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Effective Indoor Localization and 3D Point Registration Based on
Plane Matching Initialization
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and Xiaolin ZHANG†, Nonmembers

SUMMARY Effective indoor localization is the essential part of VR
(Virtual Reality) and AR (Augmented Reality) technologies. Tracking the
RGB-D camera becomes more popular since it can capture the relatively
accurate color and depth information at the same time. With the recov-
ered colorful point cloud, the traditional ICP (Iterative Closest Point) algo-
rithm can be used to estimate the camera poses and reconstruct the scene.
However, many works focus on improving ICP for processing the general
scene and ignore the practical significance of effective initialization under
the specific conditions, such as the indoor scene for VR or AR. In this work,
a novel indoor prior based initialization method has been proposed to es-
timate the initial motion for ICP algorithm. We introduce the generation
process of colorful point cloud at first, and then introduce the camera ro-
tation initialization method for ICP in detail. A fast region growing based
method is used to detect planes in an indoor frame. After we merge those
small planes and pick up the two biggest unparallel ones in each frame, a
novel rotation estimation method can be employed for the adjacent frames.
We evaluate the effectiveness of our method by means of qualitative obser-
vation of reconstruction result because of the lack of the ground truth. Ex-
perimental results show that our method can not only fix the failure cases,
but also can reduce the ICP iteration steps significantly.
key words: ICP (Iterative Closest Point), indoor localization, indoor re-
construction, plane matching, rotation estimation

1. Introduction

With the trend of VR and AR, the indoor positioning tech-
nology has been the focus of attention. This problem comes
from the need of tracking the HMD (Helmet Mounted Dis-
plays) in real time. More precisely, the VR or AR system
need the HMD to report its orientation and location under
the room coordinate system.

There are many existed technologies which can sup-
port this work, such as putting IMU (Inertial Measurement
Unit) sensor in HMD, like Oculus and GearVR, or using
laser based tracking system, like HTC Vive. Since IMU
sensor only can report the acceleration or angular accelera-
tion at each time, users need to integrate the raw sensor data
twice to get the location and orientation. Due to the mea-
surement error in each time, only relying on the IMU sensor
will cause pose drift and inconsistent with the global frame.
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The laser based tracking system can archive very high accu-
racy in real time, but the safe area is quite small and limited
by laser range.

Another famous class of sensor is camera, and there are
many works focus on vision based positioning technology
such as [1]–[3]. The kernel of vision method is so called
SFM (Structure from Motion), which uses many pairs of
corresponding points to recover camera motion. There are
some well established theories to explain at what conditions
that camera pose can be recovered [4], but life is not so easy,
since these theories have a common assumption that point
correspondences can be correctly got from two images. In
indoor scene, walls and roofs become main components in
the images, and correspondences are hard to find due to
less texture on these surfaces [5]. To deal with such blank
wall problem, people started to use depth camera to help,
and the so called joint camera system is RGB-D camera.
These cameras can capture color frame and depth frame at
the same time, then we can recover colorful point cloud of
the scene if we pre-calibrate the camera. In this work, we
present a new method to track camera pose in the indoor
scene and reconstruct the scene by using Kinect 2.0 as RGB-
D camera.

If we can track the camera pose, we can transform two
point clouds from adjacent frames into one coordinate sys-
tem to get a larger point cloud with respect to the real scene
structure. This problem is also known as 3D map registra-
tion, and there exists a famous algorithm ICP to solve it,
which is firstly introduced by Besl et al. [6] as Eq. (1).

n∑
i=1

(RAi + t − Bi) (1)

where Ai ∈ R3×1 is the 3D-coordinate of point i in frame A,
Bi ∈ R3×1 is the 3D-coordinate of point i in frame B, R ∈
S O(3) and t ∈ R3×1 are the relative rotation and translation
between frame A and B respectively.

This problem is a kind of ‘Chicken-Egg’ problem. If
we have the correspondence information, we can get opti-
mal motion estimation by minimizing Eq. (1). On the other
hand, if we have coordinates transform information, we
can easily find corresponding pairs by searching the clos-
est points. The tricky part of registration problem is that
finding correspondences correctly in two point clouds is not
easy, just like SFM.

ICP is a kind of iterative algorithm which can bypass
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Fig. 1 The ICP workflow. It is an iterative method. If we have correspon-
dence, we can get the transform; otherwise, if we have transform, we will
have the correspondence. A good transform initialization is very helpful
for good results.

Fig. 2 Examples of failure cases of ICP. The mistakes are very obvious,
like two blackboards in (a), two clocks in (b) and the messy ceilings in both
of them.

the difficulties of correspondence searching. The main pro-
cedure of ICP is relatively simple, summarized as Fig. 1.
The current motion is utilized to estimate correspondence
at first, then the newly found correspondence is utilized to
update motion. When motion changing is small during ad-
jacent iteration, the ICP algorithm converges. Here we need
an initialization to enable iteration, and normally people just
use identity matrix for rotation and zeros for translation.
This initialization assumes that the relative motion between
adjacent frames is small. Under this assumption, Kinect Fu-
sion [7] used ICP for camera tracking component. Although
with some improvement works in [8], [9], zero motion ini-
tialized ICP can not work all the time. Figure 2 shows some
failure cases.

Many works focused on improving ICP itself but ini-
tialization part for solving the general case. In this work, we
focus on the indoor localization and reconstruction, which
means we will have some room prior to make better re-
sults. Section 2 will simply introduce the sensor calibration
and colorful point cloud recovery. Section 3 will introduce
the plane matching based rotation initialization method for
ICP. Section 4 will show some experiment results to ver-
ify the effectiveness of our method. We not only compare
our method with non-initialized ICP method, but also com-
pare our method with another plane-based method descried
in [10], [11].

2. Sensor Calibration and Point Cloud Color Tracing

Tracking depth camera is very different with tracking reg-
ular camera. The relative pose of depth and color cam-
eras is needed and the calibration method is different from
two color cameras which is a mature technology. Although
the intrinsic and external parameters of Kinect are pre-
calibrated in factory, it is well known that these parameters

Fig. 3 The necessity of calibration. The point cloud in (a) is formed
without calibrating the Kinect, and as you can see the color of cabinet is
wrong given the wall. After we calibrate our Kinect, the error is fixed, as
shown in (b).

vary from devices and are not accurate enough for many ap-
plications because average parameter values of different de-
vices was preset by factory [12]. Figure 3 shows an example
point cloud before and after calibration. In this paper, we
need to calibrate our Kinect to eliminate the camera param-
eters effects for the observation of registration results. There
are many toolbox for this work like [13] and [14]. We just
introduce our method briefly here and you also can use other
methods to calibrate.

Since we have depth information from Kinect, we can
recover the 3D coordinate of each pixel by Eq. (2), in other
words, we can get the 3D point cloud of this frame.⎛⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎠ and KD is the intrinsic matrix of depth camera.

According to Eq. (2), we need to know the intrinsic ma-
trix KD, which means we should calibrate the intrinsic pa-
rameters of the depth camera. Although color data is not
been directly used for tracking the sensor in this work, the
final result is compared by 3D map alignment result due to
the lack of the ground truth. This criterion is reasonable be-
cause if we could align two point clouds perfectly, the cam-
era motion must be accurate. For visualization the align-
ment result, the intrinsic of color camera and the extrinsic
between color and depth camera must be calibrated too.

2.1 Camera Intrinsic Calibration

The most famous calibration method is Zhang’s method [15].
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This method uses checkerboard as calibration target. By
taking several pictures of the pattern, the camera intrinsics
can be easily estimated with detecting the corner points of
the board. It is very useful for color camera but things are
not so easy for depth one, since the output is just the depth
map and corner points can not be detected anymore. Some
methods used special designed calibration target. By know-
ing the geometry, the intrinsics can be recovered. Although
these methods sound great, in practice, building such accu-
rate calibration target is not easy or sometimes expensive.

By knowing the facts of Kinect depth map generation
process, the calibration method can be fairly easy. The
Kinect 2.0 measures depth by ToF (Time of Flight) sen-
sor, the basic principle of this sensor is just like laser scan-
ner. This kind of sensor projects some light (maybe can not
be seen by human eyes) and measures the return time of
the light to recover depth. For Kinect sensor the projected
light is infrared, if we use black color and not specular sur-
face, the light will be absorbed by material and never reflect.
Based on this idea, we used the Zhang’s method for camera
intrinsic calibration by access the raw infrared images from
the Kinect.

2.2 Extrinsic Calibration and Color Tracing

Before we trace the color information for point cloud, we
must know the relative orientation and translation between
color and depth. The calibration method is just like stereo
calibration method. By considering color and depth cam-
eras as rigid stereo pair, we computed the depth and color
extrinsic by a common pairs.

Once we have the extrinsic, we can simply project the
point cloud into color camera’s image plane by Eq. (3) and
Eq. (4). For any projected points which is in inside of the
image region, we can use the color information specified by
pixel coordinates of projected points. Figure 4 shows an
example of one frame result.⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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coordinates of projected points, KC is the intrinsic matrix of
color camera, R and t are the rotation and translation, λ is

Fig. 4 Example of one frame point cloud.

the normalization factor.

3. Plane Matching Based Rotation Estimation

As expressed in introduction section, this work focused on
how to estimate a good initialization for ICP based on the
indoor scene prior. The main idea is the rotation can be
recovered if we can detect two unparallel walls and correctly
matching them in adjacent frames. This section will present
how to detect and match two planes in adjacent frames, and
then get a rotation initialization for ICP.

3.1 Detect Planes in Point Cloud

The most common structure of the room is wall. In most
cases, the surface of the wall can be viewed as static pla-
nar scene. If we can track the wall, we will get a accurate
and consistent result since we know wall is planar and can-
not move. Especially, for dynamic scene, tracking walls are
extremely useful since tracking dynamic object will cause
wrong result owing to the changed reference frame.

Classical plane detection method is RANSAC (RAN-
dom Sample Consensus) based [16]. This method is power-
ful when we want fit one plane in point cloud. But in this
work, we need extract all the planar scenes and statistically
analyse those to extract unparallel large planes as the feature
of this point cloud.

In this work, a fast region growing based method [17]
has been implemented as shown in Algorithm 1. The pa-
rameters (δ, ε, γ, θ) are the threshold given by ourselves. Ω
is the optimal plane of the plane P

⋃
p′. The V is the set

of accessed points. The d(A, B) represents the distance mea-
surement between A and B.

By incrementally compute MSE (Mean Square Error)
which defined how likely this region belongs to a plane and
covariance matrix which is used to get plane equation, the
running time cost of adding a new point into a region can be
reduced from O(n) to O(1) if point cloud size is n. Thanks to
the priority queue, the nearest neighbor searching cost can
be reduced from O(n) to O(log n). The overall running time
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Algorithm 1 Planes identification.
Input: Point cloud, PC;
Output: Detected plane set, P;
1: Initialize: P← ∅; V← ∅;
2: while Exist two points p1, p2 ∈ PC − V do
3: plane P← {p1, p2};
4: while new point can be found do
5: select nearest neighbor point p′ such that d(P, p′) < δ;
6: if (MSE(P

⋃
p′) < ε and d(Ω, p′) < γ) then

7: P← P
⋃

p′;
8: end if
9: end while

10: if (size(P) > θ) then
11: P← P⋃ P;
12: end if
13: V← V⋃

P
14: end while
15: return P;

can be reduced to O(n log n).

3.2 Merge Small Planes

Once we have extracted those planes, the statistically anal-
yse should be performed on them to get the most represen-
tative ones. The method used in this work is a simple K-
cluster algorithm. The merge algorithm is summarised in
Algorithm 2. This algorithm merges two small planes which
have similar plane normal and bias until there do not exist
any similar planes.

Algorithm 2 Planes merging.
Input: Detected plane set, P;
Output: Merged plane set, P′;
1: Initialize: P′ ← P;
2: while Exist two planes P1, P2 ∈ P′ such that dn(P1, P2) < Tangle and

db(P1, P2) < Tbias do
3: P̃ = merge{P1, P2};
4: P

′ = P′ − {P1, P2};
5: P

′ = P′ + P̃
6: end while
7: return P′;

A plane can be described by n · p+ bias = 0, in which
n is the plane normal and p is the plane point. In this paper,
the plane normal we mentioned is the unit vector by default.
The angle similarity used in this paper is defined by |na ·
nb|, where na and nb represent plane normals of plane a and
b respectively. The threshold Tangle and Tbias are given by
ourselves.

After we merged the planes, we should pick out two
non-parallel planes for initialization. By assuming wall is
a large plane, we simply chose two biggest planes from the
merged planes. A detection example is shown in Fig. 5.

3.3 Plane Matching Based Rotation Estimation

From previous parts, we have got two main plane normals in
each frame. Then we should match them between adjacent

Fig. 5 A example of the two biggest planes detection. (a) is the original
point cloud, and (b) is the two biggest planes picked out by our merge
algorithm.

Fig. 6 Example of plane matching. (a) and (b) are the main planes from
two adjacent frames. According to our calculation, the red normal vector is
(0.3088, 0.2709, 0.9118)T and the blue one is (0.0287,−0.9663, 0.2558)T

in (a). In the same way, we know the red one is (0.1459, 0.2316, 0.9618)T

and the blue one is (0.0557,−0.9660, 0.2524)T in (b). Based on the data,
we can get the right rotation estimation using the Algorithm 3.

frames. Denote two plane normals in frame i as n1 and n2.
Similarly, denote two plane normals in frame i+ 1 as ñ1 and
ñ2. Our problem is to find the matching pairs (n1 = ñ1, n2 =

ñ2) or (n1 = ñ2, n2 = ñ1).
Figure 6 shows a plane matching example in adja-

cent frames. Since there only exist two kinds of match-
ing and based on our assumption the motion between ad-
jacent frames is small, so we can just explore these two
possible choices and find the smallest change result. If
(n1 = ñ1, n2 = ñ2), the rotation estimation algorithm can
be summarized as Algorithm 3. We also can get the rotation
when (n1 = ñ2, n2 = ñ1). Then two rotation angles are com-
pared and the rotation matrix with smaller angle is what we
want based on our small motion assumption.

Algorithm 3 Rotation estimate.
Input: (n1, n2) and (ñ1, ñ2);
Output: rotation matrix, R;
1: n3 =

n1×n2
‖n1×n2‖ ;

2: ñ3 =
ñ1×ñ2
‖ñ1×ñ2‖ ;

3: R′ = [ñ1, ñ2, ñ3] · [n1, n2, n3]−1;
4: [U,Σ,V] = svd(R′);
5: R = U · V′
6: return R;
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Fig. 7 Compare of results. The left one of each sub-figure is the result
without initialization and the right one is initialized with our method. Eas-
ily observed, with our initialization, the results of ICP are greatly improved.

4. Experiment

In this work, we used Kinect 2.0 as RGB-D sensor and took
36 color and depth frames from a room. According to the
method expressed in Sect. 2, non-color point clouds are gen-
erated from depth map by Eq. (2). Then using the method in
Sect. 2.2, we can get the color for each point in each frame.
With the method in Sect. 3, the initialized ICP can be done
for each adjacent frame pairs. In fact, we can get the cam-
era tracking result and the room’s 3D reconstruction result
at the same time. Due to the lack of the ground truth, the re-
sult is verified by 3D map registration result for qualitative
observation.

4.1 Compare with Non-Initialized ICP

In this part, we compare the results of our initialized ICP
with the non-initialized one, especially for those failure
cases without initialization, shown as Fig. 7. No doubt about
that our method is very helpful to fix those cases. The dif-
ficult wall issue is well handled now. In fact, we also com-
pared the non-initialization success cases with our results.
Without ground truths to evaluate quantitatively, it is hard to
estimate the improvement of our method for success cases.

Fig. 8 Statistics of iteration numbers. Besides increasing the chances
of archiving success, my method can also reduce the iteration numbers,
especially for failure cases.

Fig. 9 Statistics of processing time for two adjacent frames. Although
our method basically cost more time than non-initialized ICP for one pair
point cloud, the total processing time for 36 frames can be reduced to 25
min for our method with right results, while the non-initialized ICP method
costs 23 min and 16 of 35 results are obvious wrong.

However, the qualitative observation shows that we did not
make it worse.

On the other hand, we did statistics of the stop iteration
numbers of those two method to evaluate quantitatively. The
result is shown in Fig. 8. For all worked frames, our initial-
ization method can reduce the iteration times obviously, par-
ticularly for those failure cases. We did the experiments with
limiting the maximal number of iterations as 100. Most of
the failure cases done 100 times iteration as shown in Fig. 8,
but still can not get good results. However, our method need
less iteration times and can get better results, like those ex-
amples in Fig. 7. Our method lets ICP more efficiently and
effectively.

Furthermore, we discuss the trade-off between process-
ing time and performances of using the initialization step.
We do the experiments with MATLAB on a computer with
a dual-core Intel Core i7-6650U CPU and 16GB RAM. Only
CPU is used, and we did not use the GPU to speed up the
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process here. As you probably guess, for a registration prob-
lem with two adjacent frames, additional initialization step
may easily cause the increment of total processing time, as

Fig. 10 The wrong correspondences found by [10], [11]’s method. Each
sub-figure comes from adjacent frame pairs. We color the plane pairs red,
so the mistakes can be observed intuitively. In (a), a wall and a ceiling are
detected, and different walls are detected in (b).

Fig. 12 Whole room map registration. Using 36 color and depth frames from a room, we can recover
the loop trajectory ((a) and (b) show parts of the room) and produce the whole room map ((c) and (d)).

shown in Fig. 9. In this figure, we calculated the processing
time from inputting the point clouds to outputting the cam-
era poses for each adjacent frame pair. To be more specific,
camera poses are directly calculated from point clouds for
non-initialized ICP method, so we just need calculate this
time. However, for our method, the time consists of three
parts: the time of plane detection and merger for two adja-
cent frames, the time of rotation estimation and the time of

Fig. 11 The camera positions. (a) shows the camera positions of the 36
frames from the room. If we ignore the translation and just observe the
rotation of the camera, we can get (b).
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ICP iteration.
In Fig. 9, our method basically cost more time than

non-initialized ICP, because detecting and merging planes
for one frame cost about 23s∼25s in our experiment and
double time is needed for one pair. However, if plane de-
tection and merger are done for each frame only once and
then the results are saved, the total processing time for 36
frames can be reduced from 39 min to 25 min with right
results. However, the non-initialized ICP method costs 23
min and 16 of 35 results are obvious wrong. In our view,

Fig. 13 The limitation of our method. When sensor turning around cor-
ners, the tracked plane may shift to a new one. We color the planes red for
viewing.

Fig. 14 The registration results of other datasets.

increasing 2 minutes to improve the success rate is worthy.
Moreover, with the enlargement of the question scale, our
method will show more advantages.

4.2 Compare with Another Plane-Based Method

As the important feature of indoor sense, plane feature is
widely considered in many applications like localization and
reconstruction. In this part, we compare the results of our
initialized ICP with another plane-based method [10], [11],
which also finds the correspondence of planes and then es-
timates the camera pose. Our method merges small planes
and aims to find the two biggest planes which we regard
them as reliable references, however, in [10], [11], they
do not merge small planes and try to find plane correspon-
dences which maximizes the overall geometric consistency.

Although [10], [11] have excellent results in their ex-
periments, we find it not robust enough in simple indoor
scene without so many planes, like our classroom data.
[10], [11]’s success depends primarily on finding the first
pair of corresponding planes. However, for our 35 pairs of
frames point cloud, 20 pairs of them fail at this step of corre-
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spondences finding. A wall and a ceiling are wrong detected
as a correspondence shown as Fig. 10 (a) for example. And
different orientated walls also are wrong detected, shown as
Fig. 10 (b), which can not be avoided even using the color
information to check because they are very similar. In addi-
tion, 7 of the remaining 15 frame pairs cannot estimate the
rotation since there are no two nonparallel pairs of planes
detected. Due to the lack of ground truth, we do not com-
pare the accuracy of rest registration results here, but this
method is with obvious shortages.

4.3 Loop Trajectory Positioning and Whole Room Map
Registration

After we got the transformation between each adjacent
frame pairs, the loop trajectory can be obtained naturally,
as Fig. 12 and Fig. 11.

Because of our accurate advantages of transformation
estimation, the cumulative error of the whole trajectory po-
sitioning is relatively small. In our experiments, this point
reflects more obvious. We took 36 color/depth frames from
a room which around a circle with about ten degrees inter-
vals, and the whole room map registration can be done as
you can see in Fig. 12 (c) and Fig. 12 (d), where no obvious
mistakes occur in the end of the circle.

The camera positions can be draw as Fig. 11 (a). Since
we just give a method to estimate the rotation, the trans-
lation affects the results more or less. If we just draw the
rotation of the camera, we can get the Fig. 11 (b) which is
approximated to the angle changes of data collection pro-
cess intuitively.

5. Conclusion

In this article, a novel initialization method for ICP is pre-
sented. The initialization method is based on the indoor
scene prior with a small motion assumption, and uses plane
matching for rotation initialization. Although this method
works well in most cases, when sensor turning around cor-
ners, plane matching result may not be reliable since origi-
nal tracked plane shift to a new one, shown as Fig. 13. By
assuming small motion of the sensor, once newly estimated
rotation angle is much different with previous result, the pre-
vious result will be used for current initialization. Combine
all methods introduced before, the loop trajectory can be re-
covered and the whole room map can be reconstruction as
Fig. 12 (c) and Fig. 12 (d). We also applying our method on
other datasets, and some registration results are shown in
Fig. 14.

In this work, color information is only used for verify
the tracking result rather than help tracking sensor. The next
step work will try to add color information to get more accu-
rate and robust result. Besides, the translation initialization
and cumulative error problem will be considered in the fu-
ture work.
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