
1416
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

PAPER

Well-Balanced Successive Simple-9 for Inverted Lists Compression

Kun JIANG†,††a), Member, Yuexiang YANG††, and Qinghua ZHENG†, Nonmembers

SUMMARY The growth in the amount of information available on the
Internet and thousands of user queries per second brings huge challenges
to the index update and query processing of search engines. Index com-
pression is partially responsible for the current performance achievements
of existing search engines. The selection of the index compression algo-
rithms must weigh three factors, i.e., compression ratio, compression speed
and decompression speed. In this paper, we study the well-known Simple-
9 compression, in which exist many branch operations, table lookup and
data transfer operations when processing each 32-bit machine word. To
enhance the compression and decompression performance of Simple-9 al-
gorithm, we propose a successive storage structure and processing metric to
compress two successive Simple-9 encoded sequence of integers in a single
data processing procedure, thus the name Successive Simple-9 (SSimple-
9). In essence, the algorithm shortens the process of branch operations,
table lookup and data transfer operations when compressing the integer se-
quence. More precisely, we initially present the data storage format and
mask table of SSimple-9 algorithm. Then, for each mode in the mask table,
we design and hard-code the main steps of the compression and decom-
pression processes. Finally, analysis and comparison on the experimental
results of the simulation and TREC datasets show the compression and de-
compression efficiency speedup of the proposed SSimple-9 algorithm.
key words: Successive Simple-9, successive storage, inverted index, de-
compression performance

1. Introduction

The ever-increasing numbers of web pages and user queries
have brought huge challenges to search engines’ storage,
update and query performance [1], [2]. Index compression
techniques can directly relieve the performance bottleneck;
thus, evaluation metrics should include compression ratio,
compression speed and decompression speed. The latest
word-aligned compression techniques, e.g., Simple-9, FOR
and PFOR, upgrade processing efficiency by reducing the
number of branch operations [3]–[7]. Given a fixed-length
integer list, if more integers can be processed in a single
branch (called a data chunk), then the total number of branch
operations can be reduced. However, one serious problem
in the FOR series techniques (e.g., FOR and PFOR) is that
more integers in a data chunk will lead to a larger excep-
tion integer, which will increase the bit width in the data
chunk and result in a lower compression ratio. To solve

Manuscript received November 20, 2016.
Manuscript revised March 2, 2017.
Manuscript publicized April 17, 2017.
†The authors are with the School of the Electronic and Infor-

mation Engineering, Xi’an Jiaotong University, China.
††The authors are with the College of Computer, National Uni-

versity of Defense Technology, China.
a) E-mail: jk 365@126.com

DOI: 10.1587/transinf.2016EDP7466

this problem, compact compression algorithms such as VSE
and AFOR find the optimal bit width by dynamic program-
ming but greatly reduced the compression speed [8], [9]. Al-
though the Simple-9 compression technique shows a much
better compression ratio than do many other techniques,
there exist a large number of data operations such as branch
operations, table lookup and bit shifting that limit further
performance improvements. By increasing the number of
integers compressed in a single data chunk, our aim is to
upgrade the compression and decompression performance
of the Simple-9 technique without affecting its high com-
pression ratio.

It is a long and difficult challenge to weigh the choice
of appropriate index compression algorithms in both search
engine companies and academia. Most of the compres-
sion algorithms can show good performance on one eval-
uation metric. One importance factor driving the choice
of compression method to adopt in commercial search en-
gines is the balance between different performance indica-
tors [10], [11]. The Group Varint inverted index compres-
sion algorithm proposed and adopted by Google can greatly
enhance the decompression performance of the Varint al-
gorithm [1]. The algorithm can compress 4 integers as one
data chunk and remains byte-aligned at the border of the
compressed codeword. This feature can reduce the number
of branch operations and upgrade compression and decom-
pression performance. Research shows that the performance
of Simple-9 can exceed that of Varint on compression ra-
tio, compression speed and decompression speed. In this
paper, we focuses on improving the word-aligned encoder
Simple-9 and proposes the Successive Simple-9 (SSimple-
9) compression algorithm in accordance with the successive
storage metric. The goal is to reduce the number of branch
operations by increasing the number of compressed integers
in a data chunk. We need to redesign the storage structure of
data area and status area and generate the mask tables span-
ning two adjacent machine words. By reducing the number
of branch operations, shifting, and table lookup, we are aim-
ing at further upgrading the compression and decompression
speed of Simple-9.

The remainder of this paper is organized as follows.
We provide related works on inverted index compressions
in Sect. 2. In Sect. 3, we present the integer storage format
of SSimple-9 compression. The compression and decom-
pression process of the SSimple-9 compression algorithm
is described in Sect. 4. In Sect. 5, the performance of the
SSimple-9 compression algorithm is tested explicitly on the

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

JIANG et al.: WELL-BALANCED SUCCESSIVE SIMPLE-9 FOR INVERTED LISTS COMPRESSION
1417

simulation and TREC datasets. Finally, Sect. 6 concludes
this paper and presents prospects for future work.

2. Related Works

The inverted index plays an important role in the effi-
cient query processing of search engines with huge web
datasets [12]. An inverted list can be viewed as an ordered
list of integers, in which each entry of the list corresponds
to a different term or word in the collection. The inverted
lists can consist of many millions of postings, which could
be approximately linear with the size of the collection [13].
To allow faster access and to limit the amount of memory
needed, search engines use various compression techniques
that can significantly reduce the size of the inverted lists.
One common practice when storing an inverted list is to use
d-gaps, in which it is possible to decrease the average value
that must be compressed, resulting in a sequence of smaller
numbers with a higher compression ratio. Instead of naively
storing the raw integer in a 32-bit or 64-bit machine word,
the main idea of index compression is to store each integer
using as few bits as possible. The compressed representation
of integer lists is called codeword sequence. Index encoders
can be divided into bit-aligned encoders, byte-aligned en-
coders and word-aligned encoders.

Bit-aligned encoders assign a distinct codeword to each
possible integer, and the compression process consists of
representing each integer in the posting list with a prede-
termined codeword. According to the distribution the inte-
gers follow, these methods can be categorized into global
and local methods. The distribution of the global method
does not depend upon the input sequence, and all of the in-
tegers use the same compression model. Examples of this
class of encoders are Unary Code, Gamma/Delta Code, and
Golomb/Rice Code [13]–[16]. Local methods adjust the pa-
rameters of the model according to the change of the in-
put, e.g., Interpolative Code, which leads to a higher com-
pression ratio [17]. The bit-aligned compression algorithms
have high compression ratios, but frequent bitwise opera-
tions will greatly reduce compression/decompression effi-
ciency.

Byte-aligned encoder codes such as Varint and Group
Varint represent an integer in bytes [1], [18]. The basic idea
of Varint is to use the low 7 bits of a byte as the data area and
the most significant bit as the status bit to indicate whether
the byte is the last that stores the data of the integer. Varint
compression can have a poor compression ratio because it
requires one full byte to encode small integers. However,
it requires only a single branching condition for each byte,
and the decompression speed is much higher than the bit
alignment compression algorithm. The Group Varint en-
coder compresses a group of integers as a chunk, and the
status bits of all of the integers are stored together; the same
is true for the data bits. Thus, it has a higher compres-
sion/decompression speed than does Varint, indicating that
a chunk with a large number of integers can upgrade the
compression and decompression procedure.

The most popular compression algorithms are those of
the word-aligned encoders; these access and process each
codeword that is aligned to a 32/64-bit word boundary. We
divide word-aligned encoders into those that employ a fixed
number of integer compressions (a list of codewords) and
those that employ an unfixed number of integer compres-
sions (single codeword).

The first group encode fixed 32m (m is a positive in-
teger) integers in a data chunk with equal-length bit width,
ensuring that the last codeword is word-aligned. Typical en-
coders are FOR, PFOR, VSE, and AFOR [6]–[9]. In FOR
compression, the range of values in the chunk is coded first;
then, all values in the chunk are written in reference to the
range of values [6]. However, if an integer exists that is
greater than other values in the chunk (called an exception),
then the bit width will be assigned to adjust the exception in-
teger. PFOR is an extension of FOR that is less vulnerable to
exceptions, in which the normal integers are encoded with
the same bit width but the exceptional integers are stored
in a separate location. One serious problem with PFOR is
that more integers in a data chunk will lead to a larger ex-
ception integer, which will result in a lower compression
ratio. To solve this problem, compact compression algo-
rithms such as OptPFD, VSE and AFOR attempt to find
the optimal bit width but greatly reduced the compression
speed [8], [9], [19]. OptPFD determines the proper bit width
by weighing the total normal integers and exceptional inte-
gers, leading to the overall optimal compression ratio [19].
VSE and AFOR both use dynamic programming approaches
to partition a fixed-length chunk into several sub-chunks,
each with the same bit width [8], [9]. The search for opti-
mal partitioning improves the compression ratio but leads to
a serious performance bottleneck of the index update.

The second group of encoders [3]–[5], [20], [21], for
example, Simple-X (X = 9, 16, 8b), encode as many in-
tegers as possible into one single codeword with differ-
ent padding modes, as shown in Table 1. Although the
Simple-X compression technique shows a much better com-
pression ratio than do many other techniques, there exist
a large number of data operations such as branch opera-
tions, table lookup and bit shifting that limit further per-
formance improvements. By increasing the number of in-
tegers compressed in a single data chunk, our aim is to up-
grade the compression and decompression performance of

Table 1 Pre-computed lookup table representing the 9 different padding
modes for the use of the 28 data bits.

Status area
(4 bits)

Chunk
length

Bit width
(bits)

Wasted
bits

0 #a (0000) 28 1 0
1 #b (0001) 14 2 0
2 #c (0010) 9 3 1
3 #d (0011) 7 4 0
4 #e (0100) 5 5 3
5 # f (0101) 4 7 0
6 #g (0110) 3 9 1
7 #h (0111) 2 14 0
8 #i (1000) 1 28 0

1418
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

the Simple-9 technique without affecting its high compres-
sion ratio. Research shows that the performance of Simple-9
can exceed that of Varint on compression ratio, compres-
sion speed and decompression speed. Inspired by the Group
Varint compression, we think it is feasible to combine suc-
cessive Simple-9 compressed codewords together with new
storage format, which can reduce the number of branch op-
erations by increasing the number of compressed integers in
a data chunk.

Recently, a series of group compression frameworks
were proposed to speed up the processing by taking account
of the SIMD instructions [22]–[24]. However, the bit width
of all groups remains the same for vectorization; thus, there
has been a certain degree of loss in compression ratio.

3. Successive Storage Format

To increase the number of integers that can be compressed
together in a chunk by Simple-9 and reduce the number of
branch operations in compression and decompression pro-
cedure, we propose the SSimple-9 compression. The main
idea of the data storage format is designed as follows. We
combine integers coded by two adjacent 32-bit Simple-9
coded machine words together; the most significant 8 bits
of the first codeword are assigned as the status area. Then,
the remaining 24 bits of the first codeword and the second
32-bit machine word are assigned as the data area. The 8-
bit status area can represent a total of 16*16=256 cases, and
only 9*9=81 cases are used for the padding modes of the
SSimple-9 compression.

The 28-bit data area coded by Simple-9 cannot fit into
the 24-bit data area in the first 32-bit machine word of
SSimple-9. The remaining 4 bits coded by Simple-9 can
be stored in the second 32-bit machine word of SSimple-
9. Thus, the 24 bits of the first machine word and the most
significant 4 bits of the second machine word can be used
together to store the 9 padding modes of Simple-9, and the
28 bits of the second machine word can be used to store
all of the padding modes of Simple-9. The storage format
should be carefully redesigned because the padding modes
cross the machine boundaries. Figure 1 shows one padding
mode storage of SSimple-9 combined by mode #e and mode
#a of Simple-9.

The least significant 5 bits of mode #e are divided into
two parts, in which the first 4 bits are stored in the first 32-
bit machine word, and the left 1 bit is stored in the second
32-bit machine word. In most padding modes of SSimple-
9, some integers are stored across the adjacent 32-bit ma-
chine word, and decompression should be done by combin-
ing the bit sequence at the end of the first 32-bit machine

Fig. 1 An example shows the integer storage across the word boundary
in SSimple-9.

word and the bit sequence at the front of the second 32-
bit machine word. The compression ratio of SSimple-9 re-
mains the same as Simple-9, but the storage format of the
two machine words is completely changed. As previously
described, the reason that word-aligned compression such
as Simple-9 is faster than byte-aligned compressions is that
the use of a machine-word process unit leads to fewer branch
operations. In the decompression procedure, the integer se-
quence can be obtained by shifting the data area according
to the exact mask table. To reduce the cost of branch op-
erations further, the mask table can be hard-coded for loop-
unrolled operations. For SSimple-9 compression, 81 cases
of padding modes should be hard-coded for fast integer ex-
traction, as shown in Table 2.

4. Details of Compression and Decompression

4.1 Compression Description

We present the compression details of SSimple-9 in Algo-
rithm 1 according to the data storage format. The input of
the algorithm is an integer array d with length n, and the

Table 2 Pre-computed lookup table representing the 81 different
padding modes for the use of the 56 data bits.

Status area
(8 bits)

The first part
of data area

(24 bits),
b bits*k num

The second part
of data area

(32 bits),
b bits*k num

Wasted
bits

0 #aa (00000000) 1*24 1*4+1*28 0
.
8 #ai (00001000) 1*24 1*4+28*1 0
9 #ba (00010000) 2*12 2*2+1*28 0

.
11 #bc (00010010) 2*12 2*2+3*9 1
.
17 #bi (00011000) 2*12 2*2+28*1
18 #ca (00100000) 3*8 3*1+1*28 1
.
26 #ci (00101000) 3*8 3*1+28*1 1
27 #da (00110000) 4*6 4*1+1*28 0
.
35 #di (00111000) 4*6 4*1+28*1 0
36 #ea (01000000) 5*4+4*1 1*1+1*28 3
.
40 #ee (01000100) 5*4+4*1 1*1+5*5 6
.
44 #ei (01001000) 5*4+4*1 1*1+28*1 3
45 # f a (01010000) 7*3+3*1 4*1+1*28 0
.
53 # f i (01011000) 7*3+3*1 4*1+28*1 0
54 #ga (01100000) 9*2+6*1 3*1+1*28 1
.
62 #gi (01101000) 9*2+6*1 3*1+28*1 1
63 #ha (01110000) 14*1+10*1 4*1+1*28 0
.
69 #hg (01110110) 14*1+10*1 4*1+9*3 1
.
71 #hi (01111000) 14*1+10*1 4*1+28*1 0
72 #ia (10000000) 24*1 4*1+1*28 0
.
80 #ii (10001000) 24*1 4*1+28*1 0

JIANG et al.: WELL-BALANCED SUCCESSIVE SIMPLE-9 FOR INVERTED LISTS COMPRESSION
1419

Algorithm 1 SSimple-9 Compression
Input: a sequence of numbers, d, of n integers.
1: for k from 0 to n do
2: set j1 = 0, j2 = 0 and k′ = k
3: for i from 0 to modenum[j1] do
4: if 2bitlength[j1] <= d[k′ + i] then
5: j1 + +
6: continue
7: end if
8: end for
9: k′+ = modenum[j2]

10: for i from 0 to modenum[j2] do
11: if 2bitlength[j2] <= d[k′ + i] then
12: j2 + +
13: continue
14: end if
15: end for
16: s = M[j1][j2] //status lookup table
17: switch(s) do
18: case s:
19: code s(d,k,r)
20: break
21: . . .
22: end switch
23: end for
Output: a sequence of codewords r.

output of the algorithm is an integer array r with length less
than n. The lookup table of Simple-9 is stored as two arrays
(modenum and bitlength), provides the number of coded in-
tegers and the bit lengths of the different padding modes.
The maximum value that can be represented in one padding
mode is calculated using the bit length (line 4, line 11). The
algorithm first chooses proper padding modes using Simple-
9 for a given sequence of integers (line 3-15). With the suc-
cessive padding mode j1 and j2, the status bits of SSimple-9
can be determined for the above Simple-9 coded integers
(line-16). Then, the specific padding mode of SSimple-9
can be used to compress the above Simple-9 coded integers
(line 17-22).

Given an integer sequence 1, 1, . . . , 1, 31, 32 (27 1s
and integer 31, 32), the compression steps with Simple-9 of
these 29 integers are as follows. First, we use mode #b to
present the first 14 1s and leave sequence 1, 1, . . . , 1, 31,
32 (13 1s and integer 31, 32). Then, we use mode #c to
present the following 9 1s and leave sequence 1, 1, 1, 1,
31, 32 (4 1s and integer 31, 32). Next, we use mode #e to
present the following 5 integers 1, 1, 1, 1, 31. Finally, we
use mode #e to present the last integer 32. The compres-
sion will cost 4 32-bit machine words to present the above
sequence. When the hard-coding optimization is used, com-
pression and decompression both require 4 table lookup and
4 branch instructions.

If the above integer sequence is compressed with two
64-bit machine words, the total data processing and branch
instructions will be halved. The details of the SSimple-
9 compression are as follows. First, we can obtain the
two padding modes #b and #c by testing two adjacent 32-
bit machine words and form the new padding mode #bc.
Then, the status area can be stored as bit sequence 00010010

Algorithm 2 SSimple-9 Decompression
Input: a sequence of codewords r.
1: for k from 0 to n do
2: two successive codewords, r1 and r2 in r
3: unsigned int s = r1 >>> 24
4: switch(s) do
5: case s:
6: decode s(r1,r2,d,k)
7: k+=out s
8: break
9: . . .

10: end switch
11: end for
Output: integer list d with n numbers.

by a mask table lookup, and the data area can be stored
as the 56-bit sequence 0101010101010101010101010101,
0010010010010010010010010010. The actual data can be
stored as two 32-bit integers. The first 32-bit integer will
combine the status area 00010010 and 24-bit data area
010101010101010101010101. The second 32-bit integer
will be the left 32 bits
01010010010010010010010010010010. The final two
compressed integers are {307582293, 1380525202}. Next,
we can also compress the remaining integers into
{1141391903, 2080374784}. When the hard-coding opti-
mization is used, the total integer sequence needs 2 table
lookup and 2 branch instructions.

4.2 Decompression Description

The decompression procedure is depicted in Algorithm 2.
The input and output of the algorithm are both integer ar-
rays. For two successive 32-bits codewords, the status bits
is first decoded by shifting the most significant 8 bits of the
first codeword, which forms the following padding mode
(line 3). Then, the corresponding mask can be obtained by
hardcoded lookup in the mask table. Finally, the algorithm
choose a proper hardcoded decoding function, in which the
integers can be extracted by shifting a fixed bit-width de-
fined by the given mask (line 4-10).

Given two codewords {307582293, 1380525202}, the
decompression steps are as follows. First, change the
first codeword 307582293 to the binary representation
00010010010101010101010101010101. Second, shift left
to obtain the 8 status bits 00010010, and the padding mode
#bc can be obtained by lookup in the mask table. Next,
we change the second codeword 1380525202 to the bi-
nary representation 01010010010010010010010010010010
and append it to the 24-bit data area of the first
codeword 010101010101010101010101. For the com-
bination binary representation of the 56-bit data area
010101010101010101010101, 0101001001001001001001−
0010010010, we can extract the integer sequence by shifting
left 2 bit-widths 14 times and a 3-bit width 9 times. Then,
the integer sequence can be stored in an integer array as
{1, · · ·, 1} (23 1s). Finally, the remaining two codewords
{1141391903, 2080374784} can also be decoded to {1, 1,

1420
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

Algorithm 3 code 69(d,k,r)
Input: integer array d and start index k.
1: r′[0] = (r′[0] << 14) + d[k]
2: r′[0] = (r′[0] << 10) + (d[k + 1] >>> 4)
3: r′[1] = (r′[1] << 4) + ((d[k + 1] << 28) >>> 28)
4: for i from 0 to 3 do
5: r′[1] = (r′[1] << 9) + d[k + 2 + i]
6: end for
7: r′[0] = s << 24|r′[0]
8: append r′[0] and r′[1] to r

Output: a sequence of codewords r.

Algorithm 4 decode 69(r1,r2,d,k)
Input: integer codewords r1, r2 and index k in d.
1: d[k] = (r1 << 8) >>> 18
2: d[k + 1] = (r1 << 22) >>> 18|(r2 >>> 27)
3: d[k + 2] = (r2 << 5) >>> 23
4: d[k + 3] = (r2 << 14) >>> 23
5: d[k + 4] = (r2 << 23) >>> 23

Output: integer array d.

1, 1, 31, 32} with the same method. With the hard-coding
metric, the decoding procedure of SSimple-9 needs 2 table
lookup and 2 branch instructions overall, compared to 4 ta-
ble lookup and 4 branch instructions of Simple-9.

As shown above, the hard-coded shifting and mask
operations can be specifically designed to speed the com-
pression and decompression. Algorithm 3 and Algorithm 4
present the loop-unrolled pseudocode of the compression
and decompression of padding mode #hg (14bit∗2+9bit∗3).
The input and output of the two algorithms are both 32-bit
integers. There is a pair of hard-coded compression and de-
compression routines for each padding mode, and each pair
is assigned a number as its status.

As depicted in Algorithm 3, the integers are checked
from the smaller bit width to the larger bit width of different
padding modes, and padding mode #hg (14bit∗2+9bit∗3) is
finally selected. Thus, the first integer is temporarily stored
at the last 14 bits of the first codeword (line 1). The first
codeword is left shifted for 10bits, and the first 10 bits of
the second integer are stored at the last 10 bits of the first
codeword (line 2). The last 4 bits of the second integer are
stored temporarily at the last 4 bits of the second codeword
(line 3). The 3 9-bit-width integers are stored one by one
at the last 27 bits of the second codeword with the shifting
left of 9 bits 3 times (line 4-6). Finally, the status bits are
stored at the first 8 bits of the first codeword (line 7). How-
ever, in the decoding procedure in Algorithm 4, all of the
integers are extracted exactly as indicated by the definitions
of different bit areas of padding mode #hg, particularly the
cross-word boundary storage (line 2).

For an given sequence of integers, the padding modes
of Simple-9 cannot be determined until checking the bit
width of each integer while compressing. Thus, the num-
ber of overall branch operations for a given inverted lists
(integer sequence) is hard to estimate before compressing,
as shown in previous works. However, it is sure that the

branch operations are halved for SSimple-9 compared to
that in Simple-9. For a given sequence of n integers, there
will be a branch operation for every data chunk in both com-
pressing and decompressing. If the number of branch opera-
tions of the integer sequence for Simple-9 is m, we can only
conclude that n/28 ≤ m ≤ n before compressing, but the
number of branch operations of the sequence for SSimple-9
will be surely halved to m/2. That is to say, the time com-
plexity of branch operations is O(n) for Simple-9 and surely
O(n/2) for SSimple-9, which always leads to high perfor-
mance achievement for SSimple-9.

5. Experimental Results

5.1 Experimental Setup

The experimental evaluation is composed of synthetic data
evaluation and real web TREC data evaluation. The syn-
thetic dataset evaluations are performed on the platform con-
structed in [23], in which the clustering and uniform data
models used are from [5]. The two models generate sets
of distinct sorted integers that can be stored as d-gaps. In
the uniform model, integers follow a uniform distribution
between the given integer ranges. That is, randomly gen-
erate fixed number of integers within a ranges and convert
them into sequences of d-gaps. In the clustering model, inte-
gers follow a clustering distribution. The clustering model is
generated from a recursive processing of the uniform model.
Given the integer range array A[l . . . r], we want to select f
distinct numbers, where f ≤ r− l+1. If f < 10, then f num-
bers in array A are selected by the uniform model. When
f ≥ 10, array A is divided into two sub-arrays A[l . . .m]
and A[m + 1 . . . r] (m is randomly selected). The two sub-
arrays must both provide f /2 distinct numbers. There are
three different sub-array data selection metrics. The first
one is the selection in A[l . . .m], which obeys the uniform
model, whereas the selection in A[m+1 . . . r] obeys the clus-
tering model. The second one is the selection in A[l . . .m],
which obeys the clustering model, whereas the selection in
A[m + 1 . . . r] obeys the uniform model. The third one is
the selections in A[l . . .m] and A[m + 1 . . . r]; both obey the
clustering model. The choice of the above cases is made
randomly, with a probability of 0.25, 0.25 and 0.5, respec-
tively. The gaps between these integers in the clusterings are
relatively small, which are more compressible than are those
of uniform data. Thus, the clustering data are more likely to
simulate realistic data of web pages.

The real dataset evaluation is based on the Terrier in-
formation retrieval platform [25]. We used inverted lists ob-
tained from two TREC Web test collections, WT2G and
GOV2. The full name of TREC is Text REtrieval Con-
ference, which is co-sponsored by the National Institute
of Standards and Technology (NIST) and the U.S. Depart-
ment of Defense (DOD). Its purpose was to support research
within the information retrieval community by providing the
infrastructure necessary for large-scale evaluation of text re-
trieval methodologies. The WT2G and GOV2 are two gen-

JIANG et al.: WELL-BALANCED SUCCESSIVE SIMPLE-9 FOR INVERTED LISTS COMPRESSION
1421

eral datasets provided by TREC for information retrieval
evaluation. The TREC WT2G collection contains approxi-
mately 247 thousand documents, with an uncompressed size
of 2 GB. The GOV2 collection contains approximately 25.2
million documents, with an un-compressed size of 426 GB.
For the query processing evaluation, we use 10,000 queries
randomly selected from the TREC2005 Efficiency Track
Queries.

The synthetic data evaluation is used for debugging the
compression algorithm, and the real web data evaluation is
based on the search engine query processing. Thus, the ex-
perimental hardware environment differs; the former is on a
personal laptop with a quad-core Intel(R) Core(R) i5-5200U
processor running at 2.20 GHz with 8 GB of RAM and
12,288 KB of cache, and the latter is on a dedicated, other-
wise idle server with an Intel(R) Xeon(R) E5-2640 proces-
sor running at 2.00 GHz with 128 GB of RAM and 20MB
of L3 cache. All solutions were implemented in JAVA. In
every experiment in which we report running time, the JVM
was initially executed a certain number of times. The bench-
mark for warmup and the numbers are averaged over 3 in-
dependent runs when the JVM reached steady-state perfor-
mance. Because the compression ratio remains unchanged
for SSimple-9, the effective criteria we count are compres-
sion/decompression speeds.

5.2 Synthetic Data Evaluation

In this section, we use the two models of clustering data and
uniform data to verify the validity of the proposed SSimple-
9 algorithm. For the two models, we generate integer arrays
that simulate docIDs in inverted lists. The integers are se-
lected randomly in the range [0, 229) for both data models.
In the first pass, we generated 210 short arrays containing 215

integers each. (We can also generate arrays with fewer inte-
gers, such as 29.) The average difference between successive
integers within an array is thus 229−15 = 214. We expect the
compressed data to use at least 14 bits per int (b/i) for the
most sparse integers distributed in the given ranges. In the
second pass, we generated only one long array of 225 inte-
gers. (We can also generate array with more integers, such
as 228.) In this case, the average distance between succes-
sive integers is 229−25 = 24. We expect the compressed data
to use at least 4 b/i for the most sparse integers distributed
in the given ranges. We choose compression ratio, com-
press speed and decompress speed as the criteria. To have a
general comparison, we select the commonly used fast de-
compressive compressions Varint, Group Varint, Simple-9
and OptPFD as the baselines. The experimental results are
shown in Tables 3–6. The compression ratio is averaged
across the fixed number of integers within an increasing dis-
tribution ranges. The compress/decompress speed is mea-
sured in millions of integers per second (mi/s).

Tables 3–6 shows the great compression and decom-
pression speed improvement of SSimple-9; the best case
achieves a speed twice that of Simple-9 because the num-
ber of branch operations can be significantly reduced in the

Table 3 Results of SSimple-9 with uniform data: short arrays.

Compressions
Compression

ratio (b/i)
Compress

speed (mi/s)
Decompress
speed (mi/s)

Varint 11.6 84.7 197.7
Group Varint 11.6 250.1 383.5

OptPFD 9.6 5.2 609.5
Simple-9 10.9 73.7 284.2

SSimple-9 10.9 143.8 494.5

Table 4 Results of SSimple-9 with uniform data: long arrays.

Compressions
Compression

ratio (b/i)
Compress

speed (mi/s)
Decompress
speed (mi/s)

Varint 8.0 164.7 274.3
Group Varint 8.0 361.0 480.0

OptPFD 4.5 10.3 863.7
Simple-9 4.5 111.0 380.3

SSimple-9 4.5 197.3 797.0

Table 5 Results of SSimple-9 with clustering data: short arrays.

Compressions
Compression

ratio (b/i)
Compress

speed (mi/s)
Decompress
speed (mi/s)

Varint 10.8 84.1 205.7
Group Varint 10.8 261.7 387.2

OptPFD 8.3 6.0 684.8
Simple-9 9.4 81.4 311.2

SSimple-9 9.4 122.9 546.2

Table 6 Results of SSimple-9 with clustering data: long arrays.

Compressions
Compression

ratio (b/i)
Compress

speed (mi/s)
Decompress
speed (mi/s)

Varint 8.0 166.0 283.7
Group Varint 8.0 374.7 496.0

OptPFD 3.9 12.3 907.0
Simple-9 4.0 139.3 441.0

SSimple-9 4.0 158.7 711.3

64-bit SSimple-9 compression. We also find that the same
algorithm is more compressive in clustering data than it is in
uniform data because the gaps between the integers of clus-
tering data are relatively small. Additionally, the same com-
pression algorithm on long arrays is more compressive than
that on short arrays because long arrays within a fixed range
can have smaller integer gaps. Group Varint achieves the
best compression speed because the compression process is
relatively simple and can largely avoid branch operations
that exist in the Varint compression. In addition, although
OptPFD maintains the best decompression speed, its com-
pression speed is extremely slow because the dynamic pro-
gramming technique is used to calculate the optimal com-
pression in the compression process of OptPFD. This char-
acteristic also illustrates why the index compression algo-
rithm used by most search engines not only considers the op-
timal decompression speed but also the index construction
speed. The proposed SSimple-9 compression can signifi-
cantly improve both compression and decompression speed
without changing the compression ratios of Simple-9. In ad-
dition, the performance of Simple-9 is much better than that
of Varint. Thus, we can conclude that the SSimple-9 algo-

1422
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

rithm can greatly improve the performance of index building
and query processing of search engines while maintaining a
better compression ratio.

5.3 TREC Data Evaluation

In this subsection, we present a realistic web page data eval-
uation on TREC WT2G and GOV2. The criteria we use
here are index size and query processing latency. From the
synthetic dataset evaluation, we conclude that the SSimple-9
can be used to speed the processing of index building. How-
ever, the inverted indexes are first built with Elias-Gamma
compressed and then recompressed to different compression
algorithms on the Terrier platform. Thus, we will not present
index building performance in this subsection. Our inverted
lists include docIDs, term frequencies, field frequencies and
term positions. We build docID-sorted inverted index struc-
tures with 1024 docIDs per chunk using the Elias-Gamma
compression, removing the standard English stopwords, and
applying Porter’s English stemmer. Finally, the index is
built by the Terrier platform with single-pass in-memory in-
dexing and can be recompressed for different index com-
pression algorithms.

The inverted lists are compressed using the original
Elias-Gamma compression if the number of integers can
only fit fewer than 28 bits of data area. The average index
size of the inverted lists is provided in Table 7. The index
size compressed by SSimple-9 is the same as that of Simple-
9 but is much better than that of Group Varint. OptPFD
achieves a better compression ratio than does Varint, Group
Varint, Simple-9 or SSimple-9 because the dynamic pro-
gramming metric is used to obtain optimal chunk splitting
with a different compression bit width. Moreover, the best
compression ratio can be achieved by Elias-Gamma with
smaller datasets and by OptPFD with larger datasets be-
cause it is proper to compress smaller integers with Elias-
Gamma and larger integers with OptPFD, which can handle
exceptional values. However, our SSimple-9 and the origi-
nal Simple-9 compressions can achieve an acceptable com-
pression ratio.

Next, compared performance directly in a real search-
ing context, i.e., by answering queries with the above WT2G
and GOV2 indexes. We use topics 401-450 and topics 751-
800 for querying the above WT2G and GOV2 indexes, re-
spectively. We use disjunctive document-at-a-time as the
index traversal technique and BM25 as the ranking func-
tion. The inverted lists related to the query terms are loaded

Table 7 The index size of the inverted lists achieved by different
compression techniques for the TREC WT2G and GOV2 datasets.

Compressions WT2G (MB) GOV2 (MB)
Elias-Gamma 104 10,099

Varint 258 19,359
Group Varint 258 19,359

OptPFD 146 9,679
Simple-9 148 10,367

SSimple-9 148 10,367

into main memory at the beginning of each experiment. Ev-
ery time we report the query latency, the JVM warm-up is
necessary to maintain a steady performance state, and the
results are averaged over 5 independent runs. The average
query latency results are shown in Table 8. For each cor-
pus, this table shows the query-processing speed measured
in milliseconds per query.

As depicted in Table 8, the query processing perfor-
mance of SSimple-9 is significantly improved compared
with that of Simple-9, which is close to the performance of
OptPFD. Additionally, the superior performance of Group
Varint compared with that of Varint shows the effectiveness
of the group compression metric. Because many factors
can influence the speed of real web-query processing and
decompression performance is only one factor, the results
might not be as good as those shown in the synthetic eval-
uation. However, the performance of SSimple-9 compres-
sion is almost the same as that of OptPFD compression. In
addition, because Terrier uses 1024 docIDs as a data com-
pression chunk, word-aligned fixed number of integer com-
pressions such as OptPFD need only use a different com-
pression algorithm when the number of integers is less than
128. However, the Simple series of compression should use
a different compression algorithm for every 1024 docIDs,
which can affect overall performance. Thus, the query pro-
cessing performance can be enhanced by using an unfixed
chunk size for the Simple-9 series compression. In sum-
mary, the SSimple-9 compression does not achieve optimal
performance on one single criterion. However, it shows
well-balanced performance in compression speed, compres-
sion ratio and decompression speed.

6. Conclusions

To enhance the compression and decompression speed of
Simple-9 compression, resulting in faster query process-
ing performing search engines, we have proposed a novel
SSimple-9 compression and designed the storage format
and details of the compression/decompression process. In
essence, the new compression improves the number of in-
tegers that can be compressed in a single data-processing
procedure, thus shortening the process of branch operations,
table lookup and data transfer operations when compress-
ing the integer sequence. Experimental results on a syn-
thetic dataset show that the compression and decompression
procedures of the proposed SSimple-9 algorithm achieve
a speed almost 2 times faster than that of Simple-9, and

Table 8 Average query latency in milliseconds (ms) on TREC WT2G
and GOV2 indexes.

Compressions WT2G (ms) GOV2 (ms)
Elias-Gamma 35.1 438.0

Varint 29.0 399.0
Group Varint 25.4 376.2

OptPFD 23.2 324.5
Simple-9 25.0 361.0

SSimple-9 23.7 331.4

JIANG et al.: WELL-BALANCED SUCCESSIVE SIMPLE-9 FOR INVERTED LISTS COMPRESSION
1423

query processing on the realistic TREC dataset shows sig-
nificant performance gains. And it will show well-balanced
performance in compression speed, compression ratio and
decompression speed in commercial search engines. We
also find that the two variants of Simple-9, i.e., Simple-16
and Simple-8b, can make full use of 4 status bits to present
24 = 16 padding modes, and the successive versions might
lead to further performance gains. Thus, future work can
focus on enhancing variants of Simple-9, such as Simple-
16 to improve compression ratio and Simple-8b to improve
compression/decompression performance.

Acknowledgments

This work was supported by the China Postdoctoral Science
Foundation (2016M602825).

References

[1] J. Dean, “Challenges in building large-scale information retrieval
systems: Invited talk,” Proc. Second ACM International Conference
on Web Search and Data Mining, WSDM ’09, New York, NY, USA,
p.1, ACM, 2009.

[2] J.D. Brutlag, H. Hutchinson, and M. Stone, “User preference and
search engine latency,” Proc. ASA Joint Statistical Meetings, 2008.

[3] V.N. Anh and A. Moffat, “Inverted index compression using
word-aligned binary codes,” Information Retrieval, vol.8, no.1,
pp.151–166, 2005.

[4] J. Zhang, X. Long, and T. Suel, “Performance of compressed in-
verted list caching in search engines,” Proc. 17th International Con-
ference on World Wide Web, WWW ’08, New York, NY, USA,
pp.387–396, ACM, 2008.

[5] V.N. Anh and A. Moffat, “Index compression using 64-bit words,”
Software: Practice and Experience, vol.40, no.2, pp.131–147, 2010.

[6] J.P. Deveaux, A. Rau-Chaplin, and N. Zeh, “Adaptive tuple differen-
tial coding,” International Conference on Database and Expert Sys-
tems Applications, DEXA 2007, pp.109–119, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2007.

[7] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar
RAM-CPU cache compression,” 22nd International Conference on
Data Engineering (ICDE ’06), p.59, April 2006.

[8] F. Silvestri and R. Venturini, “VSEncoding: Efficient coding and
fast decoding of integer lists via dynamic programming,” Proc.
19th ACM International Conference on Information and Knowl-
edge Management, CIKM ’10, New York, NY, USA, pp.1219–1228,
ACM, 2010.

[9] R. Delbru, S. Campinas, and G. Tummarello, “Searching web data:
An entity retrieval and high-performance indexing model,” Web Se-
mantics: Science, Services and Agents on the World Wide Web,
vol.10, pp.33–58, 2012.

[10] A. Trotman, X.F. Jia, and M. Crane, “Towards an efficient and effec-
tive search engine,” SIGIR 2012 Workshop on Open Source Infor-
mation Retrieval, 2012.

[11] G. Ottaviano, N. Tonellotto, and R. Venturini, “Optimal space-
time tradeoffs for inverted indexes,” Proc. Eighth ACM Interna-
tional Conference on Web Search and Data Mining, WSDM ’15,
New York, NY, USA, pp.47–56, ACM, 2015.

[12] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM
Comput. Surv., vol.38, no.2, Article No. 6, July 2006.

[13] I.H. Witten, A. Moffat, and T.C. Bell, Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 2nd ed., Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[14] R. Rice and J. Plaunt, “Adaptive variable-length coding for efficient
compression of spacecraft television data,” IEEE Trans. Commun.

Technol., vol.19, no.6, pp.889–897, 1971.
[15] P. Elias, “Universal codeword sets and representations of the inte-

gers,” IEEE Trans. Inf. Theory, vol.21, no.2, pp.194–203, 1975.
[16] S. Büttcher, C. Clarke, and G.V. Cormack, Information Retrieval:

Implementing and Evaluating Search Engines, MIT Press, 2016.
[17] A. Moffat and L. Stuiver, “Binary interpolative coding for effective

index compression,” Inf. Retr., vol.3, no.1, pp.25–47, July 2000.
[18] H.E. Williams and J. Zobel, “Compressing integers for fast file ac-

cess,” Computer Journal, vol.42, no.3, pp.193–201, 2002.
[19] H. Yan, S. Ding, and T. Suel, “Inverted index compression and query

processing with optimized document ordering,” Proc. 18th Interna-
tional Conference on World Wide Web, WWW ’09, New York, NY,
USA, pp.401–410, ACM, 2009.

[20] V.N. Anh and A. Moffat, “Index compression using fixed binary
codewords,” Proc. 15th Australasian Database Conference - Volume
27, ADC ’04, Darlinghurst, Australia, pp.61–67, 2004.

[21] V.N. Anh and A. Moffat, “Improved word-aligned binary compres-
sion for text indexing,” IEEE Trans. Knowl. Data Eng., vol.18, no.6,
pp.857–861, June 2006.

[22] D. Lemire, L. Boytsov, and N. Kurz, “SIMD compression and the
intersection of sorted integers,” Software: Practice and Experience,
vol.46, no.6, pp.723–749, 2016.

[23] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Software: Practice and Experience, vol.45,
no.1, pp.1–29, 2015.

[24] W.X. Zhao, X. Zhang, D. Lemire, D. Shan, J.-Y. Nie, H. Yan,
and J.R. Wen, “A general SIMD-based approach to accelerating
compression algorithms,” ACM Trans. Inf. Syst., vol.33, no.3,
pp.15:1–15:28, March 2015.

[25] I. Ounis, G. Amati, V. Plachouras, B. He, C. Macdonald, and C.
Lioma, “Terrier: A high performance and scalable information re-
trieval platform,” Proc. OSIR Workshop, pp.18–25, Citeseer, 2006.

Kun Jiang receieved his B.S., M.S., and
Ph.D. degrees in Computer Science from Col-
lege of Computer, National University of De-
fense Technology (NUDT), China, in 2008,
2011, and 2015, respectively. He is now a post-
doctoral in the School of the Electronic and In-
formation Engineering, Xi’an Jiaotong Univer-
sity, China. His research interests include infor-
mation retrieval and data mining.

Yuexiang Yang is a Professor with College
of Computer of National University of Defense
Technology (NUDT), China. He received his
Ph.D. degree in Computer Science from School
of Computer of NUDT in 2006. His research
interests include information retrieval, network
security, architecture design of the Internet, and
web service.

http://dx.doi.org/10.1145/1498759.1498761
http://dx.doi.org/10.1023/b:inrt.0000048490.99518.5c
http://dx.doi.org/10.1145/1367497.1367550
http://dx.doi.org/10.1002/spe.948
http://dx.doi.org/10.1007/978-3-540-74469-6_12
http://dx.doi.org/10.1109/icde.2006.150
http://dx.doi.org/10.1145/1871437.1871592
http://dx.doi.org/10.1016/j.websem.2011.04.004
http://dx.doi.org/10.1145/2684822.2685297
http://dx.doi.org/10.1145/1132956.1132959
http://dx.doi.org/10.1109/tcom.1971.1090789
http://dx.doi.org/10.1109/tcom.1971.1090789
http://dx.doi.org/10.1109/tit.1975.1055349
http://dx.doi.org/10.1023/a:1013002601898
http://dx.doi.org/10.1093/comjnl/42.3.193
http://dx.doi.org/10.1145/1526709.1526764
http://dx.doi.org/10.1109/tkde.2006.99
http://dx.doi.org/10.1002/spe.2326
http://dx.doi.org/10.1002/spe.2203
http://dx.doi.org/10.1145/2735629

1424
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.7 JULY 2017

Qinghua Zheng is a Professor with School
of Electronic & Information Engineering of
Xi’an Jiaotong University, China. He is the
winner of the National Funds for Distinguished
Young Scientists and the Distinguished Profes-
sor for Yangtze River Scholar Project, is a can-
didate for “the New Century National Hundred
Thousand-and-Ten Thousand Talents Project”
and one of the first batch of leading scientists for
the “Ten-Thousand Talents Project” for science
and technology innovation. His major research

fields include theory and technology of intelligent e-Learning environment,
network public opinion and harmful information monitoring, and software
reliability evaluation.

