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PAPER

Relation Extraction with Deep Reinforcement Learning

Hongjun ZHANG†, Nonmember, Yuntian FENG†a), Student Member, Wenning HAO†, Gang CHEN†,
and Dawei JIN†, Nonmembers

SUMMARY In recent years, deep learning has been widely applied in
relation extraction task. The method uses only word embeddings as net-
work input, and can model relations between target named entity pairs. It
equally deals with each relation mention, so it cannot effectively extract re-
lations from the corpus with an enormous number of non-relations, which
is the main reason why the performance of relation extraction is signifi-
cantly lower than that of relation classification. This paper designs a deep
reinforcement learning framework for relation extraction, which considers
relation extraction task as a two-step decision-making game. The method
models relation mentions with CNN and Tree-LSTM, which can calculate
initial state and transition state for the game respectively. In addition, we
can tackle the problem of unbalanced corpus by designing penalty func-
tion which can increase the penalties for first-step decision-making errors.
Finally, we use Q-Learning algorithm with value function approximation
to learn control policy π for the game. This paper sets up a series of ex-
periments in ACE2005 corpus, which show that the deep reinforcement
learning framework can achieve state-of-the-art performance in relation ex-
traction task.
key words: relation extraction, deep reinforcement learning, CNN, Tree-
LSTM

1. Introduction

Information extraction [1] is to extract entities, relations,
events and other factual information of specified types from
natural language text automatically and then output struc-
tured information, which is one of the most important appli-
cations in the field of natural language processing. Relation
extraction is the kernel technique of information extraction,
which identifies predefined relations between target named
entity pairs in text.

In the last decade, relation extraction research has been
dominated by two methods. One is feature method. Kamb-
hatla [2] employed Maximum Entropy models to combine
diverse lexical, syntactic and semantic features for ex-
tracting relations. Sun et al. [3] presented a simple semi-
supervised relation extraction system with large-scale word
clustering. The other one is kernel method. Culotta and
Sorensen [4] detected and classified relations between en-
tities using this kernel within a Support Vector Machine.
Bunescu and Mooney [5] designed a kernel method that
used an even smaller part of the dependency structure for
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relation extraction. Nguyen et al. [6] explored the use of in-
novative kernels based on syntactic and semantic structures
for a target relation extraction task. These methods attempt
to improve the relation extraction performance by enriching
the feature sets from linguistic analysis and knowledge re-
sources. However, the clear drawback is that linguistic anal-
ysis and knowledge resources are hand-designed and often
performed by existing natural language processing modules.

With the rise of deep learning techniques more and
more researchers have applied CNN and RNN in relation
extraction task, which achieve good performance. Deep
learning based method uses only word embeddings as net-
work input, which can extract hidden structure from relation
mentions automatically and capture global information over
long distances. It models relations between target named en-
tity pairs while reducing the workload of hand-made feature
engineering greatly. Nguyen et al. [7] introduced a convo-
lutional neural network for relation extraction that took ad-
vantages of multiple window sizes for filters and pre-trained
word embedding as an initializer on a non-static architec-
ture to improve the performance. Miwa et al. [8] stacked
bidirectional tree-structured LSTM-RNNs on bidirectional
sequential LSTM-RNNs to extract entities and relations be-
tween them.

Relation extraction task always comes with a very un-
balanced corpus, where there are no predefined relations be-
tween most named entity pairs. Therefore, deep learning
method cannot effectively extract relations from the unbal-
anced corpus by equally dealing with each relation mention.
It is also the main reason why the performance of relation
extraction is significantly lower than that of relation classifi-
cation. Relation classification aims to classify the semantic
relations between pairs of nominal in a sentence. It often
comes with a balanced dataset where the number of non-
relations is comparable to predefined relations.

At present, many researchers have begun to apply deep
reinforcement learning in some text processing tasks. Deep
reinforcement learning can generate deeper representation
of states and actions in the environment, and then learn map-
pings from states to actions, which enable chosen actions to
get the greatest reward from the environment. Guo et al. [9]
introduced a novel schema for sequence to sequence learn-
ing with a Deep Q-Network (DQN), which decoded the out-
put sequence iteratively. He et al. [10] introduced a novel
architecture for reinforcement learning with deep neural net-
works designed to handle state and action spaces character-
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ized by natural language, as found in text-based games.
Inspired by above researches, this paper designs a deep

reinforcement learning framework for relation extraction.
We consider relation extraction task as a two-step decision-
making game. The first step is to judge whether target
named entity pairs contain predefined relations initially. The
second step is to classify contained relations as concrete
types. CNN can be applied to extract deeper features from
relation mentions, since it is good at capturing key infor-
mation in the sentence. The features represent the state of
first-step decision, namely initial state s1 in the environ-
ment. We use Tree-LSTM to extract deeper features from
relation mentions again, because semantic features that re-
lation extraction task requires mostly exist in the structure
of dependency tree. The features represent the state of
second-step decision, namely transition state s2 in the en-
vironment. Besides, LSTM component can also solve the
vanishing gradient problem in traditional recursive neural
network. Although two-step decision-making game is not
multi-step continuous decision-making problem which re-
inforcement learning is good at solving, the deep reinforce-
ment learning framework can combine two deep learning
models perfectly. In addition, we design penalty function
to increase the penalties for first-step decision-making er-
rors, which can take care of the problem of unbalanced cor-
pus. Finally, we use Q-Learning algorithm with value func-
tion approximation to learn control policy π for the game.
This paper sets up a series of experiments in ACE2005 cor-
pus, which show that the deep reinforcement learning based
method can achieve state-of-the-art performance in relation
extraction task.

To the best of our knowledge, there has been no work
on employing deep reinforcement learning for relation ex-
traction task so far. This paper is the first attempt to fill
in that gap and provides a good thinking way for future re-
search in this area. In the following, we define the task in
Sect. 2 and present the deep reinforcement learning frame-
work in Sect. 3. We detail an extensive evaluation in Sect. 4
and finally conclude in Sect. 5.

2. Task Definition

To define relation extraction task, this section analyzes a
sentence which is randomly selected from ACE2005 cor-
pus, as shown in Table 1. The sentence in Table 1 contains
two relation mentions, of which the relation types are both
“PHYS” and the subtypes are both “Located”. The target
named entity pair in the first relation mention are “teams
of nurses and doctors” and “packed emergency rooms”, and
the target named entity pair in the second relation mention
are “the wounded” and “packed emergency rooms”. The
named entity types of “teams of nurses and doctors” and
“the wounded” are both “PER”, and their subtypes are both
“Group”. The named entity type of “packed emergency
rooms” is “FAC”, and its subtype is “Subarea-Facility”.

Relation extraction task is to extract relations between
target named entity pairs in the sentence. Table 1 shows

Table 1 A sentence in ACE2005 corpus

that there may be many named entity pairs in a sentence, but
there are no predefined relations between most named entity
pairs. Therefore, relation extraction task should include two
steps: (1) judge whether target named entity pair contains
certain predefined semantic relation; (2) classify the relation
as a concrete type.

The second step is usually separate to study as a task,
and that is relation classification. The performance of re-
lation extraction is significantly lower than that of relation
classification. The main reason is that the corpus which re-
lation extraction task comes with is extremely unbalanced,
where most named entity pairs do not contain predefined re-
lations. Therefore, the first step of relation extraction task
is crucial. That is what many relation extraction methods
attach little attention to, and those methods do not design
strategy that singling out the first step. We consider rela-
tion extraction task as a two-step decision-making game,
and two decisions perform two steps of relation extraction
task separately. More importantly, the reinforcement learn-
ing method that we introduce in this paper can reward or
penalize results of each decision. If first-step decision leads
to errors, we will increase penalties to tackle the problem of
unbalanced corpus.

3. Deep Reinforcement Learning Framework

This section describes a deep reinforcement learning frame-
work, which is capable of combing two deep learning mod-
els effectively for relation extraction task. Firstly, we use
CNN to model key information in relation mentions and ab-
stract initial state in the framework. Secondly, we use Tree-
LSTM to model dependency information in relation men-
tions and abstract transition state in the framework. Then
we introduce the method of pre-training two deep learning
models. Finally, we use Q-Learning algorithm with value
function approximation to train the entire framework.

3.1 Framework Description

We build a deep reinforcement learning framework for rela-
tion extraction task, as shown in Fig. 1. The environment of
relation extraction task is input text. It is a sentence with tar-
get named entity pair. There are three states in the environ-
ment: state1, state2, and end, as denoted by S = s1, s2, se.
There are many actions to take, such as action1, action2, ac-
tion3, action4 and so on, as denoted by A = a1, a2, a3, a4 · · · .
It is difficult to find some measures to represent states of in-
put text directly, so we use two deep learning models to ab-
stract deeper features of input text, and then generate initial
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Fig. 1 Deep reinforcement learning framework

state s1 and transition state s2. An agent can interfere with
the environment constantly by taking action set A at state
set S. a1 and a2 can be taken at s1. a1 represents to judge
that there are no predefined relations in target named entity
pair. After taking a1, end state se will be reached. a2 rep-
resents to judge that there is certain predefined relation in
target named entity pair. After taking a2, transition state s2

will be reached. a3, a4 · · · can be taken at s2. a3, a4 · · · rep-
resent to judge the relation contained in target named entity
pair to be different types respectively.

In addition, while interfering with the environment,
some state transitions will occur, such as (s1, a1, r1, se),
(s1, a2, r2, s2), (s2, a3, r3, se), (s2, a4, r4, se) and so on.
(s1, a2, r2, s2) represents that an agent takes a2 at s1, reaches
s2 and then gets reward r2 from the environment. After
(s1, a1, r1, se) occurs, if there are no relations in target named
entity pair, then set r1 = 10; if there is certain predefined re-
lation in target named entity pair, then set r1 = −20 to penal-
ize first-step decision-making error. After (s1, a2, r2, s2) oc-
curs, set r2 = 5. After (s2, a3, r3, se) occurs, if the type of the
relation contained in target naming entity pair corresponds
to the judgment of a3, then set r3 = 10; if does not, then
r3 = −10; if there is not certain relation in target named en-
tity pair, then set r3 = −20 to penalize second-step decision-
making error. After (s2, a4, r4, se) occurs, the condition of
reward and penalty is the same as that of (s2, a3, r3, se).

3.2 Generate Initial State by CNN

Due to the special structure sharing local weighs, convolu-
tional neural network (CNN) has unique advantage in local
feature extraction. Its structure may more possibly accord
with real biological neural network, reducing the complex-
ity of neural network. Therefore, we use CNN to represent
relation mention as a feature vector with fixed size of di-
mensions, which is initial state s1 in the deep reinforcement
learning framework.

The above CNN can be divided into three layers: (1)

Fig. 2 The structure of CNN

Embedding Layer, it replaces traditional discrete vector with
real-valued vector to represent each word in relation men-
tion, and is the input of CNN. (2) Convolutional Layer, it
uses filters to extract important features from the input. (3)
Pooling Layer, it uses pooling function to determine the
most relevant features in convolutional layer. The structure
of CNN is shown in Fig. 2.

3.2.1 Embedding Layer

Embedding layer converts discrete features of each word in
relation mention into continuous features, which can be the
input of CNN. Due to the structure of neural network that
can only receive the input with fixed size, we must trim long
sentences and complete short sentences to make them have
the same length.

We use only word embeddings to represent each word
in relation mention, which reduce the workload of hand-
made feature engineering. We use the word embedding that
has been trained by predecessors to initialize word embed-
ding table. By querying the table, we can convert the i-th
word in relation mention into its word embedding ei. In re-
lation extraction task, some feature embedding di is neces-
sary, such as part of speech feature, named entity type fea-
ture and named entity location feature. di is a real-valued
vector which is initialized randomly. ei and di can be consid-
ered as parameters to tune when training the model, and be
optimized constantly until reaching the most effective state.
And then we concatenate word embedding and some feature
embedding together to generate a complete feature vector
xi = [ei, di], which represents the i-th word in relation men-
tion. Therefore, we finally use matrix X = [x1, x2, . . . , xn] to
represent features of input text as the input of CNN, where
n is the length of input text.
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3.2.2 Convolutional Layer

Each nerve cell in the convolutional layer only connects
with local nerve cells in embedding layer, so we can ex-
tract local features and mine correlation information be-
tween words. In Fig. 2, there are four kinds of filters with
different widths in convolutional layer, which are 2, 3, 4 and
5 respectively. The filters with different widths can extract
features at different levels of abstraction from embedding
layer. For example, the width of a filter is 3, as denoted by
r = 3, which represents that each nerve cell in convolutional
layer connects with feature vectors xi−1, xi, xi+1 of three ad-
jacent words in embedding layer. In essence, the filter fr=3 is
weigh matrix when executing a convolution on feature vec-
tors xi−1, xi, xi+1. Finally, filter fr extracts local feature vec-

tor Cr = [c1, c2, . . . , cn−r+1], where ci = g(
r−1∑
j=0

f T
j+1xT

j+i + b).

In above equation, g denotes a non-linear function, and
b denotes a bias term. The feature vector Cr is abstract rep-
resentation of input matrix X and global representation of
wider word space.

3.2.3 Pooling Layer

In the structure of CNN, a convolution layer is usually fol-
lowed by a pooling layer. The basic principle of pooling
layer is to perform aggregation calculation of local feature
vector Cr that each filter generates, which ensures the in-
variance of absolute location and further extracts features
from convolution layer. The most common pooling func-
tions are max() and avg(). max() can get the most important
features in Cr, while avg() can get the average features in
Cr. We use max() to calculate the maximum pooling score
c fr

max = max{c1, c2, . . . , cn−r+1} and then generate the maxi-
mum pooling score vector P = [c f2

max, c
f3
max, c

f4
max, c

f5
max]. Fi-

nally, we perform non-linear transform on the maximum
pooling score vector P, and then get s1. s1 is deeper fea-
tures generated by CNN, and is also initial state in the deep
reinforcement learning framework.

3.3 Generate Transition State by Tree-LSTM

Long short-term memory (LSTM) [11] is a variant of recur-
sive neural network (RNN), and can solve vanishing gra-
dient problem of RNN. We use Tree-LSTM [12] to extract
long-distance information in the structure of dependency
tree. The structure computes every father node with neigh-
boring child nodes recursively until reaching the root of the
tree. So it can represent relation mention in a bottom-up
way, capture more comprehensive semantic information and
generate transition state in the deep reinforcement learning
framework. Now Tree-LSTM has been proposed and ap-
plied in many natural language processing tasks, such as
sentiment analysis, relation classification, question answer-
ing system and so on.

Table 2 The dependency parsing result of a relation mention

Fig. 3 The dependency tree of a relation mention

3.3.1 Dependency Parsing

We perform dependency parsing on a relation mention, and
generate a dependency tree. Table 2 is parsing result, and
the tags before brackets represent the relationships between
word pairs. For example, nsubjpass represents passive nom-
inal subject. We construct all word pairs into tree structure,
and then we can get a dependency tree, as shown in Fig. 3.
In Fig. 3, “teams” and “packed” represent the heads of target
named entity pair in relation mention.

Traditional Sep-LSTM is good at capturing long-
distance information in linear structure, while useful infor-
mation for relation extraction task mostly exists in the struc-
ture of dependency tree. In Fig. 3, it is far from “seen” to
“rooms” in linear structure. The two words are separate by
many unrelated words or preposition structure, but they are
in the direct hyponymy of dependency tree. The characteris-
tic of dependency tree is very useful for mining relations be-
tween words, so we use dependency tree as the skeleton of
Tree-LSTM, which can capture core dependency relations
in target named entity pairs.

3.3.2 Tree-LSTM

Tree-LSTM that we construct is shown in Fig. 4. To ex-
tract core dependency relations in target named entity pair,
we only use the part between two named entity heads to
construct the model. Moreover, for the convenience of im-
plementation, dependency trees should have the same depth
and width. We prune the dependency trees or pad them with
special characters.
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Fig. 4 The structure of Tree-LSTM

Each LSTM component in Tree-LSTM only receives
the input from one word. As with embedding layer of CNN,
LSTM component uses feature vector x j = [e j, d j] to rep-
resent corresponding input word. Each LSTM component
contains a memory block. Memory block adds three kinds
of gates on the basis of hidden node of RNN: input gate,
forget gate and output gate, as denoted by i j, f j and o j.
Meanwhile, memory block contains one or more memory
cells. Memory cell maintains a cell state c j, which can re-
tain long-term history information. The data sources of each
LSTM component include feature vector x j of correspond-
ing input word, feedback feature h jk of child node of current
node and stored value ck in the memory cell of child node.
Current node uses different forget gate f jk to control differ-
ent child. The calculation equations of above procedure are
shown as follows:

i j = σ

⎛⎜⎜⎜⎜⎜⎜⎝W (i)x j +
∑

k∈C( j)

U(i)h jk + b(i)

⎞⎟⎟⎟⎟⎟⎟⎠

f jk = σ

⎛⎜⎜⎜⎜⎜⎜⎝W ( f )x j +
∑

k∈C( j)

U( f )h jk + b( f )

⎞⎟⎟⎟⎟⎟⎟⎠

o j = σ

⎛⎜⎜⎜⎜⎜⎜⎝W (o)x j +
∑

k∈C( j)

U(o)h jk + b(o)

⎞⎟⎟⎟⎟⎟⎟⎠

u j = tanh

⎛⎜⎜⎜⎜⎜⎜⎝W (u)x j +
∑

k∈C( j)

U(u)h jk + b(u)

⎞⎟⎟⎟⎟⎟⎟⎠
c j = i j � u j +

∑
k∈C( j)

f jk � ck

h j = o j � tanh(c j)

Where W and U both denote weigh matrixes, and b denote
bias vectors. All the child nodes of one node share weight
matrix U. Their superscripts have the meaning as the name
suggests. In addition, σ denotes logistic function, and �
denotes element-wise multiplication.

In Tree-LSTM, we make computation in a bottom-up
way and start from leaf nodes. We compute father node
by combining child node with its neighboring nodes recur-

sively until reaching root node, which is common ancestor
of all the words in relation mention. The common ances-
tor is usually a verb. Then we perform non-linear transform
on output vector to get s2. s2 is deeper features that Tree-
LSTM generates finally, and is also transition state in the
deep reinforcement learning framework.

3.4 Pre-Training of Two Deep Learning Models

We process all relation mentions to divide into two types.
The first type means that relation mention contains prede-
fined relations; the second type means that relation mention
does not contain predefined relations. Then we can train pa-
rameters of CNN on the two types of relation mentions. In
addition, we divide the first type of relation mentions into
different relation types. Then we can train parameters of
Tree-LSTM on the different types of relation mentions. Fi-
nally, we pass deeper feature vector s1 extracted by CNN
and deeper feature vector s2 extracted by Tree-LSTM to
standard neural network separately, and use softmax func-
tion to generate conditional probability distribution P(Y |X).
P(Y |X) represents conditional probability of the type Y con-
ditioned on input feature X of relation mention, so we can
assign the type that have the highest conditional probability
to relation mention.

During pre-training two deep learning models, we de-
fine a tagging vector T for each relation mention. If a rela-
tion mention falls into the i-th type, then the i-th element in
the vector T is 1 and other elements are all 0. To train the
parameters of models, we use stochastic gradient descent to
optimize the cross entropy errors between Y and T. For each
relation mention, we define objective function

min
θ

⎛⎜⎜⎜⎜⎜⎜⎝−
∑

j

T j log(Yi)

⎞⎟⎟⎟⎟⎟⎟⎠
Where θ denoted unknown parameters. The pre-training is
to minimize the objective function by stochastic gradient de-
scent.

3.5 Q-Learning Algorithm with Value Function Approxi-
mation

In the deep reinforcement learning framework, we use two
deep learning models to represent initial state and transi-
tion state respectively. The state represented by CNN is
denoted as s1 = CNN(x; θ1), and the state represented by
Tree-LSTM is denoted as s2 = Tree(x; θ2), where x denotes
input text that contains target named entity pair, and θ1 de-
notes the parameters of CNN, and θ2 denotes the parameters
of Tree-LSTM.

The action-value function Q(s, a) represents future
long-term reward obtained by taking action a at state s. The
aim of reinforcement learning is to learn the most optimal
action-value function Q(s, a) by maximizing cumulative re-
ward and determine the policy about how to take actions.
However, the state space of input text is contiguous, so it
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is impracticable to maintain Q(s, a) value for each state-
action pair. Therefore, in order to learn action-value func-
tion Q(s, a) directly, we use neural network model to ap-
proximate Q(s, a). It can be denoted as follow:

Q(s, a) = MLP(φ(x; θ), a; η)

Where φ(x; θ) denotes state vector generated by deep learn-
ing models, and η denotes the parameters of neural network
models. After pre-training the deep learning models, the pa-
rameters θ will be known.

We train the parameters η on state-action pairs, and
make value function approximation. To make value func-
tion approximate real value function Qπ as closely as possi-
ble, we measure the degree of approximation with the least
squares error:

Eη = Es;a∼π[(Qπ(s, a) − Qη(s, a))2]

Where Es;a∼π denotes the expectation on state-action pairs
sampled by the policy π.

To minimize the error, we use gradient descent method
with RMSprop [13] to take negative derivative of the error:

−∂Eη
∂η
= Es;a∼π

[
2(Qπ(s, a) − Qη(s, a))

∂Qη(s, a)

∂η

]

The Update rule of the parameters is:

η = η + α(Qπ(s, a) − Qη(s, a))
∂Qη(s, a)

∂η

Then we use Q-Learning algorithm and replace real value
function Qπ with estimated value function. It is denoted as
follow:

Qπ(s, a) =
1
T

r +
T − 1

T
Qπ(s′, a′)

η = η + α

(
1
T

r +
T − 1

T
Qη(s′, a′) − Qη(s, a)

)
∂Qη(s, a)

∂η

Where (s′, a′) is the state-action pair of next time.
We use Q-Learning algorithm with value function ap-

proximation to learn control policy π for relation extraction
task. The detailed flow of the algorithm is shown in Algo-
rithm 3.1.

After learning the value function Q(s, a), we will take
the action that has the highest Q-value Qη(s, a′′) to maxi-
mize expectancy reward. During each epoch, the parameters
will be undated to reduce the error between estimated value
Qη(s, a) and expected value Qπ(s, a).

4. Experiments

4.1 Experiment Environment

We do experiments with mobile workstation HP ZBook
17, of which CPU is Intel(R) Core(TM) i7-4900MQ
CPU @ 2.80GHz and graphics card is NVDIA Quadro

K5100M. We set up deep learning programming environ-
ment Python2.7+Theano+Cuda7.5 under Ubuntu operating
system to construct CNN and Tree-LSTM. On this basis,
we realize the deep reinforcement learning framework with
Python directly.

4.2 DataSet

We evaluate our method on ACE 2005 multilingual training
corpus. We obtain ACE 2005 from Linguistic Data Consor-
tium (LDC), of which LDC catalog number is LDC2006T06
and isbn is 1-58563-376-3. Experiments are performed on
the English data of ACE 2005, of which data sources in-
clude 20% Newswire (NW), 20% Broadcast News (BN),
15% Broadcast Conversation (BC), 15% Weblog (WL),
15% Usenet Newsgroups/Discussion Forum (UN) and 15%
Conversational Telephone Speech (CTS). There are seven
types of named entities in the corpus, which are anno-
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Table 3 Impact of different filter strategies

tated by “PER”, “ORG”, “LOC”, “GPE”, “FAC”, “VEH”
and “WEA”. Between those named entities, there are seven
relation types, which are annotated by “PHYS”, “PART-
WHOLE”, “PER-SOC”, “ORG-AFF”, “ART”, “GEN-AFF”
and “METONYMY”.

To reduce noise and compare with predecessors’ ex-
periment results, we process the corpus in the same way
with predecessors [7]. We remove all the relation mentions
whose distances between two named entity heads are greater
than 15. Then we transform 80% of the corpus as training
set and the remaining 20% as testing set. If there is prede-
fined relation between target named entity pairs in a relation
mention, then it is a positive relation mention; if not, it is a
negative relation mention. After truncation, there are 8365
positive relation mentions and 79147 negative relation men-
tions in the corpus. It is consistent with the view in this
paper that it is an unbalanced corpus for relation extraction
task.

4.3 Pre-Training

We use the publicly available word embedding Glove [14]
whose size is 300, and initialize word embedding table with
Glove. In addition, we set the size of speech feature embed-
ding and named entity type feature embedding to 50, and
set the size of named entity location feature embedding to 5.
Those feature embedding tables are initialized randomly, in
which the elements range in value from −0.25 through 0.25.
During pre-training deep learning models, all the elements
in feature embedding tables are viewed as the parameters
in the networks, and updated constantly until reaching the
most effective state. The sizes of hidden nodes are all set to
100. We perform dropout [15] on hidden nodes, and the rate
of dropout is 0.5. During each iteration, the corpus is di-
vided into many batches, and we can only process one batch
at a time. A batch contains many relation mentions, and
the size of batch is 30. Meanwhile, the constraint of max-
norm regularization is equal to 3, and we perform non-linear
transform with function ReLU in the networks. Next, we
will use cross-validation to determine the hyper-parameters
of the models.

We divide all the relation mentions into two types, and
pre-train the parameters of CNN on the two types of rela-
tion mentions by batch gradient descent (BGD). Our task
is binary classification of relation mentions. The experi-
ment evaluates different filter strategies, and the result is
shown in Table 3. The result shows that multi-filter strate-
gies are much better than single-filter strategies, and multi-
filter strategy employing the filters 2, 3, 4 and 5 simultane-
ously can get the best F-value. The experiment also eval-

Fig. 5 Impact of different sizes of convolutional layer

Table 4 Impact of different syntactic parsing strategies

uates the impact of the size of convolutional layer on the
experiment result, as shown in Fig. 5. The result shows that
CNN can perform best when the size of convolutional layer
is 150. Too large or too small size of convolutional layer
may result in a disturbing effect on the experiment result. If
the size of convolutional layer is too large, the network will
be more complex, which may lead to over-fitting; if the size
of convolutional layer is too small, it will be not enough to
learn proper features. Therefore, in the rest of experiments
we will employ the filters 2, 3, 4 and 5 simultaneously, and
set the size of convolutional layer to 150.

We select all the relation mentions that contain differ-
ent types of predefined relations, and train the parameters of
Tree-LSTM on the different types of relation mentions. Our
task is fine-grained classification over seven relation types.
We use Stanford PCFG Parser [16] to produce constituency
parses of each relation mention. The generated constituency
tree is the skeleton to construct Constituency Tree-LSTM.
In addition, we use Stanford Neural Network Dependency
Parser [17] to produce dependency parses of each relation
mention. The generated dependency tree is the skeleton to
construct Dependency Tree-LSTM. The experiment evalu-
ates the impact of different syntactic parsing strategies on
the experiment result, as shown in Table 4. The result shows
that Tree-LSTM constructed by dependency tree performs
better than that constructed by constituency tree for fine-
grained classification. Therefore, in the rest of experiments
we will use dependency tree to construct Tree-LSTM.

4.4 Training the Whole Framework

We use gradient descent method with RMSprop [13] to train
the entire deep reinforcement learning framework. Learn-
ing rate is 0.0005, and discount rate is 0.95. The experiment
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Fig. 6 Impact of different epoch numbers on average reward

Table 5 Performance of different methods for relation extraction task

evaluates the impact of different epoch numbers on average
reward, and the result is shown in Fig. 6. At the beginning of
training, the reward is so limited, because the actions have
close to a random chance. The reward begins to increase and
seems to be stabilizing as epoch number is increasing, which
means the agent has learnt how to perform relation extrac-
tion task to earn positive reward. After the eighth epoch, the
reward will remain basicly stable. Therefore, in the rest of
experiments we will compute the deep reinforcement learn-
ing framework with eight epochs.

Besides, we use CNN and Tree-LSTM to perform rela-
tion extraction task directly, and compare their results with
the result of deep reinforcement learning based method. The
experiment results are shown in Table 5. This is a 5-fold
cross validation experiment and all the comparisons are sig-
nificant at 0.05 level. The results show that Tree-LSTM per-
forms better than CNN for relation extraction task, and the
performance of deep reinforcement learning based method
is much better than that of using either deep learning model
separately, especially in recall score. If we tune the parame-
ters of two pre-trained deep learning models while training
the entire framework, the performance will be further im-
proved. The best performance corresponds to “Deep Rein-
forcement Learning+” in Table 5, and its precision, recall
and F-value are 69.25%, 66.41% and 67.80% respectively.
“Deep Reinforcement Learning+” makes training time of
the whole framework increase significantly, but relation ex-
traction task is not time sensitive. Therefore, in the rest of
experiments we will use the method “Deep Reinforcement
Learning+” to train the entire framework.

4.5 Comparing to the State-of-the-Art

At present, deep learning techniques achieve the best per-
formance in relation extraction task. Nguyen et al. [18] pro-

Table 6 Comparison with the State-of-the-art

Table 7 Performance breakdown per relation for “Deep Reinforcement
Learning+” and “Deep Learning” on the testing set

posed to combine the traditional feature-based method, the
convolutional and recurrent neural networks to simultane-
ously benefit from their advantages. In addition, Nguyen et
al. used different methods to construct and assemble CNNs
and RNNs: VOTE-BIDIRECT, STACK-FORWARD and
VOTE-BACKWARD, where the performance of STACK-
FORWARD is best. STACK-FORWARD is to use the stack-
ing method to combine CNN and forward RNN. We per-
form a paired t-test between F-value of our method and the
baseline methods. Our proposed method significantly out-
performs Nguyen’s method at 0.05 level. The detail results
are shown in Table 6. Compared with STACK-FORWARD
our method raises recall and F-value to a certain extent, and
the improvements are 0.12% and 0.03% respectively. Our
method not only can absorb the advantages of deep learning
methods, but also can tackle the problem of unbalanced cor-
pus, meanwhile the performance has improved to a certain
extent. The reason of low precision is that we do not use ex-
ternal knowledge base and the external parsing module that
we use may result in some errors.

4.6 Analysis

In this subsection, we will analyze the role of deep rein-
forcement learning in relation extraction. By comparing ex-
tracted relations by “Deep Reinforcement Learning+” and
“Deep Learning” (Tree-LSTM), we find the influence of our
method varies from different relation types. Table 7 shows
the F-value of each relation type by the above two methods
on the testing set.

We can see that our method generally has a positive
impact on all the relation types. With only using the deep
learning method, the “ART” and “GEN-AFF” relations are
easily confused, but our method can better distinguish these
two relation types. However, the effect on the “PHYS” re-
lations is not obvious. The main reason is that errors occur
during relation classification stage rather than relation de-
tection stage.

Our method preforms in two stages: relation detection
and relation classification. Deep learning methods mainly
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focus on the second stage, and do not specialize in the first
stage. However, our method is superior in dealing with the
first stage, and succeeds the advantages of deep learning
method for relation classification stage. The experiment re-
sults show that deep reinforcement learning can improve the
performance of relation extraction. It is especially salient
for the “ART” and “GEN-AFF” relations. Since these rela-
tions are few in number and the relation detection stage is
particularly important.

Compared with previous methods, our proposed
method can detect relation mentions reliably. For example,
there are 4 entities “You”, “you”, “wannabe” and “herself”
in the following sentence: “You can see the video here if
you can stand to watch a young no-talent wannabe continue
to humiliate herself in public.”. In fact, there are no relations
in the sentence. Previous methods mistakenly extract some
relations in the sentence, while our method can make good
judgment.

5. Conclusions

In this paper, we consider relation extraction task as a two-
step decision-making game, and design a deep reinforce-
ment learning framework to combine two deep learning
models perfectly. To be specific, we use CNN and Tree-
LSTM to model relation mentions separately and calculate
internal states in the framework. More importantly, we de-
sign penalty function to tackle the problem of unbalanced
corpus. We perform a series of experiments in ACE2005
corpus, and the results show that compared with predeces-
sors’ research our method raises recall and F-value to a cer-
tain extent. How to define more reasonable penalty function
and increase training speed of the entire framework will be-
come a study emphasis in further research.
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