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PAPER

Robust Singing Transcription System Using Local Homogeneity in
the Harmonic Structure

Hoon HEO†a), Student Member and Kyogu LEE†,††b), Nonmember

SUMMARY Automatic music transcription from audio has long been
one of the most intriguing problems and a challenge in the field of mu-
sic information retrieval, because it requires a series of low-level tasks
such as onset/offset detection and F0 estimation, followed by high-level
post-processing for symbolic representation. In this paper, a comprehen-
sive transcription system for monophonic singing voice based on harmonic
structure analysis is proposed. Given a precise tracking of the fundamental
frequency, a novel acoustic feature is derived to signify the harmonic struc-
ture in singing voice signals, regardless of the loudness and pitch. It is then
used to generate a parametric mixture model based on the von Mises–Fisher
distribution, so that the model represents the intrinsic harmonic structures
within a region of smoothly connected notes. To identify the note bound-
aries, the local homogeneity in the harmonic structure is exploited by two
different methods: the self-similarity analysis and hidden Markov model.
The proposed system identifies the note attributes including the onset time,
duration and note pitch. Evaluations are conducted from various aspects
to verify the performance improvement of the proposed system and its ro-
bustness, using the latest evaluation methodology for singing transcription.
The results show that the proposed system significantly outperforms other
systems including the state-of-the-art systems.
key words: automatic music transcription, harmonic structure, music in-
formation retrieval, singing voice

1. Introduction

Automatic music transcription, which is one of the most
traditional topics in the music information retrieval (MIR)
field, refers to the task of extracting a musical notation in
the form of symbolic data from audio recordings. It encom-
passes a broad range of tasks in music signal processing,
such as note onset detection, pitch estimation, and multi-
instrument separation. Automatic music transcription is ap-
plicable in various fields. With the advances in mobile tech-
nologies, music education on mobile platforms are becom-
ing popular for learning and training. Many mobile apps
provide a real-time tutoring service for beginners who want
to learn to play instruments such as guitar, piano, or violin.
In such applications, users’ performance recorded through
a built-in microphone is transcribed into note-level data,
and users are guided to play the given music score cor-
rectly. Further, music transcription can give useful informa-
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tion for higher-level MIR tasks, such as query-by-humming
and melodic similarity analysis.

In most related studies, a musical note is defined by
three components: onset, duration and pitch. Since the late
1990s, many approaches have been proposed to detect the
onset time, defined by the exact time when a note starts [1].
In general, onsets can be categorized as hard and soft on-
sets depending on the attack time, which is the time taken
for initial run-up of the amplitude envelope. Soft onsets that
commonly appear in singing voices or in sustained string
instruments such as the violin, are usually more difficult to
detect, because the changes in acoustic features such as the
energy envelope is very gradual and insignificant. Duration
refers to the time for which the note is played; therefore, it is
equal to the offset time minus the onset time of a note. Pitch
is a quantitative value representing how high or low a sound
is. Pitch detection algorithms estimate a sequence of suc-
cessive pitch values at the frame level, which are typically
defined by the fundamental frequency (F0 henceforth) in Hz
or are given by MIDI note numbers. For monophonic mu-
sic signals, the accuracy of pitch estimation algorithms has
already reached a high level. One of the most popular pitch
trackers called YIN [2] achieved an average gross error rate
of 1.03%, which is still competitive today. When the input
signal is a human voice such as speech or singing, it can be
more reliable by using the bone-conducted signal [3].

Although the human voice is a type of musical instru-
ment that can “perform” in the easiest way, automatic tran-
scription for the singing voice still needs improvement. Ac-
cording to the Music Information Retrieval Evaluation eX-
change (MIREX), the F-measures in the singing voice on-
set detection for the last five years have been around 0.6,
which is 30% less than the results of other solo instruments.
Compared to typical solo instruments, some difficulties in
note detection are commonly found in singing voice signals.
Note events often arise in very unpredictable ways, and it is
difficult to define a single acoustic pattern. From various
singing voice signals, it is observed that this unpredictabil-
ity is mostly caused by two factors: loudness inconsistency
and spectral heterogeneity. In singing, the dynamic range
of loudness is not stable; rather, it varies among singers and
their singing styles. In addition, the spectral distribution in
singing depends on the pronunciation, whereas other instru-
ments have their own timbral characteristics.

Despite all these difficulties, singing voice signals have
a clear benefit for transcription. F0 estimation for the
singing voice has reached a reliable level because it is ba-
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sically monophonic. A precise tracking of the F0 sequence
can give useful information to identify not only the pitch but
also important temporal attributes such as the onset and off-
set. Since McNab introduced a simple segmentation method
for singing transcription using the pitch and amplitude [4],
many approaches have been based mostly on the disconti-
nuity in the F0 sequence. An auditory-model-based method
uses the pitch continuity, together with the loudness and
voicing patterns [5]. Rynnänen combined two probabilistic
models to detect natural notes in a musicological sense [6].
More recently, Gómez and Bonada proposed an iterative
note-consolidation technique using low-level features re-
lated to the pitch, duration, voicing and stability [7]. Molina
presented a note segmentation method based on pitch-time
hysteresis, making use of the dynamic average of the pitch
curve [8].

However, the pitch-based approach has a problem that
it cannot detect smoothly continued notes with the same
pitch. Frequently observed in singing and humming, these
notes can be detected using instantaneous changes in other
acoustic properties. In this respect, this study begins with
a hypothesis that both the beginning and the end of a note
are recognized by the local homogeneity in the harmonic
structure. The basic idea of using temporal changes in the
harmonic structure was first attempted by using the regular-
ity of the harmonic-related cepstrum [9]. We extend a simi-
lar approach here to make full use of the harmonic structure
as an important cue for detection of note boundaries. The
goal of this work is to propose a comprehensive transcrip-
tion system that converts a singing voice recording into a
western music score. The proposed system is presented in
a unified framework, which includes extraction of a novel
acoustic feature reflecting the harmonic structure, a proba-
bilistic model for classifying the intrinsic harmonic struc-
ture, and transcription schemes for identifying the musical
attributes.

The rest of this paper is organized as follows. Sec-
tion 2 explains a front-end stage for F0 tracking, and de-
scribes the extraction of an acoustic feature to signify the
harmonic structure. A probabilistic model to characterize
the feature is also presented, followed by a transcription
of note attributes such as the onset, offset, and note pitch.
Section 3 presents the evaluation methodology to assess the
proposed system, and the experimental results including the
comparison with other systems are shown in Sect. 4. Finally,
the conclusions of this paper are drawn in Sect. 5.

2. Proposed System

In the proposed system, a stream is defined by a region
with continuous voiced F0s, which is divided by unvoiced
frames. A stream may contain several notes smoothly con-
tinued, or may consist of only one note. There are two
strategic benefits when the transcription process is allocated
for each stream. It enables an efficient mixture model (de-
scribed in Sect. 2.3) as it does not necessarily consider the
whole range of an input audio. In addition, the system can

Fig. 1 Schematic flow underlying the proposed transcription system.

be composed in a clear and unified framework because it
does not need any exceptional treatments for unvoiced re-
gions. The overall workflow of the entire proposed system
is shown in Fig. 1.

2.1 F0 Tracking

Before the local homogeneity in the harmonic structure is
directly mentioned, a precise F0 tracking should precede
it to identify the harmonic partials. In this work, it is im-
plemented by a robust pitch tracker called PYIN [10]. This
algorithm is chosen as a front-end F0 tracker of the entire
transcription system due to its strength against “octave er-
rors,” which means that estimates are sometimes doubled (or
half) frequencies. In order to enhance the original YIN al-
gorithm, PYIN selects a few F0 candidates by taking valleys
in the difference function of the input signal. After that, the
probability of each candidate is calculated by observations
in a hidden Markov model (HMM) for temporal smoothing
of the F0 track, which is determined by the optimal path of
pitch state decoded by the Viterbi algorithm.

The pitch space was defined from 65 Hz (C2) to 830 Hz
(G#5) to cover the vocal pitch range of non-professional
singers. It was divided in a step of 1/4 semitones, yield-
ing 140 voiced pitch states in total. The same number of
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unvoiced pitch states were concatenated with these voiced
pitch states to construct the HMM. In the tracking result,
some frames could be labeled as unvoiced if their corre-
sponding path indicated an unvoiced state (weak probabil-
ities of F0 candidates) or if the root-mean-square value was
less than 0.1 (weak signal energy). Observation probabili-
ties were calculated using a parameter prior modeled by the
beta distribution with means 0.25, which is slightly greater
than the parameter configuration that the original authors
used. This is because the priority of the proposed system
is a high recall, which means it aims to estimate as many
frames as possible of the voiced F0s.

2.2 Feature Extraction

Extraction of an acoustic feature that reflects the harmonic
structure begins with the magnitude of the harmonic par-
tials. The use of harmonic partials has been introduced
in many previous works for different tasks, such as music
source separation [11] and vocal activity recognition [12].
In this work, we focus on the point that the relative ratio
between the harmonic energies remains constant, regard-
less of the external factors including the pitch and loudness.
The feature extraction process consists of the two following
steps: (1) Extraction of harmonic partial magnitude and (2)
Vector transformation such as scaling, rotation and normal-
ization.

The first step of feature extraction is a time-frequency
representation of an input signal using the short time Fourier
transform. The input signal is downsampled to 22.05 kHz
for a better computation time, and a Blackman window of
32 ms is used to split the signal into frames. Only the mag-
nitude spectrum is considered, and the phase information
ignored.

Instead of taking the magnitude at particular harmonic
frequency bins, the tracking of harmonic partials is realized
by a dynamic filter bank, whose frequency response is dy-
namically characterized by the estimated F0. The used filter
bank is a series of overlapping triangular band-pass filters,
so that the center frequency of one filter is equal to the lower
boundary of the next filter. The center frequency of each fil-
ter is obtained from the multiple integers of the estimated
F0. All the filters show a maximum response of unity at
their center frequency.

The use of a filter bank offers advantages in two as-
pects. First, it compensates the errors arising from insuffi-
cient frequency resolution. Some algorithms [13], [14] use
a multi-resolution FFT to enhance both the time and fre-
quency resolution. However, a recent study has shown there
is no significant benefit in locating the spectral peak fre-
quency [15]. Second, frequencies slightly deviating from
the exact integer multiples of the F0 can be considered.
Inharmonic partials are rarely ever observed in cases of
singing, but the spectral peak width can be relatively wide
when the pitch is sharply changing within a frame.

The harmonic partial magnitude is not refined enough
to be used as a feature vector for the harmonic structure in

two respects: energy dynamics and imbalance in dimen-
sions. The deviation in energy is too large to be charac-
terized, and most of the spectral energy is concentrated in
the first few harmonic partials. Therefore, the harmonic par-
tial magnitude is transformed into a more refined form of
feature called the Harmonic Structure Coefficient (HSC), by
the three following steps of scaling, rotation and normaliza-
tion.

Let a column vector u = [u1 u2 · · · uh]T denotes the
magnitude for up to the h-th harmonic partial at a time in-
stance. The logarithmic scaling

x = log10 (u + 1) (1)

converts the magnitudes into non-negative values in a lim-
ited range, thereby making the data more stable for abrupt
events. One example of this is the mel-scale filterbank cep-
stral coefficient (MFCC), which is the most popular acoustic
feature that represents the timbral texture.

Log-scaled magnitudes are then rotated in such a way
that the eigenvector with the minimum eigenvalue is parallel
to the mean vector of a stream. This vector rotation allows
the data distribution to be grouped easily when it is projected
onto a unit hypersphere. Given a sequence of log-magnitude
vectors X = [x1 x2 · · · xN] with a stream length of N, its
distribution can be expressed by the mean vector μx and the
covariance matrix Cx = Cov (X), reflecting the center point
and the spreadness in the h-dimensional Euclidean space,
respectively. Since Cx is a h × h square matrix, eigen de-
composition Cx = QΛQ−1 can be applied to find the eigen-
vectors and eigenvalues of Cx. Then, the eigenvector qmin

with the minimum eigenvalue is chosen to determine the ro-
tation angle.

The generalized form of the rotation matrix between
two arbitrary vectors a and b is defined as [16]

R = I − uuT − vvT +
[
u v

] [cos θ − sin θ
sin θ cos θ

] [
u v

]T
(2)

where

u =
a
‖a‖ ,

v =
b − (u · b) u
‖b − (u · b) u‖ ,

θ = arccos
a · b
‖a‖‖b‖ .

The first three terms in Eq. (2) find a projection onto the rota-
tion subspace using the orthonormal basis u and v. The last
term performs a two-dimensional rotation on a plane gener-
ated by two vectors a and b, and maps it back to the original
dimension. By substituting with a = qmin and b = μx, the
rotation is fixed with the angle between qmin and the mean
vector μx. This allows that the feature vectors are widely
dispersed when projected onto the hypersphere, by keeping
the basis with the lowest spreadness parallel to the mean
vector. Figure 2 illustrates a graphical example of the two-
dimensional vector rotation, showing two distinct groups in
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Fig. 2 A two-dimensional example of the vector rotation. (a) A scatter
plot of the original and the rotated data. Eigenvectors and eigenvalues are
depicted by the direction and the length of arrows. (b) A density plot of
angles for both data when normalized onto the unit circle.

the rotated data when the normalization is applied.
As the final step, the HSC is defined by the rotation

around the mean vector followed by normalization.

y = R (x − μx) + μx (3)

HSC =
y
‖y‖ (4)

The rotation enables to find the best perspective to interpret
the clustered data, while preserving the relative information
between dimensions. Besides, the normalization removes
absolute information about the energy, thus the HSC only
includes the relative information between the harmonic par-
tials. In other words, the HSC eventually contains only the
essential information to represent the harmonic structure, re-
gardless of other acoustic properties such as pitch and loud-
ness.

2.3 Parametric Mixture Model

As mentioned in the previous section, it is assumed that per-
ception of a note boundary is closely related to a signifi-
cant transition of the harmonic structure. If a stream con-
tains several notes with different pronunciations that can be
clearly distinguished, the HSCs would form several clusters
on the surface of the unit hypersphere. Ideally, the number
of clusters would be equal to the number of vowel pronun-
ciations. Unsupervised classification is known as a standard
solution for identifying these clusters; however, clustering
methods such as the K-means or Gaussian mixture model
are not suitable for the data in this particular distribution.
Alternatively, a mixture model based on the von Mises–
Fisher distribution is used here.

The von Mises–Fisher (vMF) distribution provides a
suitable model to fit the data on the surface of a multidimen-
sional unit sphere. The vMF distribution is applied in recent
topics of information retrieval such as text mining, allowing
it not to have a huge bias towards only a few words with
highly frequent occurrence [17]. It is parametrized by the
mean direction μ and the concentration parameter κ, which
refers to the spread of the distribution around the mean. Its
probability density function (pdf) for the h-dimensional unit
vector x is defined by

p (x|μ, κ) = κh/2−1

(2π)h/2 Ih/2−1 (κ)
eκx

Tμ (5)

where Ir (κ) is the modified Bessel function of the first kind
at order r.

In the mixture model, the Expectation-Maximization
(EM) algorithm is used to estimate the mean and concen-
tration parameters of each vMF distribution as formulated
by Banerjee [18]. In a general EM framework, the model
may converge to a local maximum of the likelihood func-
tion depending on setting the initial point, and it does not
guarantee that the model is correctly converged to the global
maximum. To avoid this, all the steps of parameter estima-
tion are repeated 10 times with different initial points, and
the iteration is selected for which the log-likelihood sum is
maximized. The mean vector of randomly selected samples,
for which the mixing proportions are uniform, gives the ini-
tial point.

As all vectors belong to the (h − 1)-sphere, the mean
vector should be calculated in the h− 1 dimensional angular
coordinate, instead of the Euclidean space. The angular co-
ordinates φi can be converted from the Cartesian coordinates
x1, . . . , xh as

φi = arccos
xi√

x2
h + x2

h−1 + · · · + x2
i

(6)

where i = 1, 2, . . . , h − 1. For a special case of xh < 0,
φh−1 = 2π − arccos xh−1√

x2
h+x2

h−1

. Given N sample vectors, the

mean angle of each coordinate φ̄i is calculated by

φ̄i = atan2 (Im (z̄i) ,Re (z̄i)) (7)

where z̄i =
1
N

N∑
n=1

e jφi . (8)

The mean vector x̄ = [x̄1 x̄2 . . . x̄h]T is finally obtained by
the inverse transformation from the angular coordinates as
follows:

x̄i =

⎧⎪⎪⎨⎪⎪⎩
sin(φ̄1) · · · sin(φ̄h−2) cos(φ̄h−1) if i < h

sin(φ̄1) · · · sin(φ̄h−2) sin(φ̄h−1) if i = h
(9)

Meanwhile, estimating the optimal number of mixture
components (i.e. clusters) is not a simple issue, especially
when the statistical characteristic of the data is not specified.
In this work, fortunately, it is possible to assume roughly
that the number of notes is proportional to the length of the
stream. A heuristic regression approximated the correlation
between the stream length and the note count. Using the
ground truth in the dataset (see details in Sect. 3.1), streams
were first segmented so that each stream was divided by
a short interval (> 0.1 s). By counting the notes for each
stream, it was noticed that the maximum note count could
be roughly approximated to five times the stream length in
seconds. To contain unnecessary clusters for a short tran-
sition, the maximum number of clusters is limited to five
so that clusters are generated for only significant harmonic
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Fig. 3 Note counts by different stream lengths and the heuristic regres-
sion of the maximum number of clusters. Each dot in the scatter plot rep-
resents a stream. Variances in the box plot are shown with stream groups
divided in a step of 0.2 s. The regression function g(T ) = min (�5T �, 5) is
depicted by the red line.

Fig. 4 Flowchart on the cluster optimization.

structures. Figure 3 shows the approximation of the initial
number of clusters using the actual note counts.

In practical cases, streams may contain less notes than
the maximum number. Moreover, the number of intrinsic
harmonic structures can be even lower when some notes
have the same vowel pronunciation. To this end, an itera-
tive method is developed to optimize the number of clusters
as shown in Fig. 4, using the regression function of the max-
imum number of clusters.

Once the maximum number of clusters is initially de-
termined by the stream length, the largest number of clusters
that the mixture model converges within 100 EM iterations
is found first. Next, by decreasing the number of clusters K,
the EM algorithm is repeated to estimate the model param-
eters Θ = {μ1···K , κ1···K}, as long as the distance between the
means of two clusters is shorter than a threshold dmin. Since
all the cluster means are located on the (h − 1)-sphere, the
distance is defined by the arc length between two points on
the unit hypersphere,

d = arccosµi · µ j, 0 < d ≤ π. (10)

A close pair of clusters is merged by taking the mean vector
of the two cluster means, and the initial points of the next
vMF model are determined by the mean vector and all the

other cluster means. This method is based on the agglomera-
tive clustering, a bottom-up approach to merge pairs that are
closely formed. It is advantageous to make the final clusters
as distant to each other as possible.

2.4 Note Attributes

This sub-section describes the methods for determining the
three basic attributes of a note: the onset, offset, and note
pitch. Significant transitions in the harmonic structure are
primarily detected to identify note boundaries. Then, the ac-
tual onsets and offsets are selected from the harmonic struc-
ture transitions, and a single pitch that represents a note will
be finally decided.

2.4.1 Transition Boundary Detection

Detection of the harmonic structure transition is achieved
in two different methods. The first builds a detection func-
tion representing the degree of local changes in the feature,
using the self-similarity (or self-distance) analysis. The self-
similarity analysis has been used mainly for music segmen-
tation since early studies [19], [20]. The purpose of these
works is to automatically find some points of significant
structural transitions in music, such as a chorus after verses.
In this work, a similar technique is applied at the note level
to detect onsets instead of segments. A self-similarity ma-
trix is obtained by subtracting from one the cosine distance
between two HSC vectors, i.e.,

S i, j = 1 − HSCi · HSC j (11)

where HSCn denotes a row vector of the harmonic structure
coefficient at the n-th frame. Note that the denominator of
the cosine distance formula is removed since the L2 norm of
the HSC is unity. The novelty function is determined by

Novelty(n) =
N/2∑

i=−N/2

N/2∑
j=−N/2

Wi, j · S n+i,n+ j (12)

where W is a Gaussian-tapered checkerboard kernel [21]
sliding alongside the diagonal elements of the self-similarity
matrix. A small kernel allows the detection of short notes
but increases the chance of false positives. Conversely, a
large kernel can be considered when the transcription sys-
tem should avoid detecting spurious notes. In order to locate
the transition boundaries, all the peaks (i.e., local maxima)
in the novelty function are found first, and only the peaks
higher than a peak-picking threshold δpeak are chosen. Note
that this similarity-based method does not use the mixture
model.

Although this approach is quite simple and easy to un-
derstand, choosing a proper peak-picking threshold heav-
ily affects the transcription performance. Thus, another ap-
proach based on the hidden Markov model (HMM) is pro-
posed as well, applying the parametric mixture model. The
proposed HMM consists of a transient state and the same
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number of sub-HMMs as clusters from the mixture model.
Each sub-HMM contains several one-way states to model
a harmonic structure with a minimum duration constraint.
This constraint prevents the state path from fluctuating in-
stantaneously, as the state path is forced to stay in a clus-
ter for Tmin seconds at least. All transition probabilities are
determined by an input parameter, which decides the prob-
ability of staying in the current cluster or the transient state.
This “self-transition probability” parameter controls the sen-
sitiveness of the note event detection. If they become closer
to unity, the transition is less likely to occur, thus less num-
ber of notes will be detected.

Observation probabilities are given by a function of
the likelihood p (x|μ, κ) of each cluster as defined in Eq. (5).
Since the pdf can be greater than unity by its definition, the
pdf is so normalized that the probabilities sum to unity at
every instance of time. Given the normalized pdf pk,n for
all K clusters, the observation probabilities are calculated in
the range between 0 and 1 as

bk,n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pk,n · exp

(
pk,n − 1

)
(sustain state)

K∑
k=1

Δpk,n+1 + Δpk,n

2
(transient state)

(13)

where Δpk,n =
∣∣∣pk,n − pk,n−1

∣∣∣. The observation probabilities
of the transient state are determined by changes in the pdf
of the clusters. At the end, the prior probability is uniformly
given to all clusters and the transient state. After the three
HMM parameters are determined for all the states, the op-
timal state path v = {v1, . . . , vN} is decoded by the Viterbi
algorithm. Accordingly, transition boundaries, at which the
state path changes from the transient state to a sustain state,
are simply detected.

2.4.2 Note Boundary Selection

Arguably, the transition boundaries indicate the points at
where the harmonic structure significantly changes. How-
ever, not all transitions are directly converted into the note

Fig. 5 Transitions in the HMM.

onset, because some voiced consonants such as [l], [m] and
[N] can be included. These voiced consonants, commonly
observed in humming, may cause low detection accuracy,
if they are detected as independent notes. Therefore, it is
necessary to exclude the voiced consonants from the note
boundary, using their distinguishing spectral characteristic
due to the nasal sound.

Let xi,t denotes the log-magnitude of the i-th harmonic
partial at a time instance t. Mean height δ̄τ at a transition
boundary time τ is defined by

δ̄τ =
1
h

h∑
i=1

(
max

t∈(τ,τ+T )
xi,t − min

t∈(τ−T,τ)
xi,t

)
(14)

where T = Tmin/2. When a voiced consonant is followed by
a normal vowel, the harmonic partial magnitude decreases
except in the first few partials. A note boundary is selected
at τ only if δ̄τ > δnote, and determines onset and offset.

2.4.3 Note Pitch Decision

When the note boundary and F0s are given, the simplest way
to decide the note pitch would be by taking a mean or me-
dian value of the F0s between the onset and the offset. In
singing, however, it is sometimes difficult to specify a sin-
gle value of the F0s within a note. Singing voices often

Fig. 6 Transcription result from an excerpt of afemale10.wav in the
dataset.
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include musical expressions and ornaments such as a grace
note, which is a separate pitch prefixed to a principal note.
The longest region for which the pitch deviations are kept
below a tolerance of 50 cents (100 cents = 1 semitone) is se-
lected, and the pitch at the beginning of the region decides
the note pitch. In doing so, a note pitch that is most likely to
be perceived can be chosen.

Figure 6 summarizes the whole transcription process of
a female singing voice signal. Panel (b) illustrates the HSC
and eight detected transition boundaries. Panel (c) shows the
observation probabilities of the HMM and the correspond-
ing state path. Mean height for each transition boundary is
depicted in the panel (d), showing six of them are selected
as note onset. In the last panel, the transcription result is
displayed in the form of a piano-roll representation. It is
notable that two connected notes with the same pitch (the
fourth and the fifth note) are correctly transcribed.

3. Evaluation

3.1 Dataset

Evaluations have been conducted using a publicly available
dataset [22], [23], released for the purpose of evaluation
on singing transcription. The dataset consists of 38 audio
recordings of monophonic singing, recorded with a sample
rate of 44.1 kHz and a 16-bit resolution. The melodies in the
dataset come from several excerpts of popular songs includ-
ing The Beatles. Singers are categorized in three classes:
adult males (13 recordings), adult females (11 recordings),
and children (14 recordings). The pitch and loudness are
quite unstable as the singers are untrained. The duration of
the whole dataset is up to 19 minutes 15 seconds in total.
All the recordings were very freely performed with musical
articulations and ornaments.

The dataset also contains the note-level ground truth
by manual annotations. The ground truth provides anno-
tation of the onset, offset, and note pitch for all the 2154
notes in the dataset. The onset and offset are given by
their exact time in seconds, and the note pitch is by a
MIDI note number with two decimal places. The MIDI
note number is converted from the frequency in Hz by
12 log2(frequency/440) + 69.

3.2 Criteria and Measure

Precision and recall have been commonly considered the
standard measures for binary classification such as the on-
set detection. Combining the precision and the recall, the
F-measure is the most representative measure for an overall
performance. However, a note transcription system needs to
adopt more extensive criteria, because it includes the overall
evaluation for the three note attributes. Thus, recent criteria
were extended particularly for singing transcription [8]. The
qualitative meanings in the criteria are described as follows:

• COnPOff (correct onset, pitch and offset): The most

restrictive criterion, meaning the correct rate of onset
(±50 ms), offset (±20% of the ground-truth note du-
ration or 50 ms, whichever is larger) and pitch (±0.5
semitones). A note is correctly transcribed only if its
onset, offset, and pitch satisfy the criteria simultane-
ously.
• COnP (correct onset and pitch): A less restrictive crite-

rion, accounting for both the onset and pitch, using the
same size of tolerance window as above.
• COn (correct onset): Similar to the above two criteria,

but only onset is considered in this case. This is equal
to the traditional metric for onset detection.
• Split: The rate of ground truth notes incorrectly seg-

mented into consecutive notes by transcription.
• Merge: The rate of ground truth notes merged as they

are transcribed into the same note (complementary to
Split).
• Spurious: The rate of transcribed notes not having any

overlap with ground truth notes (neither in time nor
pitch domain).
• Non-detected: The rate of ground truth notes not hav-

ing any overlap with transcribed notes (neither in time
nor pitch domain).

Note that COnPOff, COnP, and COn are chosen as ma-
jor criteria for the overall performance of note transcrip-
tion. Each criterion has its numerical measures such as
precision, recall and F-measure. For other criteria such as
Split, Merge, Spurious and Non-detected, the measures are
expressed by the rate of incorrectly transcribed notes that
each criterion defines, emphasizing the more specific points
of wrong transcription.

3.3 Experimental Setup

Two evaluations were conducted in various aspects of
singing transcription at the note level, rather than the assess-
ment for the front-end pitch tracker at the frame level. This
is because the existing algorithms for monophonic pitch
tracking have already accomplished a reliable performance,
and the proposed note transcription system is based on the
assumption that the F0 is known.

The first evaluation assessed the transcription perfor-
mances among two methods for transition boundary detec-
tion, and to examine the influence of different parameter
configurations. By comparing the results, the best method
and the most optimized parameter were determined. On the
other hand, the second evaluation shows the improvement of
the proposed system compared to other systems including
the state-of-the-arts. For a fair comparison, the experiment
was conducted under an identical experimental setup includ-
ing dataset and metrics. The default parameter configuration
in all the experiments is summarized in Table 1.

All the experiments were conducted on a personal com-
puter with a 3.3 GHz CPU and 8 GB RAM. The computa-
tional time for the entire transcription system depends on
whether the probabilistic models are included or not, and
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Table 1 Parameter configuration.

Parameter Description Value
h Number of harmonic partials 13

dmin Minimum cluster distance (rad) 0.25
δpeak Peak picking threshold 0.03
α Self-transition probability 0.5
δnote Note boundary threshold 0.2
Tmin Minimum note duration (s) 0.1

Table 2 Computational time of the proposed system.

Using the given F0 track Including F0 tracking
Similarity-

based
HMM-
based

Similarity-
based

HMM-
based

Time (s) 37 110 296 374

most of the time was spent on F0 tracking. The detailed
time taken for all input signals with a total length of 1155
seconds is displayed in Table 2.

4. Result

As the first evaluation, the overall performance was com-
pared by using different parameters, including the number
of harmonic partials and the detection sensitivity. This ex-
periment was conducted using the two methods for tran-
sition boundary detection, the similarity analysis and the
HMM-based note event model. As shown in Fig. 7, the per-
formance improvement was saturated in both methods with
more than 11 partials, and the highest F-measure of 0.82 was
achieved by the HMM-based method. As the number of
partials increases, the performance of the similarity-based
method slightly decreases while the HMM-based method
does not change. It is also noticeable that the similarity-
based method scored a very low performance when only
a few partials were used. This result implies that the
HMM-based method is more robust than the similarity-
based method.

To verify the robustness of the HMM-based method
more clearly, the precision-recall curve for both detection
methods is reported in Fig. 8, showing the trade-off between
precision and recall. The precision and the recall were ob-
tained by varying the parameters δpeak and α, which deter-
mine the detection sensitivity for the similarity-based and
the HMM-based method, respectively. While the HMM-
based method achieved a reliable performance for various
detection sensitivities, the precision rapidly decreased in the
similarity-based method as the peak-picking threshold in-
creased. In most cases, it was reported that the recall tends
to be greater than the precision.

Both experimental results show that the use of the
mixture model not only improves the overall performance,
but also accomplishes the robustness of the system. The
similarity-based method is heavily influenced by the pa-
rameters and the characteristic of the input signal, since it
is difficult to choose a proper threshold for peak picking.
Whereas, the mixture model is effective for classifying the
intrinsic harmonic structures in a stream, even when a lim-

Fig. 7 Average F-measures in three criteria by different number of har-
monic partials.

Fig. 8 Precision-recall curves in the COn criterion for two transition de-
tection methods.

ited number of partials are given. Nonetheless, the overall
performance of the similarity-based method is still higher
than the recent average results of the onset detection for the
singing voice class in the MIREX. This infers that the HSC
is a very effective feature to represent the harmonic struc-
ture, and is suitable for singing transcription even without
the mixture model.

The second evaluation was conducted to compare the
system performance with five other methods. All the re-
sults are excerpts from the original papers [8], [23] that
use the same dataset and criteria. The results attained
by Rynnänen’s note event model approach [6], Gómez &
Bonada’s method [7], a commercial system named Melo-
transcript [24] were cited from Molina’s evaluation frame-
work [23]. The SiPTH system has only one overall perfor-
mance about COnPOff, since the authors do not mention
the result on COnP and COn in their paper [8]. In case of
Tony [25], their best result was chosen (reported as pYIN
s = 0.8, prn = 0.10) among different parameter configura-
tions.

As shown in Fig. 9, the overall performance of the pro-
posed system outperforms other systems including the state-
of-the-arts. In case of COn, the best performance (average
F-measure 0.82, 95% confidence interval 0.80 to 0.84) was
achieved using the HMM-based method. The performance
improvement on COnP becomes more significant compared
to the first three systems. It implies that the local homo-
geneity within the harmonic structure, which is the most
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Fig. 9 Evaluation comparison of the proposed system (marked by aster-
isk) and other algorithms. Labels on the y-axis indicate the criteria and their
numerical measure. Items marked by crosses are not publicly announced.

distinguishing point to other approaches, can be an effec-
tive feature for singing transcription, as it has an advantage
that connected notes with the same pitch can be detected.

However, the proposed system did not improve much
when the offset detection is included. The relatively low
improvement on COnPOff can be explained by two factors.
First, even with the feature normalization to remove the in-
fluence of the loudness, it cannot reflect the changes in har-
monic structure as the singing becomes softer at the end of
a note. Second, it may be caused by the ambiguity in the
offset annotation for the singing voice.

Split and Merge are complementary to each other. As
the detection sensitivity becomes higher, Merge decreases
and Split increases. In the proposed system, the detection
sensitivity mainly depends on the note boundary threshold
δnote. When it increases from 0.2 to 0.3, it was observed
the system produces only Splits less than 0.05% of the en-
tire ground truth notes, while the overall performance is still
higher than others (over 80% COn). Since it cannot say that
either Split or Merge is more critical, it is required to use
appropriate settings depending on the purposes of transcrip-
tion.

Although the proposed system accomplished the best
overall performance, it is not always the best approach for
all cases. One example is a stepwise pitch change with the
same pronunciation, which can be easily detected by pitch-
based systems. It is expected that the system can be further
improved when the time-pitch curve is also considered.

5. Conclusion

A singing transcription system based on the analysis of har-
monic structure was presented. Given the estimated F0 se-
quence, a novel acoustic feature called the harmonic struc-
ture coefficient (HSC) was derived by extracting the har-
monic partial magnitude with several refinement steps of
vector transformation. In doing so, the HSC is defined on
the surface of a unit hypersphere, representing the relation-
ship between harmonic partials.

A parametric mixture model based on the von Mises–
Fisher distribution was used to characterize the feature
space. Further, an optimization technique was proposed to
determine the optimal number of clusters, so that the intrin-
sic harmonic structure could be correctly classified.

To detect significant transition boundaries in the har-
monic structure, two different methods were presented
based on the self-similarity analysis and the HMM. Then,
note attributes were finally determined by excluding the
voiced consonant from the detected transition boundaries.

The proposed system was evaluated using the latest
evaluation methodology for singing transcription. Com-
paring results of the two proposed methods for transition
boundary detection showed that the mixture model and the
note event model improve the transcription performance and
robustness. When comparing with the existing systems, the
evaluation results clearly indicate that the proposed tran-
scription system significantly outperforms other systems in-
cluding the state-of-the-art systems.
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[22] J. Salamon, J. Serrà, and E. Gómez, “Tonal representations for music
retrieval: from version identification to query-by-humming,” Int. J.
Multimedia Information Retrieval, vol.2, no.1, pp.45–58, 2013.

[23] E. Molina, A.M. Barbancho, L.J. Tardón, and I. Barbancho, “Eval-
uation framework for automatic singing transcription,” Proc. Int.
Symp. Music Information Retrieval (ISMIR), pp.567–572, 2014.

[24] T.D. Mulder, J.P. Martens, M. Lesaffre, M. Leman, B.D. Baets, and
H.D. Meyer, “Recent improvements of an auditory model based
front-end for the transcription of vocal queries,” in Proc. IEEE
Int. Conf. Acoust., Speech, and Signal Process. (ICASSP), vol.4,
pp.iv-257–iv-260, May 2004.

[25] M. Mauch, C. Cannam, R. Bittner, G. Fazekas, J. Salamon, J.
Dai, J. Bello, and S. Dixon, “Computer-aided melody note tran-
scription using the tony software: Accuracy and efficiency,” Proc.
1st Int. Conf. Technologies for Music Notation and Representation
(TENOR), pp.23–30, 2015.

Hoon Heo received the B.S. and M.S. de-
gree in Electrical Engineering from Seoul Na-
tional University, Seoul, Republic of Korea, in
2008 and 2011, respectively. Currently, he is
pursuing his Ph.D. degree at the Music and Au-
dio Research Group at the Graduate School of
Convergence Science and Technology at Seoul
National University, Seoul, Korea. His research
interests include automatic music transcription
and various applications in music information
retrieval.

Kyogu Lee received the B.S. degree in Elec-
trical Engineering from Seoul National Univer-
sity, Seoul, Korea, in 1996, the M.M. degree
in Music Technology from New York Univer-
sity, New York, in 2002, and the M.S. degree
in Electrical Engineering and the Ph.D. degree
in Computer-based Music Theory and Acoustics
from Stanford University, Stanford, CA, in 2007
and 2008, respectively. He worked as a Senior
Researcher in the Media Technology Lab at Gra-
cenote from 2007 to 2009. He is now an asso-

ciate professor at the Graduate School of Convergence Science and Tech-
nology at Seoul National University, Seoul, Korea, and is leading the Music
and Audio Research Group. His research focuses on signal processing and
machine learning applied to music/audio.

http://dx.doi.org/10.1109/icme.2013.6607461
http://dx.doi.org/10.1109/icassp.2014.6853678
http://dx.doi.org/10.1109/tasl.2008.919073
http://dx.doi.org/10.1109/tasl.2009.2026503
http://dx.doi.org/10.1109/tasl.2012.2188515
http://dx.doi.org/10.1109/aspaa.2003.1285836
http://dx.doi.org/10.1145/319463.319472
http://dx.doi.org/10.1109/icme.2000.869637
http://dx.doi.org/10.1007/s13735-012-0026-0
http://dx.doi.org/10.1109/icassp.2004.1326812

