted to use the FC and/or
BC strategies on each problem given in the post-test.
Finally, we investigated whether or not there was a re-
lationship between the participants who solved the problem
and those who attempted to use the FC and/or BC strate-
gies. Table 9 shows the relationship between the partici-
pants’ attempt to use the FC and/or BC strategies and their
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Table9  Relationship between participants’ attempt to use FC and/or BC
strategies and their performance in post-test

Attempt to Use Attempts in Total Score Rate (%) of

Strategies Shown in Table 8  Post-test+S.D.
Neither 16 15.63+25.54
FC only 46 67.84+34.50
BC only 1 0.00+0.00
Both 49 72.50+31.23
100 L 4 A 4
—~ B0 ‘ ‘
R g ¢ —
8 0 _3,_-«!-’ 3
i 4
40 ¢—
Eot— e $
@ 90 * .
0oe L 2 L 4
1 2 3

Strategy (1: Neither, 2: FC only, 3 Both)

Fig.13  Relationship between participants’ post-test performance and
their attempt to use neither FC nor BC strategies (1), only to use FC strategy
(2), or to use both FC and BC strategies (3).

performance in the post-test; and in Fig. 13 this relationship
is shown as a scatter plot. Note that because the number of
participants who attempted to use the BC strategy only was
quite low, we excluded such case in Fig. 13. After we cal-
culated the Pearson product-moment correlation coefficient
with the data shown in Fig. 13 (N = 111), the correlation co-
efficient was 0.43 (the p-value of the test for no correlation
was p < 0.01). From this result, we can see that the more
the participants attempted to use both strategies, the higher
were their scores.

5. Discussion

In this section, we discuss the efficacy of DELTA and its
limitation.

5.1 Efficacy of BC Support
5.1.1 Attempt to Use BC Strategy

We expected that the EG participants would try to use the
BC strategy to solve TTCPPs on the post-test. However, the
results shown in Table 7 reveal that there was no significant
difference between EG and CG in their attempts to use the
BC strategy. Nevertheless, Table 6 shows that a significant
difference can be seen in the post-test results. We conclude
that EG participants were better able to use the BC strategy
for solving TTCPPs.

On the other hand, we investigated the correlation be-
tween the number of problems in which the participants at-
tempted to use the BC strategy and the total scores of partic-
ipants’ post-test (Fig. 14): the Spearman’s Rho of this cor-
relation was 0.38 (p = 0.04). We also computed the corre-
lation between the number of problems in which the partic-
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Fig.14  Relationship between participants’ post-test scores and the num-
ber of problems in which they attempted to use BC strategy.
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Fig.15  Relationship between the number of problems which partici-
pants were able to solve completely and the number of problems in which
they attempted to use BC strategy.

ipants attempted to use the BC strategy and the number of
problems which participants were able to solve completely
in the post-test, and the Spearman’s Rho for this came out
to be 0.30 (p = 0.12) (Fig. 15). From these results, we can
see that the former correlation is statistically significant, that
is, there is a weak correlation between increased attempts to
use of the BC strategy to solve problems and increased post-
test scores.

From Table 6, we can see that the participants who re-
ceived FC and BC support showed better performance than
those who received only FC support. On the other hand,
from Tables 7 and 8, we can see that there was not any sig-
nificant difference in the degree of BC strategy use between
EG and CG participants. Therefore, those results indicate
that the efficacy of DELTA is not to facilitate students’ use of
BC strategy but to improve the quality of their BC strategy
use. However, this indication needs to be explored further
in future research. Because our knowledge of the strategies
that the participants used is based on the questionnaires, we
cannot determine whether the participants actually used the
FC or BC strategies. Observation of the participants’ proof-
writing process might help to reveal the strategies they actu-
ally used, but observing trial and error in thought processes
is obviously difficult.
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Table 10 Mean score rate on each problem of pre- and post-tests.
Group Pre-test Post-test
P1 P2 P3 P4 P1 P2 P3 P4

(Proof steps)  (4) G G v @ B B ©

EG(N=14) 100(%) 69.6 69.6 393 81.0 732 732 450
CG(N=14) 845 69.6 509 429 571 643 643 364
Total 92.3 69.6 603 41.1 69.0 68.8 688 40.7

Table 11  Number of participants who got full marks on each problem of
pre- and post-tests.

Group Pre-test Post-test

Pl P2 P3 P4 Pl P2 P3 P4
(Proofsteps) (H (5 &) ©® & 6 G (©
EG(N = 14) 14 7 6 0 7 4 7 3
CG(N = 14) 10 7 1 1 1 1 6 1
Total 24 14 7 1 8 5 13 4

5.1.2  Relationship between the Number of Proof Steps
and Attempts to Use BC Strategy

We can suppose that as the number of proof steps neces-
sary to solve a problem increases, the success rate of the
students using only the FC strategy will decrease. Tables 10
and 11 show the results of each problem on pre- and post-
tests. From Table 10, the score rates of problem P1, whose
number of proof steps is smaller, are higher than other prob-
lems in both pre- and post-tests. On the other hand, those of
P4, whose number of proof steps is larger, are lower. How-
ever, in Table 11, we can see that the results are contrary to
our supposition. Hence, this issue needs further investiga-
tion.

Though a 30-minute practice session might not be
enough for the participants to acquire the BC strategy, EG
participants’ performance is better than CG in all the prob-
lems of post-test. Especially, the difference between the P1
score rates of EG and CG is larger. In this experiment, the
reason behind this difference cannot be identified. If the par-
ticipants practiced using DELTA for a longer time, it might
increase their score on the post-test.

We adopted the fundamental TTCPPs in the experi-
ment because of the curriculum of the school participating in
the experiment. If the problem range was larger and/or more
difficult problems were included, it is possible that the use
of the BC strategy would be even more effective. We plan
to investigate and discuss this possibility in future research.

5.2 Comparison of Our Results with Related Work

According to [12] and [13], the authors found that (a) all
students were familiar with the FC strategy; (b) students
who successfully solved problems utilized the BC strategy
in their problem-solving; (c) many students who could not
solve problems did not use the BC strategy; and (d) lack of
the BC strategy led to a failure in problem-solving.

From the results of P1 shown in Table 8, all participants
tried to use the FC strategy, which is compatible with (a).
The result is natural, because many textbooks and study-
aid books show proof-writing procedures based on the FC
strategy.

2575

Table 12  Relationship between attempts to use BC strategy and solved/
unsolved problems on post-test

Solved Unsolved Total

Attempt 16 35 51
No Attempt 14 47 61
Total 30 82 112

As for (b), we define successfully solving a TTCPP
as getting full marks. Here we use the concepts of Sup-
port, Confidence and Lift, defined in research on Associa-
tion Rule Mining [28], to assess the strength of findings (b) —
(d) above. In the rule: ‘A = B’, the count of B divided by the
count of whole event (=P(B)) is the right-hand-side Support.
The Confidence is calculated by P(AUB)/P(A). The Lift is
calculated by P(AUB)/P(A)P(B). A Lift value greater than
1.0 suggests that there is some usefulness to the rule. The
larger the Lift value, the greater is the strength of the associ-
ation between A and B. With the Lift value, the importance
of a rule can be validated in an effective manner [28]. In our
experiment, the total number of problems in the post-test
was 112 (=28x4). The total number of problems on which
the participants got full marks on the post-test was 30, and
15 of these problems were solved by trying to use the BC
strategy. The total number of problems solved by trying to
use the BC strategy was 50. In other words, the right-hand-
side Support of the rule: ‘a participant successfully solved
a TTCPP = he/she tried to use the BC strategy’ is 0.45 (=
50/112). The Confidence of the rule is 0.50 (=15/30). The
Lift value of the rule is 1.12 (=(15/30)/(50/112)). Thus, the
rule: ‘a participant successfully solved a TTCPP = he/she
tried to use the BC strategy’ is useful because the Lift value
of the rule is greater than 1.0. We could not find a negative
factor of (b) in our experiment.

As for (c), we define not being able to solve a problem
as not getting full marks. As shown in Table 12, among 112
problems, 82 were not solved successfully. Among these 82
problems, the participants did not try to use the BC strategy
on 47 problems. On the other hand, the total number of
problems on which they did not try to use the BC strategy
was 61. Therefore, the right-hand-side Support of the rule:
‘a participant did not solve a TTCPP = he/she did not try to
use the BC strategy’ is 0.54 (=61/112). The Confidence of
the rule is 0.57 (=47/82). The Lift value of the rule is 1.05
(=(47/82)/(61/112)); that is, the rule is useful. We could not
find a negative factor of (c) in our experiment.

As for (d), we define ‘lack of the BC strategy’ as never
trying to use the BC strategy on the post-test. Among 28
participants, 8 participants never tried to use the BC strat-
egy on the post-test and 4 of these 8 participants never got
full marks on any problem. The total number of participants
who never got full marks on any problem was 10. There-
fore, the right-hand-side Support of the rule: ‘a participant
never tried to use the BC strategy on the post-test = he/she
never got full marks on any problem’ is 0.36 (=10/28). The
Confidence of the rule is 0.50 (=4/8). The Lift value of the
rule is 1.40 (=(4/8)/(10/28)); that is, the rule is useful. We
could not find a negative factor of (d) in our experiment, and
agreed with the rule.
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Chi et al. reported that experts used both the FC and
BC strategies for solving physics problems [29]. This re-
port relates to the aforementioned MEXT suggestion: It is
important for students to consider the following when de-
signing proofs: (a) What conditions are lacking to derive
the conclusion of a proposition? (b) What are revealed from
some preconditions? and (c) What are lacking to connect (a)
and (b)? As for Chi et al.’s report, the total number of prob-
lems on which the participants tried to use both the FC and
BC strategies on the post-test was 48, and 15 of these were
solved with full marks. The total number of problems solved
with full marks was 29. Therefore, the right-hand-side Sup-
port of the rule: ‘a participant solved a TTCPP by trying
to use both strategies = he/she solved the TTCPP with full
marks’ is 0.26 (=29/112). The Confidence of the rule is 0.31
(=15/48). The Lift value is 1.21 (=(15/48)/(29/112)); that is,
the rule is useful. We cannot find a negative factor in Chi et
al.’s report.

We note that results and/or reports provided in our re-
search and related work cannot be fully compared, simply
because the contents and/or difficulty of problems adopted
in each study were different. However, we could generally
reconfirm the findings described by [12], [13], [29]. In ad-
dition, we confirmed that an attempt to use both FC and BC
strategies led to solving TTCPPs.

5.3 Limitation of DELTA

In this research, we implemented a system with which
students can learn how to solve TTCPPs outside of their
classrooms. However, to check the students’ inputs au-
tomatically, we adopted multiple-choice forms and fill-in-
the-blank proof-writing in DELTA. It is possible that these
forms provide hints for solving TTCPPs. We suggest that
students first learn to solve TTCPPs with multiple-choice
or fill-in-the-blank forms for their self-learning. After-
wards, if they can get used to answering TTCPPs with free-
description forms, the non-response rate on these problems
will decrease in public examinations such as the National
Assessment of Academic Ability conducted by MEXT.

6. Conclusion and Future Work

In this research, we designed and implemented a system,
called DELTA, that supports students as they use the BC
strategy to prove the congruence of two triangles. In sup-
porting the use of the BC strategy, DELTA provides hints so
that the student can fill in the proof-writing form from bot-
tom to top. DELTA also provides ‘coloring’, ‘marking’, and
‘highlighting’ functions to support students.

We conducted an evaluation experiment to measure the
efficacy of the support of the BC strategy by DELTA. The
participants were divided into an experimental group (EG)
and a control group (CG). The participants in the EG ad-
dressed TTCPPs using DELTA, while those in the CG did
so by using the baseline system, which excluded the support
function for the BC strategy. Each group consisted of 18 stu-
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dents who were in the second grade at a public junior high
school in Japan. The experiment consisted of a pre-test, a
post-test and a questionnaire survey to measure efficacy.

We analyzed the results of the experiment, excluding
students who got full marks or got no points on the pre-test.
Our analysis revealed the following points:

e Support of the BC strategy in DELTA is effective, be-
cause the mean number of problems on which the EG
got full marks was higher than that of the CG.

o The participants in the EG were better able to use the
BC strategy to solve TTCPPs.

e Attempts to combine both the FC and the BC strategies
led to solving TTCPPs.

We would like to introduce free-description forms into
DELTA instead of multiple-choice and/or fill-in-the-blank
forms. Integration of a database for supporting teachers in
making problems is also left for the future work. In addition,
we plan to devise a method to understand the strategies and
tactics students use for generating proofs, and to clarify stu-
dents’ use of DELTA. For this purpose, we plan to introduce
a logging function into DELTA and/or make video record-
ings. It is necessary to verify that the efficacy of DELTA is
not to facilitate students’ use of BC strategy but to improve
the quality of their BC strategy use.
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