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PAPER

An Efficient Approximate Algorithm for the 1-Median Problem on
a Graph∗

Koji TABATA†a), Nonmember, Atsuyoshi NAKAMURA†, and Mineichi KUDO†, Members

SUMMARY We propose a heuristic approximation algorithm for the 1-
median problem. The 1-median problem is the problem of finding a vertex
with the highest closeness centrality. Starting from a randomly selected
vertex, our algorithm repeats to find a vertex with higher closeness central-
ity by approximately calculating closeness centrality of each vertex using
simpler spanning subgraphs, which are called k-neighbor dense shortest
path graphs with shortcuts. According to our experimental results using
real networks with more than 10,000 vertices, our algorithm is more than
100 times faster than the exhaustive search and more than 20 times faster
than the state-of-the-art approximation algorithm using annotated informa-
tion to the vertices while the solutions output by our algorithm have higher
approximation ratio.
key words: 1-median problem, closeness centrality, graph mining

1. Introduction

Since various networks in society can be represented as
weighted graphs, methods for finding important vertices in a
graph have a lot of applications. What is important depends
on applications, and various importance measures have been
proposed so far.

One of the most popular such measures is closeness
centrality, which measures centrality in terms of distance to
all the vertices. The closeness centrality of a vertex v is cal-
culated using the (weighted) sum of the lengths of the short-
est paths from v to all the vertices, and smaller length sum
means higher closeness centrality. The problem of finding
the highest closeness centrality is known as the 1-median
problem, which is a special case of the k-median problem:
the problem of finding a k-sized set S that minimizes the
(weighted) sum of the lengths of the shortest paths from
vu ∈ S to all the vertices u, where vu is the vertex in S that is
nearest to u.

The k-median problem is known to be NP-hard for k >
1 [8] but the 1-median problem can be solved in O(n2 log n+
mn) time by Dijkstra’s algorithm using a Fibonacci heap [3],
[7], where n is the number of vertices and m is the number
of edges. Recently, however, we have to deal with huge
networks, for which algorithms are required to run in time
close to linear in the network size.
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In this paper, we propose a heuristic approximation al-
gorithm for the 1-median problem. Our algorithm is itera-
tive; starting from a randomly selected initial vertex v0, the
algorithm finds a vertex v∗ with closeness centrality higher
than that of v0, and repeats the same process replacing v0
with v∗ until such vertex v∗ is not found. In each iteration,
the algorithm approximately calculates closeness central-
ity of each vertex using a simpler subgraph containing the
shortest path tree from the vertex v0. The highest-closeness-
centrality vertex v∗ for such simpler subgraphs has centrality
that is at least the centrality of v0 for the original graph be-
cause the centrality of v0 is the same for both the graphs. As
a subgraph, the shortest path tree from v0 itself can be used
and then we can obtain the exact solution for the subgraph
in O(n) time [5]. The centrality of a vertex v for the spanning
tree is an upper bound of its centrality for the original graph,
but the gap between them is large unless v = v0 in most
graphs, which results in few iterations and a bad approxi-
mate solution. To obtain a better centrality upper bound for
each vertex v, we propose to use a k-neighbor dense short-
est path graph from v0 with shortcuts, which is composed of
(1) all the edges between k-nearest vertices of v0 and (2) at
most k − 1 edges between v’s partition and the other k − 1
partitions in addition to the shortest path tree from v0, where
each partition is composed of all the vertices whose nearest
vertex among the k-nearest vertices of v0 is the same. Our al-
gorithm, which we call FAOM (Fast Approximation of One
Median), runs in O(((kn + m) log n + k3 log k)ℓ) time and
O(m + n log n) space, where ℓ is the number of iterations,
which is at most 7 in our experiments using a graph with
17,903 vertices and 197,031 edges.

According to the results of our experiments using real
and synthetic datasets, for scale-free networks, FAOM out-
performs the exhaustive search and an algorithm using DTZ
(Distance To Zone) [11] to calculate approximate distances;
for two real networks and one synthetic scale-free network,
FAOM with k ≤ 128 is faster than the exhaustive search
and the algorithm using DTZ while the approximation ra-
tio of FAOM is always better than that of the algorithm us-
ing DTZ. Especially for the real networks, which have more
than 10,000 vertices, FAOM with k ≤ 128 is at least 21 times
faster than the algorithm using DTZ and at least 143 times
faster than the exhaustive search.

2. Related Work

The graph median problem has been studied more than half
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a century. Hakimi wrote a paper on the 1-median problem
in 1964 [6]. The 1-median problem is related to the prob-
lem of constructing a shortest path tree from a given vertex
because the 1-median problem can be solved by construct-
ing a shortest path tree from each vertex, which we call the
exhaustive search in this paper. For the shortest path tree
construction problem, O(n log n + m)-time algorithm using
Fibonacci heap [3], [7] has been proposed, where n is the
number of nodes and m is the number of edges.

Since the exhaustive search is too slow for a huge net-
work, faster exact algorithms for a simpler graph or faster
approximation algorithms have been developed. Burkard et
al. proposed the exact algorithm for cactus graphs [2]. Rat-
tigan et al. proposed an approximation algorithm for the
centrality measure using annotated information to the ver-
tices [11].

The 1-median problem is, in other words, the prob-
lem of finding a vertex with the highest closeness central-
ity [4]. In terms of closeness centrality, approximation al-
gorithms for the ranking problems have been also devel-
oped [10], [15].

As for more general k-median problem, its NP-
hardness was proved [8], and approximation algorithms
have been proposed [1], [9], [12].

3. Problem Setting

Let G = (V, E) be an undirected connected graph, where V
and E are the sets of vertices and edges, respectively. Each
vertex v ∈ V has a weight w(v) > 0, and each edge (u, v) ∈ E
has a length len(u, v) > 0, where (u, v) for u, v ∈ V repre-
sents an edge between two vertices u, v ∈ V . The number of
vertices and edges are denoted as n and m, respectively.

The distance between any two vertices u and v in G =
(V, E) is defined as the shortest path length between u and v
and denoted as dG(u, v). The distance dG(u, v) is also written
as d(u, v) by omitting G when G is clear from context.

Let dG(v) denote the w(u)-weighted sum of distances
dG(v, u) from v to all the vertices u, that is,

dG(v) =
∑
u∈V

dG(v, u)w(u).

In this paper, we consider a problem of finding a vertex v
with the minimum dG(v) among all vertices v ∈ V .

Problem 3.1 (1-median problem): For a given undirected
connected graph G = (V, E) with a vertex weight function
w : V → (0,∞) and an edge length function d : E → (0,∞),
find a vertex v with the minimum dG(v) among all vertices
v ∈ V .

This problem can be solved exactly by constructing a
shortest path tree from each vertex, which takes O(n2 log n+
nm) time using Dijkstra’s algorithm, and O(nm) time using
the Thorup’s algorithm [14] in the case with positive integer
length function.

The followings are notions and notations related to

Algorithm 1 Iterative algorithm framework for 1-median
problem
1: v∗ ← a randomly selected vertex from V;
2: repeat
3: v0 ← v∗
4: Calculate dG(v0) constructing the shortest path tree T (v0) from v0.
5: Calculate dGv (v) for each v ∈ V ,

where Gv is a subgraph of G that contains T (v0).
6: Set v∗ = arg min

v∈V
dGv (v).

7: until dGv∗ (v∗) ≥ dG(v0)
8: output v0;

shortest path trees that are used in this paper. The short-
est path tree T (v) of G from v is the spanning tree of G that
contains a shortest path from v to u for all u ∈ V \ {v}. The
shortest path tree T (v) can be regarded as a rooted tree with
root v. We let DT (v)(u) denote the set of the descendants of
u in the rooted tree T (v). Note that u itself is a descendant
of u. We let pT (v)(u) denote the parent of u in T (v), and let
p0

T (v)(u) = u and let pi
T (v)(u) denote the parent of pi−1

T (v)(u).
Define WT (v0)(v) and dD

T (v0)(v) as

WT (v0)(v) =
∑

u∈DT (v0)(v)

w(u) and

dD
T (v0)(v) =

∑
u∈DT (v0)(v)\{v}

dT (v0)(v, u)w(u),

respectively. We sometimes omit the subscript T (v) when it
is clear from context.

4. Iterative Algorithm Framework

To obtain an approximate solution for 1-median problem,
we propose an iterative algorithm framework shown in Al-
gorithm 1. Starting from a randomly selected vertex, an
algorithm in our framework finds a better vertex (a vertex
v with smaller dG(v)) repeatedly until failing to find such
a vertex. The point is how we can find a vertex v with
dG(v) smaller than dG(v0) of a given vertex v0 efficiently.
In our framework, an algorithm calculates dG(v0) by con-
structing the shortest path tree T (v0) from v0. Then, in or-
der to efficiently find vertex v∗ with dG(v∗) ≤ dG(v0), the
algorithm calculates dGv(v) for each v ∈ V , where Gv is a
subgraph of G that contains T (v0). The algorithm in this
framework can be implemented efficiently if Gv has a sim-
ple structure; in the case with Gv = T (v0), dGv (v) for all
v ∈ V can be calculated in O(n) time [5]. Furthermore,
dG(v) ≤ dG(v0) if dGv(v) ≤ dGv0

(v0) because dG(v) ≤ dGv (v)
and dG(v0) = dGv0

(v0), where the last equality holds because
Gv0 contains the shortest path tree T (v0) of G from v0. Thus,
dG(v∗) ≤ dG(v0) is guaranteed for v∗ = arg min

v∈V
dGv (v), which

means that no worse vertex is obtained by any iteration.
Note that dG(v∗) ≤ dG(v0) is guaranteed even using an upper
bound d̄Gv (v) of dGv(v) if d̄Gv0

(v0) = dG(v0) holds.
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5. Subgraphs for Efficient Approximation

In order to efficiently obtain a tighter upper bound dGv(v) of
dG(v), what subgraph Gv of G should be used? Under the
constraint that Gv must contain the shortest path tree T (v0)
from v0, it is ranged from T (v0) to G itself. A simple sub-
graph Gv enables fast calculation of dGv(v) but brings a loose
upper bound of dG(v). Conversely, a tight upper bound of
dG(v) can be obtained if Gv is close to G though slow calcu-
lation of dGv(v) is inevitable. So, we should choose a sub-
graph balancing this trade-off,

5.1 k-Neighbor Dense Shortest Path Graph

If the shortest path tree T (v0) is used as Gv, then the differ-
ence between dGv(v) and dG(v) is 0 at v = v0 and expected
to increase as the distance between v and v0 increases. The
difference is expected to become close to 0 for neighbors of
v0 if the edges between the neighbors are added.

From this consideration, as a simple subgraph of G that
is an extension of the shortest path tree T (v0), we propose a
k-neighbor dense shortest path graph of G from v0, kNSPG
for short. Let Nk(v0) denote the set of k nearest vertices v of
v0 in V , that is, the set of k vertices with the smallest dis-
tance dG(v, v0) from v0. Note that v0 ∈ Nk(v0). The kNSPG
of G from v0, which is denoted as T (v0; k), is defined as a
subgraph of G that is constructed from the shortest path tree
T (v0) of G from v0 by adding all the edges in E between
the vertices in Nk(v0). The kNSPG T (v0; k) of G from v0
is an extension of the shortest path tree T (v0) of G from v0
because T (v0) is just the 1NSPG T (v0; 1).

Example 5.1: Let G be the leftmost graph of Fig. 1. Then,
the center graph in the figure is a 4NSPG T (v0; 4) of G from
v0. The four vertices in the gray box are members of N4(v0).
The edge between v1 and v2 is not contained in the shortest
path tree T (v0) but it is contained in T (v0; 4).

The construction of T (v0; k) and the calculation of
dT (v0;k)(v) for all the vertices v ∈ V can be done efficiently
for small k.

Theorem 5.2: For a given graph G = (V, E), dT (v0;k)(v) for
all the vertices v ∈ V can be calculated in O(n log n+m+ k3)
time and O(m) space.

(proof) See Appendix A. □

5.2 kNSPG with Shortcuts

By using the kNSPG T (v0; k) as Gv, the upper bound dGv(v)
of dG(v) is expected to become tight for neighbors v of v0,
but it might be still loose for the vertices v that are far from
v0 if k is small. In order to improve the upper bound for such
vertices, we consider a further extension of kNSPG T (v0; k)
for each v by adding at most k − 1 edges depending on v.

Before describing the extension, we introduce some
notions and notations. For each vertex v ∈ V , define

Fig. 1 Example of a kNSPG and a kNSPG with shortcuts: The center
graph is a kNSPG T (v0; 4) of the leftmost graph G from v0. The rightmost
graph is a kNSPG T S v6 (v0; 4) of G from v0 with shortcuts for v6.

the closest v0-neighbor C(v, v0; k) of v ∈ V in T (v0; k) as
the nearest vertex in Nk(v0) from v, that is, C(v, v0; k) =
arg min
u∈Nk(v0)

dT (v0;k)(v, u). If v is in Nk(v0), C(v, v0; k) is v itself.

For each v ∈ Nk(v0), we define the v-subtree S T (v, v0; k) of
T (v0; k) as the vertex-induced subgraph of T (v0; k) that is
composed of all the vertices u ∈ V with C(u, v0; k) = v.
A kNSPG T (v0; k) is partitioned into k disjoint v-subtrees
S T (v, v0; k) for v ∈ Nk(v0). In the following, C(v, v0; k) and
S T (v, v0; k) are also written as C(v) and S T (v) by omitting
“v0; k” when it is clear from context.

Example 5.3: In the center graph 4NSPG T (v0; 4) of
Fig. 1,

C(v0) = C(v4) = C(v8) = C(v9) = v0,

C(v1) = v1,

C(v2) = C(v5) = C(v6) = v2,

C(v3) = C(v7) = v3.

Thus, T (v0; 4) are partitioned into S T (v0), S T (v1), S T (v2)
and S T (v3), which are the vertex-induced subgraphs of
vertex-sets {v0, v4, v8, v9}, {v1}, {v2, v5, v6} and {v3, v7}, respec-
tively.

Now, we describe our extension of kNSPG T (v0; k) of
G from v0. A kNSPG of G from v0 with shortcuts for v is
defined as a subgraph of G that is constructed from T (v0; k)
by adding at most one edge (s, t) in E between VS T (C(v)) and
VS T (u) for each u ∈ Nk(v0)\{C(v)}, where VS T (C(v)) and VS T (u)

are the set of vertices in S T (C(v)) and S T (u), respectively.

Example 5.4: The rightmost graph in Fig. 1 is a kNSPG of
the leftmost graph G from v0 with shortcuts for v6.

Let T S (v0; k) denote the kNSPG of G with shortcuts
for v that is constructed from T (v0; k) by adding edges in S .
Now, the problem is how to efficiently find S that is good
for v. To address to the problem, we first consider effect of
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adding an edge.
For v ∈ V , s ∈ DT (v0)(v), e = (s, t) and u ∈ DT (v0)(C(t))

(C(t) , C(v)), define

αT (v0;k),e(v, u)

=dT (v0:k)(v, u) − dT {e}(v0;k)(v, u)

=dT (v0:k)(v,C(v)) + dT (v0;k)(C(v),C(t)) + dT (v0;k)(C(t), u)

− (dT (v0;k)(v, s) + len(s, t) + dT (v0;k)(u, t)
)
. (1)

We call u ∈ S T (C(t)) an effected vertex of e = (s, t) for
v if αT (v0;k),e(v, u) > 0. For a descendant s of v in the
tree S T (C(v)) rooted by C(v) and u ∈ Nk(v0) \ {C(v)}, de-
fine the nearest effected vertex vop ∈ VS T (u) of an edge
(s, t) ∈ (VS T (C(v)) × VS T (u)) ∩ E for v as

vop = arg min
u′∈VS T (u),αT (v0;k),e(v,u′)>0

αT (v0;k),e(v, u′)

Note that vop is the vertex that is nearest to v0 among the
vertices u′ in VS T (u) for which the distance from v to u′ is
shortened by the path using edge (s, t). The effect δT (v0;k),e(v)
of edge e for v is defined as dT (v0;k)(v) − dT {e}(v0;k)(v) and the
restricted effect δT (v0;k),e(v) of e for v is defined as the effect
of e = (s, t) restricted to the set of vertices S T (C(t)), that is,

δT (v0;k),(s,t)(v) =
∑

u∈VS T (C(t))

αT (v0;k),(s,t)(v, u)w(u).

Then,

δT (v0;k),(s,t)(v) =αT (v0;k),(s,t)(v, vop)WT (v0)(vop)

+

iop∑
i=1

dT (v0)(pi(t), pi−1(t))WT (v0)(pi−1(t))

(2)

holds, where piop (t) = vop.

Theorem 5.5: Given a kNSPG T (v0; k) of G from v0 and
dT (v0;k)(v, u) for all v, u ∈ Nk(v0) (v , u), after O(n log n)-time
O(n log n)-space preparation, the restricted effect δT (v0;k),e(v)
of any edge e for any vertex v can be calculated in O(log n)
time.

(proof) See Appendix B. □
The restricted effect δT (v0;k),e(v) is a lower bound of ef-

fect δT (v0;k),e(v), and the both coincides if vop , C(t) for
e = (s, t). The merits of calculating δT (v0;k),e(v) are not only
computational efficiency but also disjointness from the ef-
fect of other edge between S T (C(v)) and u-subtree for other
u ∈ Nk(v0). Let S be the set of at most k − 1 edges in E that
satisfies

(s1, t1), (s2, t2) ∈ S ⇒s1, s2 ∈ DT (v0)(v),

C(t1),C(t2) , C(v),C(t1) , C(t2).

Then,

dT S (v0;k)(v) ≤ dT (v0;k)(v) −
∑
e∈S
δT (v0;k),e(v)

is derived from disjointness property of δT (v0;k),e(v). Since
our purpose is to obtain a tighter upper bound of dG(v)
efficiently and dT S (v0;k)(v) is an upper bound of dG(v), it
is no problem to use dT (v0;k)(v) −

∑
e∈S δT (v0;k),e(v) as an

upper bound of dG(v); it is tighter than dT (v0;k)(v) by∑
e∈S δT (v0;k),e(v).

For each u ∈ Nk(v0) \ {C(v)}, we want to know the max-
imum δT (v0;k),e(v) among e ∈ (DT (v0)(v) × VS T (u)) ∩ E, but it
is computationally too heavy. Giving up to find the optimal
value, we try to find a good edge e with large δT (v0;k),e(v). Let

Eu
v = {(v, t) ∈ E | t ∈ VS T (u)}.

We define an edge ev,u ∈ (DT (v0)(v) × VS T (u)) ∩ E for each
v ∈ V and u ∈ Nk(v0) \ {C(v)} as

ev,u =


arg max

e∈Eu
v

δT (v0;k),e(v) (DT (v0)(v) = {v})

arg max
e∈Eu

v∪{ev′ ,u |p(v′)=v}
δT (v0;k),e(v) (DT (v0)(v) , {v}).

Note that ev,u can be calculated in a bottom-up manner
from the leaf nodes v of T (v0). For leaf nodes v of T (v0),
edges ev,u are optimal but the optimality is not guaranteed
for other vertices. Since δT (v0;k),e(p(v)) is expected to be
close to δT (v0;k),e(v), δT (v0;k),ev,u (p(v)) is expected to be large if
δT (v0;k),ev,u (v) is large. Thus, even for non-leaf nodes v, edges
ev,u are expected to have large δT (v0;k),ev,u (v). Define S v as
S v = {ev,u | u ∈ Nk(v0) \ {C(v)}}. Then, we use T S v(v0; k) for
a subgraph of G to calculate an upper bound of dG(v).

Theorem 5.6: Given a kNSPG T (v0; k) of G from v0 and
dT (V0;k)(v, u) for all v, u ∈ Nk(v0) (v , u), after O(n log n)-
time O(n log n)-space preparation, upper bounds

dT (v0;k)(v) −
∑
e∈S v
δT (v0;k),e(v)

of dT S v (v0;k)(v) for all v ∈ V \ Nk(v0) can be calculated in
O((kn + m) log n) time.

(proof) See Appendix C. □

6. Algorithm FAOM

We propose algorithm FAOM (Fast Approximation of One
Median) of the iterative algorithm framework using kNSPGs
T S v(v0; k) from v0 with the set S v of shortcuts for each vertex
v as a subgraph Gv of a given graph G to calculate an upper
bound of dG(v).

A pseudocode of FAOM is shown in Algorithm 2.
FAOM repeats the execution (Line 5) of procedure High-
erCentralityVertex which returns v∗ and an upper bound d∗
of dG(v∗) with d∗ ≤ dG(v0) given an input vertex v0. In
HigherCentralityVertex, the kNSPG T (v0 : k) of G from v0
is constructed (Line 12) and dT (v0;k)(v) is calculated for all
v ∈ V (Line 13). After the preparation for fast calculation of
δT (v0;k),(s,t)(v) (v ∈ V \ Nk(v0), s ∈ DT (v0)(v), t < VS T (C(v))) ex-
plained in the proof of Theorem 5.5 (Line 14), upper bounds
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Algorithm 2 FAOM
1: function FAOM(G = (V, E), k)
2: v∗ ← a randomly selected vertex from V
3: repeat
4: v0 ← v∗;
5: (v∗, d∗)← HigherCentralityVertex (G, k, v0)
6: until d∗ ≥ dG(v0)
7: output v0;
8: end function
9:

10: function HigherCentralityVertex(G = (V, E), k, v0)
11: Calculate dG(v0) constructing the shortest path tree T (v0) from v0.
12: Construct kNSPG T (v0; k) of G from v0

by adding edges between the vertices in Nk(v0) to T (v0)
13: Calculate dT (v0 ;k)(v) for all v ∈ V .
14: Do preparation for fast calculation of δT (v0 ;k),(s,t)(v)

(v ∈ V \ Nk(v0), s ∈ DT (v0)(v),t < VS T (C(v))). (See Appendix B.)
15: v∗ ← v0, d∗ ← dG(v0)
16: for all v ∈ V \ Nk(v0) do
17: dv ← dT (v0 ;k)(v) −

∑
e∈S v δT (v0;k),e(v)

18: if dv < d∗ then
19: v∗ ← v, d∗ ← dv
20: end if
21: end for
22: return (v∗, d∗);
23: end function

dv of dT S v (v0;k)(v) are calculated for all v ∈ V \ Nk(v0), v∗ is
set to the vertex v with the minimum dv, and d∗ is set to dv∗
(Line 15-21). Then, (v∗, d∗) is returned to the main function.

By Theorem 5.2 and 5.6, we obtain the following the-
orem.

Theorem 6.1: Function HigherCentralityVertex runs in
O((kn + m) log n + k3) time and O(m + n log n) space.

Trivially, time complexity of FAOM is O(((kn +
m) log n+ k3)ℓ) time and its space complexity is the same as
HigherCentralityVertex, where ℓ is the number of the main-
loop iterations. Though we have not obtained any non-trivial
upper bound of ℓ yet, ℓ was at most 7 in our experiment even
for the network with n > 10, 000 and m > 100, 000.

Remark 6.2: Assume that the number of the main-loop it-
erations is O(1), and let us compare the time and space com-
plexities of FAOM to those of other algorithms that are used
as comparative methods in our experiments. The exhaustive
search using Dijkstra’s algorithm runs in O(n2 log n + mn)
time and O(m) space. So, FAOM asymptotically runs
faster than the exhaustive search but consumes more mem-
ory when m = o(n log n). A method using approxima-
tion distance calculated by DTZ† runs in O(mkd + n2d)
time and O(nkd + m) space, where k and d are parame-
ters that controls distance accuracy and computational time.
FAOM asymptotically runs faster than this method when
m = o(n2/(log n)) but consumes more memory when m =
o(n log n).

Remark 6.3: Unfortunately, for n > 2k, FAOM’s approxi-
mation ratio is not good in the worst case even when w(v) =

†See Sect. 7.5 for detailed description.

1 for all v ∈ V because we have

sup
G,len

dG(v̂)
dG(v∗)

= n − 1

for v∗ = arg max
v∈V

dG(v) and FAOM’s output v̂. Inequality

dG(v̂)
dG(v∗)

≤ n − 1 for any G and len holds because dG(v̂) ≤
dT (v̂)(v̂) =

∑
v∈V dT (v̂)(v, v̂) and dT (v̂)(v, v̂) ≤ dT (v∗)(v, v̂) ≤

dG(v∗). Let G = (V, E) with V = {v1, . . . , vn}, E = E1 ∪ E2,
where Ei = {(vi, v j)| j > i}, and len(u, v) = a for (u, v) ∈ E1

and len(u, v) = δ for (u, v) ∈ E2. Assume that a ≫ δ. Then,
starting from v1, FAOM stops by outputting v1, and in this
case dG(v1)

dG(v2) =
(n−1)a

(n−2)δ+a and limδ→+0
(n−1)a

(n−2)δ+a = n − 1 hold.

Thus, Equality suplen
dG(v̂)
dG(v∗)

= n − 1 holds for this G. Ap-
proximation ratio of FAOM’s outputs is close to 1 in our
experiments, so what condition makes FAOM output a ver-
tex with good approximation ratio is an interesting issue to
pursue.

7. Experiments

We conducted experiments to check the effectiveness of our
method using synthetic and real datasets.

7.1 Experimental Setting

We used four datasets shown in Table 1.
As real datasets, we used two datasets of Stanford

Large Network Dataset Collection††. Dataset ca-AstroPh
is a collaboration network of Arxiv Astro Physics category,
in which vertices represent authors of scientific papers and
edges represent co-author relationship. Dataset Oregon-
1(May26) is autonomous system peering information in-
ferred from Oregon route-views, in which vertices represent
autonomous systems and edges represent existences of com-
munication between them.

As synthetic datasets, we generate a random and a
scale-free graphs. Dataset ER is a random graph generated
using Erdős-Rényi model, in which all the pairs of vertices
are connected randomly with a given probability p. We set
p = 0.0012 in our experiments. Dataset BA is a scale-free
graph generated using Barabási-Albert model, which was
generated starting from the complete graph of three vertices
by repeatedly adding a vertex v and edges between v and (at
most) three other existing vertices that were selected accord-
ing to the probability distribution proportional to the current

Table 1 Datasets used in our experiments

dataset network type #vertex #edge
ca-AstroPh collaboration network 17,903 197,031
Oregon-1(May26) autonomous system 11,174 23,409
ER synthetic (random) 4,986 15,118
BA synthetic (scale-free) 5,000 14,968

††https://snap.stanford.edu/data/index.html
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vertex degree†††. In a graph of Barabási-Albert model, the
distribution of vertex degrees is known to obey power-law
distribution.

All the datasets but BA are disconnected, so the max-
imum connected components, whose numbers of vertices
and edges are shown in Table 1, were used in those datasets.

In ER and BA, we generated the vertex weights
and edge lengths according to uniform distribution over
[0, 1] and [1, 2], respectively†. In ca-AstroPh and Ore-
gon1(May26), all the vertex weights and the edge lengths
were set to 1.0.

All the experiments were conducted using a machine
with Intel(R) Core(TM) i7-2600 3.40GHz processor, 8G of
RAM, and Ubuntu 12.04. We implemented our algorithms
in Python 2.7.

7.2 Effect of Using kNSPG with Shortcuts

In algorithm FAOM, we use an upper bound of dT S v (v0;k)(v)
to obtain an upper bound of dG(v) for v ∈ V . As a sub-
graph of G containing T (v0), we checked effectiveness of us-
ing T S v (v0; k) comparing with simpler subgraphs T (v0) and
T (v0; k).

For each of the randomly selected 100 initial ver-
tices v0, we calculated dT (v0)(v)/dG(v), dT (v0;k)(v)/dG(v) and
(dT (v0;k)(v) −

∑
e∈S v δT (v0;k),e(v))/dG(v), which is an upper

bound of dT S v (v0;k)(v)/dG(v), for all the vertices v. Then, we
made histograms of the values with range width 0.01 for
each of the three. The result for the ca-AstroPh is shown in
Fig. 2. As we can see on this graph, the approximation ra-
tio is improved by using T (v0; k) and furthermore by using
T S v (v0; k).

7.3 Number of Main-Loop Iterations

Efficiency of algorithm FAOM depends on the number of
main-loop iterations, that is, the number of executions of
HigherCentralityVertex. So, we checked the distribution of
the number of the iterations using randomly selected 100
initial vertices v0 for each graph. The result is shown in Ta-
ble 2. As compared with the number of vertices, the number
of iterations is very small (at most 7) on any graph in our
experiments. As a result, our algorithm runs fast for the
datasets.

7.4 Effect of Using Larger k

FAOM has parameter k which controls the complexity of
subgraphs T S v (v0; k) of G. Larger k is expected to improve
approximation ratio dG(v̂)/dG(v∗) of FAOM’s output v̂ for
the optimal vertex v∗ = arg min

v∈V
dG(v) while it increases

†††Selection were done three times independently according to
the same distribution, and distinct ones of the three selected ver-
tices were chosen.

†The triangle inequality is satisfied for the edge lengths that
are generated according to this distribution, so len(u, v) = dG(u, v)
holds for any vertices u,v of the generated graphs G.

Fig. 2 Distribution of approximation ratio dGv (v)/dG(v) of v ∈ V
in ca-AstroPh for Gv = T (v0), T (v0; k), T S v (v0; k). For T S v (v0; k),
the distribution is not for dT S v (v0 ;k)(v) but for their upper bounds

dT (v0 ;k)(v) −
∑

e∈S v δT (v0 ;k),e(v). The frequency for range [a, a + 0.01] (a =
1.00, 1.01, . . . , 2.50) is the ratio of the number of vertices v that took the
approximation ratio in that range for randomly chosen 100 initial vertices
v0.

Table 2 The number of main-loop iterations

1 2 3 4 5 6 7 8

ca-AstroPh 14 38 27 15 6
Oregon1(May26) 22 41 28 9
BA 10 48 36 5 1
ER 2 24 40 21 6 5 2

FAOM’s running time. So, we conducted an experiment
for checking both the relation between k and approxima-
tion ratio and the relation between k and running time. For
each k = 1, 2, 4, . . . , 512, we executed FAOM 1000 times
by giving randomly selected initial vertices and calculated
average approximation ratio and wall clock time. The re-
sult is shown in Fig.3. (See also Table3 for detailed data.)
For Oregon1(May26), given any initial vertex, FAOM al-
ways found the optimal vertex for all k. So the spanning tree
T (v0) is enough as Gv for this network. For other scale-free
networks, ca-AstroPh and BA, approximation ratio surely
improved in the range k > 100 though running time sig-
nificantly increased in that range. Approximation ratio for
ER looks almost the same for all values of k. In a random
graph G = (V, E), the function dG over V has a lot of local
minimums with high probability, so the probability of being
caught in one of them is considered not to be improved by a
smaller upper bound of dG brought by larger k.

7.5 Comparison to Other Methods

We compared FAOM’s performance to those of exact
method and one state-of-the-art approximation method. Ex-
act method (Exact) is the exhaustive search for the op-
timal vertex by constructing shortest path trees from all
the vertices using Dijkstra’s algorithm. As an approxima-

†DTZ and Exact are too slow to execute 1000 times.
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Table 3 Approximation ratio dG(v̂)/dG(v∗) and running time [sec] of three methods, FAOM, DTZ and
Exact, where v̂ is the vertex found by a method and v∗ is the optimal vertex. The results are averaged over
1000 runs for FAOM, 100 runs for DTZ and 1 run for Exact†. The width of 95% confidence interval
is shown in parentheses for approximation ratio and omitted for running time because it is ignorably
small.

method parameters
ca-AstroPh Oregon1(May26) ER BA

app. ratio time app. ratio time app. ratio time app. ratio time

FAOM

k = 1 1.023(±0.002) 1.951 1.000(±0.000) 0.207 1.070(±0.002) 0.023 1.015(±0.001) 0.001
k = 2 1.024(±0.002) 3.588 1.000(±0.000) 0.337 1.069(±0.002) 0.252 1.016(±0.001) 0.182
k = 4 1.030(±0.003) 5.143 1.000(±0.000) 0.459 1.069(±0.002) 0.841 1.015(±0.001) 0.463
k = 8 1.026(±0.002) 7.154 1.000(±0.000) 0.506 1.070(±0.002) 1.309 1.015(±0.001) 0.631
k = 16 1.025(±0.003) 9.602 1.000(±0.000) 0.567 1.068(±0.002) 1.776 1.015(±0.001) 0.640
k = 32 1.018(±0.002) 11.764 1.000(±0.000) 0.738 1.067(±0.002) 2.508 1.011(±0.001) 0.957
k = 64 1.025(±0.003) 13.290 1.000(±0.000) 1.160 1.069(±0.002) 3.028 1.013(±0.001) 1.467
k = 128 1.021(±0.002) 16.172 1.000(±0.000) 3.434 1.069(±0.002) 6.688 1.007(±0.001) 3.716
k = 256 1.014(±0.001) 41.303 1.000(±0.000) 22.111 1.068(±0.002) 35.363 1.003(±0.001) 23.716
k = 512 1.007(±0.001) 197.273 1.000(±0.000) 159.656 1.066(±0.002) 254.720 1.004(±0.001) 174.233

DTZ

k = 2, d = 10 1.167(±0.001) 1677.122 1.232(±0.001) 713.922 1.083(±0.000) 110.153 1.134(±0.001) 121.654
k = 5, d = 4 1.111(±0.001) 883.119 1.181(±0.001) 349.941 1.064(±0.001) 56.540 1.137(±0.001) 61.958
k = 10, d = 2 1.084(±0.000) 525.265 1.145(±0.000) 198.245 1.055(±0.000) 34.714 1.085(±0.002) 37.046
k = 20, d = 1 1.064(±0.001) 344.416 1.111(±0.003) 123.802 1.045(±0.000) 21.091 1.050(±0.000) 22.039

Exact - 1.000(±0.000) 3037.151 1.000(±0.000) 493.967 1.000(±0.000) 103.010 1.000(±0.000) 100.203

Fig. 3 Upper graph: Relation between parameter k and approximation
ratio dG(v̂)/dG(v∗), where v∗ is the optimal vertex and v̂ is the output of
FAOM. The error bars show 95% confidence interval. Lower graph: Re-
lation between parameter k and running time of FAOM.

tion method to compare, we selected an algorithm using
DTZ (Distance To Zone) to calculate approximate distances.
DTZ is a general method to efficiently estimate the distance

between any two vertices of a graph using annotations that
are prepared in preprocessing. DTZ was reported to per-
form best among the methods of annotating approach [11].
DTZ’s parameters are the number of divided regions k and
the number of repetitions d, and larger values of them im-
prove approximation ratio but increase running time and
memory usage. In this experiment, d is set to 20/k for each
k = 2, 5, 10, 20 keeping memory usage the same††. Here,
we also use the word “DTZ” as the algorithm using DTZ
abusing the usage of the word.

Approximation ratio and running time are shown in Ta-
ble 3 for the three methods, for all the four networks and for
various parameters of FOAM and DTZ. Here, approxima-
tion ratio is defined as dG(v̂)/dG(v∗), where v∗ is the optimal
vertex, that is, arg min

v∈V
dG(v), and v̂ is its estimation by a

method. For real networks and the synthetic scale-free net-
work (BA), approximation ratio of FAOM for any k is better
than that of DTZ of any parameter settings used in our ex-
periment. FAOM’s approximation ratio is not good for the
random graph (ER) compared to DTZ. As for running time,
FAOM with k ≤ 128 is at least three times faster than DTZ
of the fastest setting (k = 20, d = 1), and at least 15 times
faster than Exact. Restricted to real networks, which have
more than 10,000 vertices, FAOM with k ≤ 128 is at least
21 times faster than DTZ and at least 143 times faster than
Exact.

8. Conclusion and Future Work

In this paper, we proposed an approximation algorithm for
the 1-median problem that repeats to find a vertex with
higher closeness centrality starting a randomly selected ini-
tial vertex. The key of the success of our iterative approach
is what subgraph is used to efficiently obtain a tight upper

††DTZ stores kd values per vertex in memory for fast calcula-
tion.
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bound of closeness centrality of each vertex. FAOM uses
k-neighbor dense shortest path graphs with shortcuts, which
results in empirical efficiency and approximation ratio close
to 1. It is an important remaining issue to theoretically clar-
ify input graph conditions under which those subgraphs are
effective. Furthermore, there may be better subgraphs for
this approach. It is an interesting research direction to study
what subgraph is appropriate for the approach. Another in-
teresting research direction is extension of our algorithm to
the k-median problem.
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Appendix A: Proof of Theorem 5.2

(proof) Construction of the kNSPG T (v0; k) can be done in
O(n log n + m) time and O(m) space by making the short-
est path tree T (v0) from v0 using Dijkstra’s algorithm and

adding all the edges between the nodes in Nk(v0). The cal-
culation of dT (v0)(v0)(= dG(v0)) can be done during the con-
struction in O(n) additional time and O(1) additional space.

Let TNk(v0)(v0) be the subgraph of T (v0) induced by
Nk(v0). Define WNk(v0)(v) = WT (v0)(v) and dNk(v0)(v) =
dD

T (v0)(v) for all the descendants v ∈ DT (v0)(u) of leaf nodes
u ∈ TNk (v0), and define WNk(v0)(v) = w(v) and dNk(v0)(v) = 0
for internal nodes v ∈ TNk (v0). Note that all the WNk(v0)(v)
and dNk(v0)(v) are calculated in O(n) time and space by a re-
cursive algorithm. Let GNk(v0) be the subgraph of G induced
by Nk(v0). Then, for v ∈ Nk(v0),

dT (v0;k)(v) =
∑

u∈Nk(v0)\{v}

(
dGNk (v0) (v, u)WNk(v0)(u) + dNk(v0)(u)

)
holds. Thus, for each v ∈ Nk(v0), dT (v0;k)(v) can be obtained
in O(k log k + k2) = O(k2) time and O(m) space calculating
all the distance dGNk (v0) (v, u) by Dijkstra’s algorithm.

For v ∈ V \ Nk(v0), dT (v0;k)(v) can be calculated by

dT (v0;k)(pT (v0)(v)) + ((W − 2W(v))d(pT (v0)(v), v),

where W is the sum of all the weights in G. So, all the
dT (v0;k)(v) for v ∈ V \ Nk(v0) can be calculated in O(n) time
and space.

Totally, all the dT (v0;k)(v) for v ∈ V can be calculated in
O(n log n + m + k3) time and O(m) space. □

Appendix B: Proof of Theorem 5.5

(proof) As preparation, for all v ∈ V , we calculate

(a) WT (v0)(v), C(v) and dT (v0;k)(v,C(v)),
(b) dT (v0)(v, p2 j

) for j = 0, . . . , log(depthS T (C(v))(v)) and

(c)
∑2 j

i=1 dT (v0)(pi(v), pi−1(v))WT (v0)(pi−1(v))
for j = 0, . . . , log(depthS T (C(v))(v)),

where depthS T (C(v))(v) is the depth of v in the rooted tree
S T (C(v)).

(a) can be calculated by recursive call starting from v0
and traversing T (v0) in O(n)-time and O(n)-space. (b) and
(c) can be also calculated by similar recursive call stacking

dT (v0)(v0, v) and
∑depthT (v0)(v)

i=1 dT (v0)(pi(v), pi−1(v))WT (v0)(pi−1(v))
to a stack array, from which (b) and (c) for v can be calcu-
lated in O(log n)-time and O(n)-space. Totally, (a), (b) and
(c) are calculated in O(n log n)-time and O(n log n)-space.

We show that δT (v0;k),e(v) can be calculated in O(log n)
time using above (a), (b) and (c). Let e = (s, t). First,
vop can be calculated by a kind of binary search using
(b) starting from the comparison between dT (v0;k)(v, t) =
dT (v0;k)(v,C(v)) + dT (v0;k)(C(v),C(t)) + dT (V0;k)(C(t), t) and
dT {e}(v0;k)(v, t) = dT (v0;k)(v, s) + d(s, t). This can be done in
O(log n) time. During the binary search for the calculation
of vop,

∑iop

i=1 dT (v0)(pi(t), pi−1(t))WT (v0)(pi−1(t)) can be calcu-
lated in O(log n) time using (c). Thus, δT (v0;k),e(v) can be
calculated in O(log n) time. □

Appendix C: Proof of Theorem 5.6

(proof) By Theorem 5.5 after O(n log n)-time O(n log n)-
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space preparation, the restricted effect δT (v0;k),e(v) of any
edge e for any vertex v can be calculated in O(log n) time.
So, we show that total number of pairs (v, e) to calculate
δT (v0;k),e(v) is O(kn + m). For each v ∈ V \ Nk(v0) and each
u ∈ Nk(v0) \ {C(v)}, δT (v0;k),e(v) for edges e in Eu

v ∪ {ev′,u |
p(v′) = v} are calculated. So, the total number of edges is∑

v∈V\Nk(v0)

∑
u∈Nk(v0)\{C(v)}

(|Eu
v | + |{ev′,u | p(v′) = v}|).

Since
∑
v∈V\Nk(v0)

∑
u∈Nk(v0)\{C(v)} |Eu

v | is upper bounded by 2m
and
∑
v∈V\Nk(v0) |{ev′,u | p(v′) = v}| is upper bounded by n − k,

the total number of edges is (k−1)(n− k)+2m = O(kn+m).
□
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