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Fast Persistent Heap Based on Non-Volatile Memory

Wenzhe ZHANG†, Kai LU†a), Xiaoping WANG†, Nonmembers, and Jie JIAN††, Student Member

SUMMARY New volatile memory (e.g. Phase Change Memroy)
presents fast access, large capacity, byte-addressable, and non-volatility
features. These features will bring impacts on the design of current soft-
ware system. It has become a hot research topic of how to manage it
and provide what kind of interface for upper application to use it. This
paper proposes FP-Heap. FP-Heap supports direct access to non-volatile
memory through a persistent heap interface. With FP-Heap, traditional
persistent object systems can benefit directly from the byte-persistency of
non-volatile memory. FP-Heap extends current virtual memory manager
(VMM) to manage non-volatile memory and maintain a persistent mapping
relationship. Also, FP-Heap offers a lightweight transaction mechanism to
support atomic update of persistent data, a simple namespace to facilitate
data indexing, and a basic access control mechanism to support data shar-
ing. Compared with previous work Mnemosyne, FP-Heap achieves higher
performance by its customized VMM and optimized transaction mecha-
nism.
key words: non-volatile memory, virtual memory manager, direct access

1. Introduction

Non-volatile memory technologies, represented by Phase
Change Memory (PCM), are maturing fast in recent years.
Non-volatile memory delivers features such as fast access,
large capacity, byte-addressable, and non-volatility. These
appealing features will break the long premise of the two-
level storage architecture that the main memory is small,
fast, and volatile and the secondary storage is large, slow,
and non-volatile. Hence, it has become a hot research topic
of how to use it, i.e. how to manage it and provide what kind
of interface for upper applications to access it.

In current operating system, the memory management
system (Virtual Memory Manager or VMM) is designed
for volatile DRAM and offers no support for non-volatility,
while the file system is designed for block devices and can-
not exploit the byte-addressability of non-volatile memory.
Hence there are generally two trends to manage non-volatile
memory [1]:

• Extending VMM to manage non-volatile memory. Ex-
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posing it directly to upper applications like DRAM and
offering support for non-volatility.
• Optimizing traditional file system according to the

byte-addressable feature of non-volatile memory.

We adopt the first strategy and expose non-volatile
memory to upper applications through a persistent heap in-
terface (e.g. FP malloc). Traditional persistent data struc-
tures are backed-up by files through memory map (e.g.
mmap) [2]–[4]. The persistent data needs to undergo sev-
eral procedures (e.g. transformation and copy) to reside in
non-volatile media. Now the byte persistency provided by
non-volatile memory can allow persistent data to reside di-
rectly in non-volatile memory. Meanwhile, since the non-
volatile memory has a large capacity, it can be regarded as
an objects storage. For the data structures stored in it, the
non-volatile memory may act as both working memory and
residing storage. Previous work Mnemosyne [5] and NV-
heaps [6] proposed similar concepts. However, they just of-
fer direct access and other language level features (e.g. safe
pointer) through user mode library. To manage non-volatile
memory at a low level (i.e. operating system kernel), they
rely on file system: Mnemosyne maps persistent regions to
files to maintain and recover the memory mapping relation-
ship; NV-heaps sets up a ramdisk on non-volatile memory
and builds persistent heap based on it through memory map.
As discussed before, file system is designed for block de-
vices and may introduce unnecessary overhead when man-
aging non-volatile memory.

This paper introduces FP-Heap: a fast persistent heap
based on non-volatile memory. FP-Heap mainly focuses on
the issues below:

• Extend current VMM to manage non-volatile memory
and maintain a persistent mapping relationship.
• Offer an efficient transaction mechanism for atomic up-

date of persistent data to ensure data consistency.
• Offer simple namespace and access control to facilitate

data indexing and sharing.

FP-Heap offers familiar interfaces for upper applica-
tions to use non-volatile memory (e.g. FP malloc, FP free).
A simple scenario is: an application can allocate a region of
non-volatile memory and directly access it. The allocated
non-volatile memory can be accessed again on next run as
long as it has not been freed.

The rest of this paper is organized as follows: We in-
troduce the background of non-volatile memory in Sect. 2.
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Table 1 Comparison between PCM and DRAM.

Read Write Endurance Density

DRAM 60ns 60ns 1016 7F2

PCM 85ns 100-500ns 107 4F2

Section 3 and Sect. 4 give our design and implementation of
FP-Heap. We evaluate FP-Heap in Sect. 5. Related work is
discussed in Sect. 6 and we conclude in Sect. 7.

2. Non-Volatile Memory

Non-volatile Memory represents a kind of memory tech-
nologies that offer fast access, byte-addressable, and non-
volatile features. They can be connected to the mem-
ory bus and accessed by CPU through traditional load and
store instructions. More importantly, they can hold data
across system reboot naturally. Recent memory technolo-
gies include Phase Change Memory (PCM) [7], spin-torque-
transfer RAM (STT-RAM) [8], and meristors [9]. Among
them, Phase Change Memory (PCM) is the most devel-
oped and promising device that may act as an alternative
to DRAM in the future.

Table 1 gives a comparison between PCM and DRAM
on some key properties. The cell size of PCM is 4F2,
about 60% of DRAM [10], meaning a better scalability than
DRAM. Moreover, the Multi-level-cell (MLC) technology
can enable a PCM cell to store more than 2 bits of data,
further increases its capacity. PCM also has some draw-
backs such as low write speed and poor endurance. There
are many studies at architectural level to address these prob-
lems [11]–[14]. In this paper we assume the wear-leveling
is done in the memory controller.

(1) Proposed Architecture

Like previous work [5], we assume non-volatile memory is
placed beside DRAM to form a hybrid main memory sys-
tem. Non-volatile memory shares the same physical address
with DRAM and can be accessed directly by CPU through
load and store instructions.

(2) Assumptions

As non-volatile memory is not available to us now, we make
several assumptions like previous work [5]. Firstly, the
hardware should support an atomic write of 64-bits. Thus
a singly flying write may finish or have no affects when
system crashes. Secondly, there should be a mechanism
to block execution until previous writes reach non-volatile
memory, such as fsync in file system.

3. Design of FP-Heap

The goal of FP-Heap is to offer familiar interface to access
non-volatile memory along with achieving an efficient man-
agement of non-volatile memory.

Fig. 1 Design overview of FP-Heap.

3.1 Design Overview

The design overview of FP-Heap is shown in Fig. 1. Since
the dynamic allocation from heap is the most familiar con-
cept to programmers to access memory, our work focuses
on providing the FP malloc and FP free interfaces to upper
applications. Every process which links to our lib-FP will
have a persistent heap to serve the FP malloc and FP free.

Like other memory allocators [15], our heap is chuck
(or superblock) based: any process or thread who wants to
allocate memory will firstly get a fix sized virtual memory
region (called chunk or superblock) and allocates memory
from it. We organize the non-volatile memory in a chunk
based way: we record the memory mapping at the granular-
ity of a chunk (shown in Fig. 1). The information of map-
ping relationship and the occupied physical pages of a chunk
is stored in the corresponding chunk head in non-volatile
memory as shown in Fig. 1.

Moreover, we provide support for managing the non-
volatility such as achieving data indexing, access control,
and ensuring data consistency. For data indexing, every al-
located data structure could be given a unique name to help
locate it on next run or in other processes. For access con-
trol, every persistent heap will be tagged with the user name
of who firstly creates the heap. Only this user can change
the accessing mode of the heap. For avoiding data corrup-
tion, we provide a transaction mechanism to guarantee the
consistency of data. We also rely on it to support parallel
access to non-volatile memory.

3.2 Organization of Non-Volatile Memory

The non-volatile memory is organized into two parts: a data
part and a meta-data part (shown in Fig. 2). The data part
contains normal physical pages that are mapped to chunks.
The meta-data part consists of a list of chunk head, a log
zone used to protect the meta-data, and a global lock used
to tune chunk allocations from different processes. Every
chunk head mainly stores a page table for this chunk. The
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Fig. 2 Underlying organization of non-volatile memory.

chunk address and size indicate the virtual memory region
of the chunk. The chunk size is usually set fixed. If an
upper application allocates an object that is more than a nor-
mal chunk, then it will get a larger special sized chunk. If
the chunk is the first chunk of a heap, the chunk head will
also store the information of the heap such as the name and
the access control information. Every chunk head initially
occupies one physical page and can be extended to another
page if there are too many mapping information to record
in the page table. If a heap contains several chunks, the
chunk heads will be linked to facilitate searching (as shown
in Fig. 2).

(3) Protection from stray writes

We set apart the data part and the meta-data part at the phys-
ical address level. The data part can be mapped into user
processes’ spaces to be accessed directly, while the meta-
data part is invisible to users and could only be accessed by
kernel code. In this way we can guarantee the meta-data
will not be modified unintentionally. The chunk heads store
important information of free and occupied physical pages.
Any stray write will possibly cause a memory leak which is
permanent.

3.3 Non-Volatile Memory Allocation

Every process links to Lib-FP will automatically have a per-
sistent heap to serve request for non-volatile memory. Al-
location for memory is chunk-based (describe below). The
allocated chunk’s information will be recorded in the chunk
head. The allocation of the real physical pages and the es-
tablishment of the mapping relationship can be delayed to
the first touch of every virtual page just like what the page
fault mechanism operates DRAM.

We build our heap based on Hoard [15], a popular
memory allocator. Hoard asks memory regions from op-

Fig. 3 Organization of persistent heap.

erating system in the granularity of a superblock or chunk.
Here we record the chunk’s information in the non-volatile
memory. These chunks are all fix-sized (65536) and are
regarded as the regular chunk in FP-Heap. If a process
asks for a large object, Hoard will directly ask for a special
chunk from operating system which is exactly of that size.
As shown in Fig. 3, the regular chunks can be assigned to
each thread to facilitate multi-thread allocation for small ob-
jects while the special chunks are kept in global heap. Like
Mnemosyne [5], we store the allocation information of each
chunk in the global heap. The global heap itself (mainly the
control information), is also regarded as a special chunk and
is automatically created at process starts. The chunk head
of this special chunk is always the first of this heap in the
meta-data shown in Fig. 2.

Hoard also keeps a map storing which chunk is as-
signed to which thread. We do not store this information
in non-volatile memory. We just re-assign the chunks to
threads after system reboots in a simple way: after system
reboots, if a thread firstly accesses a chunk or call free to a
chunk, we assign the chunk to the thread. In other cases we
just do random assigning.

(4) Serving chunk allocation from different processes

Process may conflict with each other when allocating
chunks from non-volatile memory. We adopt a simple lock
to tune the allocations. As shown in Fig. 2, the lock is stored
in non-volatile memory and should be reset after system re-
boot. Meanwhile, a process may crash after getting the lock,
which will block the other waiting processes permanently.
To solve this problem, we introduce a simple timeout mech-
anism. Generally, the allocating of new chunk should be
finished in a short time thus the timeout mechanism will
work fine. This is mainly because we just need to find a
new page in meta-data to store the chunk information and it
only spends linear time to finish this.

3.4 Persistent Heap Management

Any process that links to lib-FP will automatically have its
own persistent heap. It can allocate space from this persis-
tent heap through the interface FP malloc and then access it
just like traditional DRAM. The heap will automatically be
mapped into the program’s space on next run and the objects
which have not been freed can be directly re-accessed again.
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This is done by scanning the chunk heads at the beginning
of the program to find the heap and map it into the process’s
space. The whole mapping mechanism is transparent to pro-
grammers so that they can just focus on allocating and using
non-volatile memory. This is the most common scenario of
using persistent heap.

However, there may be some trouble of locating the ob-
jects on the next run if the programmers do not implement
a root pointer to index all objects in the heap. In order to
facilitate locating the objects in the persistent heap, we offer
a mechanism in which programmers can give the object a
name when allocating it using FP malloc and can use this
name to query the address of the object. The name occu-
pies fix-sized region stored just before the allocated object.
Compared with file system, our name space is very simple.
Since FP-Heap mainly focuses on supporting direct access,
our scheme is to offer programmers the flexibility and basic
support to implement their own data indexing mechanism.

The new created persistent heap will automatically be
assigned a unique name which consists two parts: the ab-
solute path of the program and the user name who executes
this program (as shown in Fig. 2). If another user executes
this program or this user executes another program, a new
heap with a different name will be created. We do not allow
programs to create new heaps explicitly because (1) every
process executed by a specific user will automatically get
its own heap which is enough for it to access non-volatile
memory and (2) explicit creating new heaps will lead us to
a situation of managing complex namespace which is like
files in file systems and is costly [16].

To achieve data sharing, we offer a mechanism to let
a process access the heap of another process. Any process
could use the name to explicitly map the heaps of other pro-
cesses into its space. If a process explicitly maps another
existing persistent heap, its current persistent heap will be
unmapped automatically. This is for two reasons. (1) A pro-
cess should only have one persistent heap so that it will not
be confused when calling FP malloc. (2) The virtual ad-
dresses of different persistent heaps may conflict with each
other. Thus we just allow a process to have one persistent
heap mapped in its space at any time.

(5) Access control

We achieved a basic access control mechanism based on the
recorded user name. Only the user of a heap can change
the accessing mode of the whole heap. There are two ac-
cessing modes which are read-only and writable. Chang-
ing the accessing mode is like what traditional mprotect do.
The accessing mode is recorded in the chunk head as shown
in Fig. 2. Every time when the heap is being mapped into
a process’s space, we will use the accessing mode in the
chunk head to set the page table in operating system ker-
nel. Moreover, if the heap is read-only, then other users
can only map it into process space to read data from it.
FP malloc or FP free on the heap is not allowed. If the heap
is writable, then other users can modify the data in the heap
and FP malloc and FP free on the heap.

Fig. 4 Sample code of using transaction interface.

Here we just designed a basic controlling mechanism.
Sharing heaps among processes or users is like sharing files
among users. There may be users deleting writable shared
heap, which can cause data loss. It is like multiple users
modifying a shared file. However, the only security prob-
lem is the loss of file content (heap data here). The meta
data is guaranteed to be safe because they are modified by
kernel code. More sophisticated mechanism will be our fu-
ture work.

3.5 Data Consistency

Accidental system crashes or power cut would leave the data
in non-volatile memory in an inconsistent state. We provide
a transaction mechanism to avoid this problem. As shown in
Fig. 4, a process can allocate a piece of non-volatile memory
and access it directly as Fig. 4 (a) shows, while in this way
it may risk leaving the data corrupted when system crashes.
Alternatively, it can use a transactional interface to access
the data like Fig. 4 (b) shows. In this way all the modifica-
tions will be logged and the unfinished transactions can be
rolled back to help recover the persistent data after crashes.

We adopt redo logging where new values are written
to the log and committed to the destinations on committing.
Compared with undo logging where old values are copied to
log and new values are written to memory, redo logging has
several advantages. In undo logging, every write will result
into two writes: copying old value to the log and writing
new value. The two writes should be ordered using memory
fence or write-through mechanism to avoid losing of the old
value. While in redo logging, we just need to issue two
memory fences at transaction commit.

Our transaction mechanism can be divided into two
parts:

(1) For memory allocations (FP malloc or FP free or
page fault, which may modify our persistent heap or the
persistent mapping relationship), as we are based on Hoard
which has already implemented fine-grained lock to tune
parallel access, we just add logging to ensure data consis-
tency. The corresponding data includes the mapping infor-
mation in meta-data (e.g. the persistent page table) and the
memory allocation information in global heap. The map-
ping information is logged in meta-data and the heap or-
ganization information is logged in heap. We only submit
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Fig. 5 Optimized log.

these two logs when we meet PTM end. Thus in Fig. 4 (b),
if system crashes, the FP malloc will have no effects.

(2) For user accesses, we offers a transaction mecha-
nism based on Tiny-STM [17], [18] to support atomic up-
date.

We modify the Tiny-STM and put the write set of each
thread in non-volatile memory as a log. Traditionally, ev-
ery commit will need two fences: flush the write set to
destinations and wait until it finishes, then write a commit
flag and wait for it finishes. Here we borrow the idea of
Mnemosyne’s raw word log (RAWL) [5] to reduce a fence
on every commit. We modify the write set in Tiny-STM to
be append-only. Thus a later write to the same address in
a transaction would appear later in the log instead of over-
writing the former one. As shown in Fig. 5, every slot of
the log contains 3*64 bits of address, value, and mask. The
last bits of them are set to 1 to indicate this is a valid log
slot. The last log slot contains commit flag and the times-
tamp. The timestamp is used to guarantee the redoing order
of the committing during recovery. The mask field is set to
0 to indicate the last log slot as the mask cannot be 0 (As
we use the mask to indicate the size of the writing value,
it is impossible that in a log slot the mask field is 0. Be-
cause in this case we are not writing any data thus we do not
need a log slot to record this.). In this way we can just is-
sue one fence: if a system crash happens during commit, we
can check whether all the writes reaches the log by testing
whether all the log slots are tagged ‘1’. Figure shows that
not all writes reaches the log and the transaction should be
aborted.

For the truncated bits in address, value, and
mask, we use other un-used bits in mask and ad-
dress to recover them. For example, the mask will
always be 0xFF00000000000000 (indicating one byte
of written value), 0xFFFF000000000000, (2 bytes, 16
bits), 0xFFFFFFFF00000000 (4 bytes, 32 bits), and
0xFFFFFFFFFFFFFFFF (8 bytes, 64 bits). If the mask is
0xFF00000000000000, then it has many unused bit that we
can use to store the truncated last bits of address and value.

If the mask is 0xFFFFFFFFFFFFFFFF, then the last six bits
in the address must be 0 and we can use them. (Normally
any update to 64 bits memory is 64 bits address-aligned.
Thus if we update 64 bits, the last six bits of the address
is 0. As least in all STAMP benchmarks we find this to
be true. We argue that this may because of their memory
allocation pattern. Always doing 64 bits address-aligned ac-
cess is good for performance and is adopted in much mod-
ern programs. Nevertheless, we have implemented a fall-
back strategy: if ever we found any 64 bits update is not
64 bits address-aligned, we split it into two 64 bits address-
aligned updates that cover it. This is done transparently in
PTM write(a, value) thus we can guarantee all 64 bits up-
dates have their address to be 64 bits address-aligned. )

Discuss for the log fields. We adopted the Tiny-STM’s
write-ahead-log (we call redo log here) to support consistent
update of any non-volatile data. That is, before updating any
data, we need to write to the log first. The PTM write(a,
value) in Fig. 4 represents this process. In PTM write(a,
value), the memory pointed by a is not updated. Instead,
a log slot recording this information is written. Then at
the PTM end(), we write the value to the memory pointed
by a. Any access to the memory (pointed by a) between
PTM write(a, value) and PTM end() will be redirected to
the log slot (e.g. PTM read(a) as shown in Fig. 4). Here
in order to record the PTM write information, we need at
least two fields in each log slot: (1) the address field record-
ing which address is being written and (2) the value field
recording the new value that should be written to the ad-
dress at PTM end(). Moreover, the most popular case is
we just need to update 64 bits of a memory region in each
PTM write. But it is possible that we need to update less
than 64bits in a single PTM write. For example, what if we
need to update only 8 bits (one byte) of the memory pointed
by a? In order to support this, we leverage the mask field
as shown in Fig. 5. In this situation, the parameter mask is
passed to PTM write explicitly and is recorded in the mask
filed in each log slot. Later in PTM end(), we need to use
both the value and mask to determine what to write to the
corresponding memory space.

(6) Recovering

If the system meets crashes or power cut, we should do re-
covery before the non-volatile memory is accessed again.
The recovery is done after the system rebooting in two steps.
Firstly a special kernel thread will scan the log of the meta-
data of non-volatile memory. For the transactions which are
at committing phase, it will re-commit all the modifications
to the meta-data. For unfinished transactions, it just aborts
them by discarding the log. Secondly, a special process will
scan all the chunk heads and then map every heap into its
space. Then it scans the logs in the heap to do the similar re-
covery. As we adopt per-thread log, the recovery should be
done according to the timestamp of the log (shown in Fig. 5)
After doing the recovery, the logs in meta-data part will be
cleaned and the user logs in heaps will be freed.
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Table 2 Interfaces provided by FP-Heap.

lib-FP interfaces Description Key arguments

Memory
Interface

FP-malloc()
Allocate a piece

of persistent memory.

The size of the
allocated space.
The name given

to the new
allocated object which

helps retrieve its
address.

FP-free()
Free a piece of

persistent memory.
The address of the space.

Support for
non-volatility

FP-retrieve()
Find the address of a malloced

object by its name.
The name of the object.

FP-heap()
Map a heap into
process space.

The name of the heap.

FP-mprotect()
Change the access
mode of a heap.

The name of
the heap and

the protect mode
of the heap.

Transaction

PTM-begin() Begin a transaction.
PTM-end() End and commit a transaction.

PTM-read()
Transactional read

a variable.
The address of the variable.

PTM-write()
Transactional write

a variable.

The address of
the variable and
the new value.

4. Implementation Details

FP-Heap is based on Linux (kernel version 3.11.0) and con-
sists of 2 parts: (1) a kernel patch that manages physical
pages of non-volatile memory and the mapping of chunks
and (2) a library that exposes heap interfaces with support
for non-volatility to programmers. Table 2 shows the main
interfaces FP-Heap provides.

4.1 Emulating Non-Volatile Memory

As non-volatile memory is not yet available now, we use
DRAM to emulate it. During the system rebooting, we set
apart several GB of DRAM (currently 2 GB) to emulate non-
volatile memory and we use a free-list to manage all the
free non-volatile memory pages. In order to emulate the
non-volatility of non-volatile memory, we dump the whole
non-volatile memory pages to disk before system rebooting
and copy it back after system rebooting. So it seems like the
data saved in the emulated non-volatile memory are never
lost.

For emulating the latency of non-volatile memory (in
this paper we emulate PCM), we adopt the same method
introduced in Mnemosyne [5]. The read speed of PCM is al-
most the same as DRAM thus we do not emulate the latency
of read. Moreover, as most write to PCM will be cached
by CPU, we only emulate the write latency at commit time
before fence. At commit time, we firstly force all writes to
non-volatile memory using clflush, and then insert a delay
by using rdtsc to get and check the time stamp, and then
issue a memory fence using mfence.

Fig. 6 Page fault handler.

4.2 Physical Memory Management

During the system rebooting, we will scan all the page tables
in the chunk heads to see which physical page is occupied
and which is free. We then reserve all the occupied pages
and set up a free list to manage all the free physical pages.
If an existing heap is mapped into a process space and ac-
cessed again, we will use the page table in the chunk head to
recover the mapping relationship in operating system kernel.
The whole process is similar like current page fault handler
and is shown in Fig. 6.
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Table 3 Benchmarks

Benchmarks Description Input

Stress
Tests

Region creation

Create n
persistent regions.
The size of each
region is 1MB.

n=64, 128,
256, 512, 1024

Page fault test
Create a persistent
region of size n,

then touch every page.

n=64MB, 128MB,
256MB, 512MB, 1024MB

Access test

Create a persistent
region of size n.

Then write access
every byte.

n=64MB, 128MB,
256MB, 512MB

STAMP

bayes
-e-1 -i1 -n4

-p10 -q1 -r4096
-s1 -t1 -v32

genome
-g16384 -n4194304

-s64 -t1

intruder
-a10 -l16

-n1048576 -s1 -t1

kmeans
-m40 -n40 -t0.05

-i random2048-d16-c16
labyrinth -i random-x32-y32-z3-n96

ssca2
-i0.5 -k2

-l3 -p3 -s17
-t1 -u0.1 -w0.6

vacation
-n2 -q90 -u98

-r16384 -t4096
yada -a15 -i ttimeu100000.2

5. Evaluation

We mainly evaluate the performance of FP-Heap compared
with previous work on our own designed tests and STAMP
transactional benchmarks.

We mainly evaluate two aspects as follows and they are
shown in Sect. 5.1 and Sect. 5.2, respectively:

• The direct access overhead of FP-Heap compared
with Mnemosyne and the optimized file system of
PMFS [1].
• The performance of FP-Heap compared with the simi-

lar interface of Mnemosyne [5].

The experiments are all conducted on a platform with
Intel Core 2 quad-core (2.2GHz) equipped with 8GB of
physical DRAM running Linux kernel 3.11.0. We set apart
2GB of DRAM to emulate non-volatile memory.

5.1 Stress Tests for Direct Access

PMFS [1] is an optimized file system for non-volatile mem-
ory. It can offer the same functionality of supporting di-
rect access through memory map. Mnemosyne [5] also of-
fers similar interface pmap() and pmalloc(). In order to
evaluate our FP-Heap compared with PMFS on support-
ing direct access, we introduce three simple stress tests as
shown in Table 3. The three stress tests are Region creation,
Page fault test, and Access test. In Region creation, we use
PMFS and Mnemosyne to create several persistent regions
of 1MB through mmap() and pmap(). For FP-Heap, we set

the chunk size to 1MB so that each time when we allocate
a 1MB persistent region through FP malloc(), it will try to
get a new chunk. In Page fault test, we create a persistent
region of size n and then touch every page to trigger page
fault. This can test the underlying overhead of allocating
physical pages and setting up mapping relationships. For
FP-Heap, we set the chunk size to n. In Access test, we
create a persistent region and write every byte in the region
to test if there is any other overhead after the mapping is
set up. The above three stress tests can show the overhead
in FP-Heap, PMFS, and Mnemosyne on supporting direct
access.

5.1.1 Results

The results of stress tests are shown in Fig. 7. In all
stress tests our FP-Heap introduces ignorable overhead
compared with Base. We can see FP-Heap performs
much better than PMFS and Mnemosyne in Region creation
and Page fault test. The main overhead of PMFS and
Mnemosyne when creating a persistent region is to set up
some mapping structures with a backed file. Moreover,
every page fault will also result into a complex search
for a proper physical page and setting up the mapping
relationship. PMFS optimizes the file system for non-
volatile memory and it performs better than Mnemosyne in
Page fault test. While in FP-Heap, the chunk based organi-
zation of non-volatile memory makes it much easier to get
a new chunk and map a new physical page. In Access test,
we can see there is not obvious difference among FP-Heap,
PMFS, and Mnemosyne. This shows that the main overhead
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Fig. 7 Results of stress tests. (Base is normal execution with traditional DRAM management mech-
anism)

of supporting direct access is setting up persistent regions
and handling page faults.

5.2 STAMP

On offering direct access, Mnemosyne is more like our
work. It offers persistent heaps through pmalloc() and a
transaction mechanism to support atomic update of data. We
run the STAMP [19] benchmark to compare FP-Heap and
Mnemosyne since STAMP is memory intensive and has al-
ready been well written in transactions. We do not compare
FP-Heap with PMFS here because they focus on offering
different interfaces and functionalities.

We firstly run STAMP in sequential mode without
transaction mechanism to test the memory allocation over-
head of FP-Heap compared with Mnemosyne. In the se-
quential test, we set every memory allocation from persis-
tent heap as a single transaction. Secondly, we run STAMP
with transaction mode for 1, 2, 4 threads to test the over-
all overhead of FP-Heap and Mnemosyne. We run STAMP
with its input shown in Table 3. In ssca2, we set the problem
scale to 17 instead of 20. This is because the parameter 20
will make it allocate very large amount of memory (more
than 2 GB) and leave us no space to log.

5.2.1 Results

The results of sequential STAMP are shown in Fig. 8 and the
running statistics are shown in Table 4. Both FP-Heap and
Mnemosyne introduce some overhead compared with the
base due to logging. FP-Heap can achieve 7%-20% speedup
over Mnemosyne. FP-Heap outperforms Mnemosyne due
to two reasons: (1) when serving every large object or
new chunk allocation, FP-Heap will perform the allocation
through the extended VMM, while Mnemosyne will create
a new file and map the file through file system. The num-
ber of mapped regions is shown in Table 4. (2) The mem-
ory mapping information of every physical page is stored as
<virtual memory address, physical page frame number>in
FP-Heap, while in Mnemosyne it requires more space to
store the <page frame number, file number, page offset in
file>which leads to more writes to non-volatile memory at
commit time. The total log size is shown in Table 4. Accord-

Fig. 8 Results of stamp seq. (The base is STAMP benchmarks running
sequentially on traditional DRAM management mechanism and without
transactional execution.)

ing to these two factors, we can see FP-Heap performs better
in the bayes, genome, intruder, ssca2, and yada. Further-
more, another importance factor which will affect the result
is the computing/memory operation ratio. If the computa-
tion of a program accounts for the main part of executing
time, then FP-Heap performs not so better than Mnemosyen
(e.g. intruder). While if a program asks for a large amount
of memory and just do little computation on it, FP-Heap can
achieve a better result over Mnemosyne (ssca2 is a good ex-
ample here). The computing/memory ratio can be seen from
comparing FP-Heap to Base. In ssca2, the FP-Heap intro-
duces large overhead due to logging thus it can be concluded
that the computation time in ssca2 accounts for small parts.

The results of transactional STAMP are shown in
Fig. 9. Both FP-Heap and Mnemosyne show scalability on
almost all benchmarks except labyrinth and yada in which
the four threads versions conflict more and limit the perfor-
mance. The problem scale in bayes is small so that it does
not show any scalability. The better performance in bayes of
FP-Heap compared with Mnemosyne can just demonstrate
our memory allocation is better than Mnemosyne. As we in-
crease the scale of problem, FP-Heap and Mnemosyne per-
forms closely because the memory allocation accounts for
small part of the whole execution. Intruder shows a good ex-
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Table 4 Statistics of STAMP.

Number of
object

Allocated
memory (KB)

Log size
FP-Heap (KB)

Log size
Mne (KB)

File map
in Mne

bayes 8828000 253410 9818 10313 3559
genome 2142295 400920 3709 4492 936
intruder 14990453 624282 17430 18649 6656
kmeans 33 1317 5 8 16

labyrinth 870 143 1.4 1.6 14
ssca2 72 343023 1340 2010 54

vacation 158187 6259 183 195 137
yada 1139329 43617 1310 1395 455

Fig. 9 Result of stamp scale.

ample of this. The total number of committed transactions
and the total logs of the write set in TinySTM are shown
above the bars in Fig. 9. On every commit, the write set log
in Mnemosyne will firstly be flushed from DRAM into a
persistent log in non-volatile memory and then flushed from
the persistent log to destinations. While in FP-Heap, we
store the write set just in non-volatile memory and rely on
cache in CPU to accelerate accessing to the log. It performs
a little better than Mnemosyne. In a whole, FP-Heap can
achieve 4%-38% speedup over Mnemosyne.

6. Related Work

Mnemosyne [5] and NV-heaps [6] both expose non-volatile
memory directly to upper applications. At operating sys-
tem level, they rely on traditional file system to manage
physical pages and mapping relationship. Different from
them, FP-Heap proposes a lightweight chunk-based scheme
to organize non-volatile memory and maintain the persis-
tent mapping relationship. NV-heaps [6] provides some lan-
guage level features that are not provided in FP-Heap such
as safe point and garbage collection.

PMFS [1], Aerie [16], BPFS [20], and SCMFS [21] all

propose using file system to manage non-volatile memory.
Traditional file system works well on low-speed devices.
But when it comes to fast non-volatile memory, the software
overhead of file system will become a bottleneck [1], [16].
Thus the main work of the above studies is to optimize file
system to fit the feature of non-volatile memory (e.g. remov-
ing block layer). Aerie [16] proposes flexible file system in-
terface. It implements a basic management of non-volatile
memory in operating system kernel and offers programmers
the flexibility to implement their own customized file sys-
tem interface. These studies resides on the other direction
of research and do not conflict with our work.

Studies that can benefit directly from non-volatile
memory are databases [22], [23] and persistent object sys-
tems [2]–[4]. They usually rely on secondary storage to
make data persistent and focus on hiding the latency of writ-
ing files. Their performance can be greatly enhanced by FP-
Heap. Other work relies on flash to make data persistent.
However, they usually do not support direct access.

Rio vista [24] supports direct access to battery backed
memory and relies on file mapping to manage persistent
data. Unlike FP-Heap, it mainly focuses on the transac-
tion mechanism. Other work RVM [25] also focuses on the
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durable transaction mechanism.
There are some other studies that investigate how to

make use of non-volatile memory. [26] discusses how to in-
tegrated non-volatile memory into current architecture and
how operation system could adapt to it. [27] uses non-
volatile memory to store the journal data of file system to
reduce writes to disk.

7. Conclusion

This paper introduces FP-Heap, a persistent heap to sup-
port directly access to non-volatile memory. FP-Heap ex-
tends traditional VMM to manage non-volatile memory and
maintain the mapping relationship. Also, FP-Heap offers a
transaction mechanism to ensure data consistency, a simple
namespace to support data indexing, and a basic access con-
trol to support data sharing. FP-Heap facilitates the design
of persistent data structure. Compared with previous work
Mnemosyne, FP-Heap performs better due to its customized
VMM and optimized transaction mechanism.
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