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PAPER

Construction of Latent Descriptor Space and Inference Model of
Hand–Object Interactions

Tadashi MATSUO†a) and Nobutaka SHIMADA†, Members

SUMMARY Appearance-based generic object recognition is a chal-
lenging problem because all possible appearances of objects cannot be
registered, especially as new objects are produced every day. Function of
objects, however, has a comparatively small number of prototypes. There-
fore, function-based classification of new objects could be a valuable tool
for generic object recognition. Object functions are closely related to hand–
object interactions during handling of a functional object; i.e., how the hand
approaches the object, which parts of the object and contact the hand, and
the shape of the hand during interaction. Hand–object interactions are help-
ful for modeling object functions. However, it is difficult to assign discrete
labels to interactions because an object shape and grasping hand–postures
intrinsically have continuous variations. To describe these interactions, we
propose the interaction descriptor space which is acquired from unlabeled
appearances of human hand–object interactions. By using interaction de-
scriptors, we can numerically describe the relation between an object’s ap-
pearance and its possible interaction with the hand. The model infers the
quantitative state of the interaction from the object image alone. It also
identifies the parts of objects designed for hand interactions such as grips
and handles. We demonstrate that the proposed method can unsupervisedly
generate interaction descriptors that make clusters corresponding to inter-
action types. And also we demonstrate that the model can infer possible
hand–object interactions.
key words: feature extraction, unsupervised machine learning, object clas-
sification

1. Introduction

Appearance-based generic object recognition is a challeng-
ing problem because all possible appearance of new objects,
which are produced every day cannot be completely regis-
tered. In contrast, function of objects is common to many
objects regularly handled by humans and has a compara-
tively small number of prototypes. Therefore, a function-
based classification of new objects could be valuable for
generic object recognition. The effectiveness of object func-
tions in generic object recognition has been already dis-
cussed and indicated [1], [2]. However, in the papers, each
function is manually defined for each object category. It is
desirable that information specifying functions can be ex-
tracted without manually assigning function labels to many
objects.

The object function is closely related to the interactions
between the functional object and human hand. Specifically,
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it embodies the approach of the hand to the object, the parts
of the object contacted by the hand, and the hand shape ac-
tivated by the interaction [3]. The interaction types speci-
fied by such factors have been precisely analyzed in the lit-
erature [4]. Hand–object interactions are therefore promis-
ing for function-based classification in image-based recog-
nition. Some parts of objects, such as grips, bottoms, and
brims, are handled in typical ways (Fig. 1). Such interac-
tions with specific parts are called perceived affordance [5].

Assuming that a hand–object interaction can be repre-
sented by a descriptor, the descriptor can be considered as
a latent attribute of the object itself. Such descriptors are
available for training samples but not for the test samples. In
the context of machine learning, training with hidden infor-
mation (such as latent attributes) can improve the classifica-
tion accuracy [6]–[9]. The hidden information contains ad-
ditional records of each training sample: for example, age,
gender, or race in facial recognition algorithms. The clas-
sifier is trained to recognize facial image patterns by calcu-
lating the similarity metric of the hidden information such
as age, gender, or race, which provides the error costs. Al-
though the hidden information is not available for test sam-
ples, considering the hidden information on training brings
the classification boundaries with no over-fitting and good
inference performance. A similar framework is potentially
applicable to recognition based on hand–object interactions.

Alessandro Pieropan et al. have proposed an method
estimating an object function from a sequence of interac-
tions [10]. They focus on defining a function by a sequence
of descriptions of predefined actions (comparatively large
motion), not including shapes of hands and objects, which
are important for interaction between a hand and a tool. Dan
Song et al. have proposed an method estimating a human in-
tention from an image sequence of an interaction [11]. In
the method, relationship between intention and appearances
is learned supervisedly. The interaction type is discretely

Fig. 1 Local appearances and typical hand–object interactions of a cup
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defined and required to be given manually before modeling
for each action samples. Since an object shape and grasping
hand–postures intrinsically have continuous variations, de-
scriptions of interactions should reflect such variation con-
tinuously.

We propose a system that can embed a hand–object
interaction as a “interaction descriptor” vector in a small
dimensional space. The interaction descriptor represents
hand–object interactions continuously in contrast to discrete
label sets, which only discriminate several predefined ob-
jects (“cup”, “pen”, . . .) or function classes (for “drink”,
“write”, . . .). The proposed method can achieve the embed-
ding in unsupervised way. Assuming that object function
is closely related to hand-object interactions, the interaction
descriptor is helpful for modeling object functions.

For a numerical representation of hand–object interac-
tions, we introduce the interaction descriptor space. This
space is unsupervisedly constructed by a convolutional au-
toencoder (CAE) [12], an unsupervised feature extraction
method. When training the model, we introduce a sparse-
ness term in the evaluation function that clusters similar in-
teractions in the descriptor space. The training is based on
the appearances of hand–object interactions of typical func-
tional objects such as scissors, cutters, pens, and cups. The
latent attributes in the training are the interaction images,
comprising the appearance itself and its segmentation im-
ages of the hand and object. The descriptor space can quan-
titatively discriminate among an infinite number of func-
tional object types.

Employing the convolutional neural network
(CNN) [13], we then model the relation between an object’s
appearance and its corresponding hand–object interaction
state in the interaction descriptor space. In this way, the
model can infer the interaction state from the object image
alone.

We demonstrate that the descriptor space and the pro-
posed framework successfully encode the hand–object in-
teraction state from a single object image.

2. Interaction Descriptor Space

The object function is closely related to the type of hand–
object interaction during handling of a functional object,
such as grasping the object, picking it up, the direction of ap-
proach of the hand, and other characteristic motions. There-
fore, these hand–object interactions are potentially useful
for describing the object function. Since an object shape and
grasping hand–postures intrinsically have continuous vari-
ations, interaction descriptors should continuously reflect
such variations. We represent an interaction descriptor as a
vector in a continuous vector space, “interaction descriptor
space”. We generate an interaction descriptor vector by en-
coding an appearance of a hand–object interaction because
the appearance reflects the type of the interaction.

The problem is how to generate the mapping from an
appearance to an interaction descriptor. The mapping should
satisfy the following conditions:

A. The mapping extracts only the essential information of
the interaction. The detailed shape or texture of the
object, which are not relevant to the interaction, should
be ignored.

B. The mapping can be learned with a set of unlabeled ap-
pearances and therefore can be generated without man-
ually classifying the interactions beforehand.

C. Images corresponding to different interactions are
mapped to distantly spaced descriptors. The difference
between two interactions should be reflected in the nu-
merical distance between their corresponding descrip-
tors.

D. Images corresponding to similar interactions are
mapped to closely spaced descriptors, even when the
objects differ in size or shape and are slightly displaced
from each other in the images.

E. Certain spatially local features, such as edges and grips,
are common to multiple interactions and are effective
for distinguishing among interactions. Such useful fea-
tures should be automatically found from a set of ap-
pearances.

The essential information can be extracted by the au-
toencoder method [14], [15], which employs an encoder and
a decoder. The encoder converts an input to a code with
lower dimensionality, and the decoder approximately re-
stores the original input from the code. Both elements are
trained such that the combination restores the input as cor-
rectly as possible for a certain set of vectors. Under this
constraint, the encoder generates a numerical representation
of the principal components required for input restoration.
In addition, the encoder and decoder can be trained with un-
labeled vectors (satisfying condition B, mentioned above).

If we can restore an interaction appearance from a de-
scriptor, then the descriptor contains information of the in-
teraction. The mapping that satisfies conditions A and B is
generated by autoencoder method.

To satisfy condition C, we concentrate the descriptors
corresponding to certain types of interaction appearances
and isolate them from descriptors corresponding to other
types of interactions. If a label specifying an interaction
type can be assigned to each appearance, we can further con-
strain the mapping so that the descriptors of two different in-
teraction types are distantly spaced. However, to satisfy B,
the important components that specify an interaction must
be found from unlabeled appearances. In previous studies,
the important components among a set of unlabeled vectors
have been found by sparse coding methods [16]–[20]. How-
ever, these methods require additional inequality or equality
constraint.

To resolve this problem, we introduce a sparseness con-
straint to the autoencoder. Although sparse autoencoders
have been previously proposed [15], [21], the method in [21]
requires an inequality constraint when training the model.
The method in [15] requires the scheduling of the sparsity
level.

We introduce the sparseness constraint that does not



1352
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Fig. 2 Network structure of the encoder and decoder

Fig. 3 Components of an interaction image

require equality or inequality constraint. It is applicable to
a general CNN-based autoencoder that is followed by fully
connected neural networks with non-linear activation func-
tions. As a CNN consists of convolutional filters that uni-
formly extract spatially local features from an image, the
extracted local features are position-independent (satisfying
conditions D and E). In addition, the CNN filters can be
trained by an unsupervised learning method (satisfying B).

3. Interaction Image

Before generating a descriptor from an interaction appear-
ance, we need to define the appearance which contains suf-
ficient information to distinguish among interactions.

The appearance is derived from an interaction image
(Fig. 3), a 3-channel (32 × 32) pixel normalized image con-
sisting of a total appearance, a hand region mask and an
object region mask.

To focus on the hand–object interaction, we approxi-
mately normalize the positions and directions of the training
images for each type of hand–object interaction. The train-
ing images can be automatically normalized in the wrist–
object coordinate system [22], as shown in Fig. 4.

4. Autoencoder for Generating Descriptors

We simultaneously constructed the interaction descriptor
space and the mapping using a sparse convolutional autoen-

Fig. 4 Normalization of a training image

coder (CAE).

4.1 Network Structure

To automatically extract the local features that effectively
identify an interaction, we place the CNN as the first layer
of the encoder. For learning the nonlinear relation between
the local features and interactions, the first layer is fol-
lowed by a three-layer fully connected neural network in
which each layer precedes a nonlinear activation function
(Fig. 2 (a)). Similarly, the decoder is a fully connected neu-
ral network with a nonlinear activation function for repre-
senting the nonlinear relation (Fig. 2 (b)).

4.2 Cost Function

Generally, an autoencoder is trained such that the encoder–
decoder combination approximately restores an input in a
certain input set. It is formulated as

argmin
D,E

∑
I∈S
‖I − D (E (I))‖22 , (1)

where I, S , D(·), E(·), and ‖·‖p denote the input to be re-
constructed, a set of inputs, the encoder, the decoder, and
the �p norm, respectively. In our problem, I and E (I) de-
note the interaction image and its corresponding descriptor,
respectively.

In the above objective function, the encoder should pre-
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Fig. 5 Encoder and decoder outputs

serve the information of an input among a certain set of
inputs. Our problem requests that the encoder can extract
the essential components common to the interaction appear-
ances of similar type. According to the basis pursuit con-
cept [23] or sparse coding method, this can be achieved by
constraining the �1 norm of the encoder’s output. Simply,
the �1 constraint can be imposed on the objective function
as follows:

β
∑
I∈S
‖I − D (E (I))‖22 + λ

∑
I∈S
‖E (I)‖1 . (2)

However, simply adding the �1 norm term is ineffec-
tive because the additional term can be rendered arbitrarily
small by scalar multiplication of the encoder output and the
decoder input. Basis pursuit avoids this problem by adding
a constraint of the magnitude of the encoder matrix, as given
by Eq. (1) in [21]:

argmin
D,z

1
2

N∑
n=1

‖xn − Dzn‖22 + β ‖zn‖1

subject toD = [d1, . . . ,dK]

‖dk‖22 ≤ 1 f or k = 1, . . . ,K,

(3)

where xn and D mean an input vector and an decoder ma-
trix, respectively, and zn denotes the code corresponding to
xn. However, such a constraint is not easily imposed on an
NN-based encoder. Instead, we introduce a constraint term
Csparse that simultaneously limits the �1 norm and the mag-
nitude of the encoder’s output as follows:

Cerr =
∑
I∈S I

‖I − D (E (I))‖22 , (4)

Csparse =
∑
I∈S I

( ‖E (I)‖1
‖E (I)‖2

)2

, (5)

C = βCerr + λCsparse. (6)

The additional term Csparse is the ratio of the �1 norm to the
�2 norm of the descriptor E (I). Csparse is smaller if the de-
scriptor vector E (I) is more sparse [24], [25]. The autoen-
coder is trained to minimize the total cost function C.

For a d-dimensional vector v, (‖v‖1 / ‖v‖2)2 is mini-
mized at 1 only when the vector v has a single non-zero

component and all other components are zero (the sparsest
case). Conversely, it is maximized when all components of
v have a common absolute value. The lower the Csparse, the
fewer basis vectors required in the weighted sum that ap-
proximates the decoder outputs.

This decoder obtains the shapes of a hand and an ob-
ject and their spatial relation from a point on the interaction
descriptor space (Fig. 5).

5. Inference Model

With the numerical interaction descriptor, the CNN can
learn the relation between an object appearance and a possi-
ble interaction (Fig. 6). We can then infer an instance of the
interaction descriptor from the appearance of an object.

Each interaction descriptor does not represent an ab-
solute direction of an interaction in an image because it is
based on interaction images and they are normalized by the
wrist–object coordinate system, as shown in Fig. 4. An in-
teraction descriptor represents shapes of a hand and an ob-
ject, their relative position and their relative direction. So,
when pairing an object-only appearance with an interaction
descriptor for training the inference model, any rotated ver-
sions of the object-only appearance may be paired with the
interaction descriptor. Although it is possible to train the
inference model with all pairs of any rotated object-only ap-
pearance and an interaction descriptor, a convolutional neu-
ral network (CNN) cannot effectively extract common com-
ponents from many rotated variations [26]. To learn com-
mon shapes of objects with common possible interactions
by a CNN effectively, it is desirable that directions of ob-
jects with common interactions are standardized. Since an
object-only appearance does not have an obvious standard
direction, we have normalized a direction of an object-only
appearance so that the object has a direction similar to that
of an object in the paired interaction image.

Due to the normalization, when inferring an interac-
tion descriptor from an object-only appearance, we have to
rotate the appearance so that its direction matches to that of
a similar object used in training. Since appropriate rotation
for an object is unknown generally, we have to infer inter-
action descriptors from all possible versions of the rotated
appearance.
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Fig. 6 Training of inference model

Fig. 7 Training with invalid descriptor

However, if objects have some typical poses in images
due to gravity or other reason, the inference model should be
trained with pairs of an appearances of an object in such a
typical pose and a corresponding interaction descriptor. The
inference model trained in that way can infer an interaction
descriptor from an object-only appearance itself because it
matches to one of typical poses.

We also introduce an invalid descriptor that discrim-
inates between images with and without known interac-
tions. For an input without known interactions, the model is
trained to output the descriptor closest to the invalid descrip-
tor. The invalid descriptor is defined as a zero vector. The
model is trained with two types of teacher samples (Fig. 7);
pairs of an image with a known interaction and its descrip-
tor (positive samples), and pairs of an image without known
interactions and an invalid descriptor (negative samples).

After training the model, we estimate the probability
distribution of the L2-norms of the inferred descriptors for
samples of each teacher type. These samples differ from
the training samples of the inference model R. Figure 8
shows the estimated distributions of P

(
‖R(O)‖L2

∣∣∣O ∈ Ipos

)
and P

(
‖R(O)‖L2

∣∣∣O ∈ Ineg

)
, where R denotes the inference

model, O denotes an input image, and Ipos and Ineg are the
sets of teacher images with and without known interactions,
respectively. As shown in the figure, a high norm of an in-
ferred descriptor indicates large likelihood that the input has
a known interaction. The likelihood f that an input image O
has a known interaction is given by

f (O) =
g(‖R(O)‖L2)

g(‖R(O)‖L2) + h(‖R(O)‖L2)
, (7)

Fig. 8 Distribution of L2-norms of inferred descriptors

where

g(d) = P
(
d =

∥∥∥R(O′)
∥∥∥

L2

∣∣∣O′ ∈ Ipos

)
,

h(d) = P
(
d =

∥∥∥R(O′)
∥∥∥

L2

∣∣∣O′ ∈ Ineg

)
.

(8)

By connecting the inference model R and the decoder D,
our system infers a possible interaction image from the ap-
pearance of an object (Fig. 9). The inference model R is the
CNN shown in Fig. 10.

6. Experiment

The encoder and decoder were trained with interaction im-
ages generated from 1,680 scenes showing 12 types of in-
teractions (Fig. 11). Each interaction image was generated
from a (32 × 32)[pixel] sub-image randomly located in the
scene image. We generated multiple instances of interaction
images from each scene by randomly extracting subsquares
with sufficient area of a hand region. The total variation ex-
ceeds 500,000. Masks in interaction images were generated
by skin color extraction and background subtraction. The
encoder and decoder were trained by minimizing C using
stochastic gradient descent (SGD) [13].

6.1 Distribution of Descriptors

To demonstrate the effect of the sparseness cost, we define
the diameterD of a set of descriptors as follows:

diaD def
= max {‖x − y‖ | x, y ∈ D} (9)

We also defineDk as a set of descriptors of the k-th interac-
tion type, and denote μdia as the mean of diaDk for k. If μdia

is small, the descriptors corresponding to a similar interac-
tion are closely placed. This is a desirable property because
similarity of interactions should be reflected in closeness of
their descriptors.

Figure 12 shows the relation between the sparseness
cost Csparse and the mean diameter μdia of the descriptor sets.
Each point corresponds to a pair of Csparse and μdia after the
training process for each weight λ in the cost function (4).
The case λ = 0 is equivalent to the case without a sparse-
ness cost. The figure shows that larger λ brings smaller
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Fig. 9 Operation of the inference system

Fig. 10 Network structure of the inference model

Fig. 11 Interaction types in the encoder–decoder training step

Fig. 12 Mean diameter versus sparseness cost of the descriptor groups
(each symbol denotes a different λ)

Csparse and smaller Csparse brings smaller μdia. Smaller μdia

means that descriptors corresponding to a similar interaction
are more aggregated. This result shows that the proposed
method can unsupervisedly generate interaction descriptors
that make aggregates corresponding to hand–object interac-
tions.

To compare distributions of descriptors by autoen-
coders trained with/without the sparseness cost Csparse in
(4), we calculated the purity, an evaluation measure of clus-

Table 1 Purity of clusters of descriptors

Autoencoder Purity

Without the sparseness cost 0.16
With the sparseness cost (the proposed method) 0.99

tering quality, The purity is defined by how many samples
in a cluster belong to the most frequent class label (correct
label given manually) in the cluster as follows;

(PURITY)
def
=

∑
c:cluster index

1
nc

max
i:interaction type

nc,i, (10)

where nc means the number of samples assigned to the c-
th cluster, and nc,i means the number of samples from the
i-th type interaction assigned to the c-th cluster. If the purity
of clusters is close to 1, almost all descriptors of each clus-
ter belong to a common interaction type. This means that
the clusters generated without information of interaction
types approximately form subdivision of interaction types.
We calculated descriptors from 800 hand–object interaction
images not used in the training for each autoencoder, and
applied mean-shift clustering to the descriptors. Table 1
shows the purities for autoencoders trained with/without
the sparseness cost Csparse. The purity for the autoencoder
trained with the sparseness cost (the proposed method) was
0.99, while that for that without sparseness cost was 0.16. 99
percent of descriptors in a cluster by the proposed method
belong to a common interaction type. This implies that the
descriptors for the same interaction type are more separately
embedded by the autoencoder trained with sparseness cost
than without sparseness cost. It is important that these clus-
ters with the similar interaction was unsupervisedly gener-
ated from only image signals.

Figure 13 shows the distribution of various object im-
ages within 11th and 18th dimensions of the interaction de-
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Fig. 13 One plane of the interaction descriptor space

scriptor space. “Mug type 1” and “Mug type 2” are differ-
ent hand–mug interactions. In the former interaction, the
hand grips the mug’s handle; in the latter, the hand holds
the mug from the bottom. As shown in Fig. 13, these inter-
actions form two separate clusters in the descriptor space.
In addition, the interaction image “Mug type 2”, which was
not used in training, maps to a descriptor near those of the
mug–hand interaction images used in training. As a group
of similar interactions composes a cluster in the interaction
descriptor space, that space well characterizes the types of
hand–object interactions.

6.2 Restoration by the Decoder

Figure 14 shows examples of the decoder restorations. The
encoder abstracts the rough shapes and positions of image
features, ignoring their specific textures.

6.3 Inference of an Interaction

Figure 15 shows interaction images inferred from appear-
ances of objects. In these examples, the pairs of masks of the
inferred hand and object show their positional relations in
the possible interaction. The hand–object interactions were
successfully inferred from the single object images.

Figure 16 shows the region of interaction between scis-
sors and a human hand. The colored regions mark the center
of a window in which the likelihood f exceeds 0.9. High and

Fig. 14 Restoration by autoencoder

low likelihoods are inferred around the grip and edges of the
scissors, respectively, reflecting the human interactions with
the grip of scissors and avoidance of the edge in teacher im-
ages. The inference model can therefore infer the interaction
regions of human hands and scissors.

Figure 17 is a color representation of the inferred in-
teraction descriptors for parts of a cup. The color of each
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Fig. 15 Interaction images inferred from unknown objects

Fig. 16 Regions (pink) of possible interaction between human hand and
scissors

Fig. 17 Inferred descriptors for interactions with handle (red) and bot-
tom (yellow) of a cup

Fig. 18 Inferred hand-region masks and their possible interaction

Fig. 19 Hand-region masks inferred from an object in unknown category

position is determined by mean shift clustering of the vec-
tors containing the inferred descriptor and the position. This
figure reveals the different types of interactions inferred on
the grip and the bottom of the cup. Figure 18 shows the
hand-region masks inferred in these two interaction types.
The model can infer an interaction descriptor corresponding
to possible interaction at a particular position.

To demonstrate that the proposed method can infer a
possible interaction from an appearance of an unknown ob-
ject in an unknown category, we inferred interaction descrip-
tors from an appearance of a bag shown in the top image in
Fig. 19. No bags are not used in training, but a grip of the
bag has an appearance similar to that of a mug used in train-
ing. The bottom left image in Fig. 19 is a hand region mask
inferred from an image around a grip of the bag. It shows
that the inference model can infer a hand region mask like
handling the grip of the bag from an image rotated so that
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the direction of the grip is close to that of a mug used in
training the inference model. This means that the inference
model learns the relation between a grip-like shape and an
interaction for handling it. And also, as shown in the bot-
tom right image in Fig. 19, a hand region like supporting the
bottom is inferred from the other part of the bag, which is
similar a bottom of a mug.

This indicates that the inference model can infer a pos-
sible interaction from a partial appearance of an unknown
object in an unknown category if the model is trained with
similar partial appearances included in other objects.

To evaluate the proposed inference model, we com-
pared an interaction image inferred from an appearance of
an object with a real instance of an interaction image oc-
curred with the same object. To compare the two interac-
tion images quantitatively, we calculated mean peak signal
to noise ratios (PSNRs) between them for each channel (to-
tal appearance, hand region mask and object region mask),
which is defined as below.

1
N

∑
(I,Iobj)

10 log10
V2

c

1
M

∥∥∥∥[I]c −
[
D

(
R

(
Iobj

))]
c

∥∥∥∥2

L2

, (11)

where

[I]c = (the c-th channel of the interaction image I),

Iobj = (an object appearance),

I = (the interaction image to Iobj).

N = (the number of samples),

M = (the number of pixels in a channel),

Vc = (the possible maximum pixel value

of the c-th channel).

(12)

The calculated values of PSNRs are shown in Table 2. The
values of PSNRs for training samples are from 8[dB] to
10[dB]. They are lower than 20[dB] that indicates unaccept-
able image quality in image compression [27]. This is be-
cause the autoencoder extracts essential components com-
mon to some appearances of interactions instead of encod-
ing detail of each interaction image. However, Fig. 15 shows
that the proposed method can infer rough shapes of a hand
and an object. From an appearance of a cutter, a hand mask
region like grasping the cutter is inferred. An object hand
mask region inferred from the cutter indicates a narrow and
long region and it matches rough shape of the grip of the cut-
ter. From an appearance of a cup, a hand mask region like
grasping the cup is inferred. Although the value of PSNRs

Table 2 Mean PSNR of the inference model

Mean PSNR [dB] for each channel
Total appearance Hand region Object region

for training
samples

8.80 10.33 10.94

for test
samples

3.66 6.53 7.22

are not high, the proposed method can roughly infer a pos-
sible interaction.

7. Conclusion

We proposed the interaction descriptor space for describ-
ing the hand–object interactions of functional objects. The
space is automatically constructed from sets of object-
handling images of typical functional objects such as mugs,
scissors, cutters. We demonstrated that a descriptor cor-
responds to a quantitative interaction state and descriptors
make clusters consistent with interaction types. We also pro-
posed an inference model that infers a possible interaction
from an object image alone. Given an object image, the
model successfully inferred an interaction descriptor corre-
sponding to a possible interaction at each position of the
image.

The interaction descriptor space can characterize hand–
object interactions and it can be used to model the relations
between an object and its possible interactions. The pro-
posed approach is a potentially valuable tool in function-
based classification.
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