
1798
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

PAPER

A Novel Channel Assignment Method to Ensure Deadlock-Freedom
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SUMMARY Inter-switch networks for HPC systems and data-centers
can be improved by applying random shortcut topologies with a reduced
number of hops. With minimal routing in such networks; however,
deadlock-freedom is not guaranteed. Multiple Virtual Channels (VCs) are
efficiently used to avoid this problem. However, previous works do not pro-
vide good trade-offs between the number of required VCs and the time and
memory complexities of an algorithm. In this work, a novel and fast algo-
rithm, named ACRO, is proposed to endorse the arbitrary routing functions
with deadlock-freedom, as well as consuming a small number of VCs. A
heuristic approach to reduce VCs is achieved with a hash table, which im-
proves the scalability of the algorithm compared with our previous work.
Moreover, experimental results show that ACRO can reduce the average
number of VCs by up to 63% when compared with a conventional algo-
rithm that has the same time complexity. Furthermore, ACRO reduces the
time complexity by a factor of O(|N | · log |N |), when compared with another
conventional algorithm that requires almost the same number of VCs.
key words: deadlock-free routing, high performance computing, time com-
plexity

1. Introduction

For large parallel applications executed on the next genera-
tion of High Performance Computing (HPC) systems, MPI
communication latency should be lower than one microsec-
ond [1], [2]. In order to cope with this requirement, low-
latency inter-switch networks are needed. Switch delays
(e.g., about 100 nanoseconds in InfiniBand QDR) are typ-
ically larger than the wire and flit injection delays, even
when including serial and parallel converters. Therefore,
to achieve low latency, inter-switch topologies should have
low diameter and low average shortest path length, both
of which can be measured in terms of number of switch
hops. Compared with the conventional Torus or Fat-tree
networks, recently proposed random shortcut topologies can
drastically reduce the number of hops [3]–[5]. It is reported
that such topologies can be efficiently applied to inter-switch
networks for HPC systems and data-centers. To achieve low
latency networks with irregular topologies, optimized rout-
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ing methods including minimal routing should be utilized.
Most of these routing methods do not guarantee deadlock-
freedom that has to be supported in practical HPC net-
works. Therefore, endorsing a given livelock-free routing,
including minimal routing methods, with deadlock-freedom
is needed.

In this work, multiple Virtual Channels (VCs) [6], [7]
for each physical channel are exploited in order to support
deadlock-freedom for arbitrary routing methods. The pro-
posed methodology takes a given topology and the routing
table, obtained from a livelock-free routing algorithm, as in-
puts to generate the VC assignment to paths. This approach
has a small time complexity, yet with the same number of
VCs when compared with conventional methods.

This work is based on our previous research [8] which
suffers from the lack of scalability in terms of network size.
In order to improve it, a new algorithm named Assignment
of Channels in Reverse Order (ACRO) using a hash table is
introduced, and detailed evaluation results are shown.

The rest of the paper is organized as follows. Section 2
shows the related work. In Sect. 3, the detailed ACRO al-
gorithm is presented. In Sect. 4, the proposed algorithm is
evaluated and compared with conventional VC assignment
methods. Finally, we conclude the paper in Sect. 5.

2. Related Work

2.1 Low-Latency Random Topologies for HPC Systems

End-to-end latencies can be reduced by using networks with
high-radix switches. Such high-radix networks include Flat-
tened Butterfly [9] and Dragonfly [10] which are utilized in
the latest supercomputers. However, they necessitate sev-
eral long links between cabinets that increase the cost. K-
ary n-Torus with a large K used in Blue Gene/Q [11] and
K-supercomputer [12] is another choice of low latency net-
works. However, using large Ks also increases the number
of long links.

Researchers in the field of applied graph theory have
focused on the optimum Moore graphs [13]. The num-
ber of nodes in these graphs can reach the Moore bound
with given degree and diameter values. As for networks
for high-performance computing systems, diameter-2 op-
timum or quasi-optimum graphs are adopted. Hoffman-
Singleton graph [14], which is one of the well-known Moore
graphs, is utilized to optimize networks among servers in
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a cabinet [15]. Moreover, quasi-optimum McKay-Miller-
Širáň (MMS) graph [16] can be adopted for Slim Fly topol-
ogy [17], which realizes diameter-2 large-scale networks
among top-of-rack (ToR) switches. However, the sizes and
degrees of such a network are strictly limited, and compli-
cated heuristics are often needed to find the required net-
work configuration [18].

Random topologies for HPC systems can achieve laten-
cies as low as optimized topologies, yet they have to be gen-
erated with much simpler algorithms. The latency reduction
achieved by the small-world phenomenon is proportional to
logd |N|, where d and |N| represent the degree of each node
and the number of nodes, respectively. They can improve
the bandwidth, scalability, and fault-tolerance of inter-ToR
networks [3]–[5] and inter-router on-chip networks [19].

2.2 Methodologies for Designing Deadlock-Free Routing

In this work, we cannot use minimal adaptive routing with
escape paths [20] to support deadlock-freedom since routing
tables are assumed to be given. Alternatively, in this work,
multiple Virtual Channels (VCs) are exploited to break
cyclic channel dependencies, as used in LASH [6], [21] and
LASH-TOR [7] routings. Both of these two conventional
routing techniques can assign each path between source and
destination nodes to Virtual Layers (VLs), each of which is
constructed with one of the VCs. The difference between
them is whether to permit transitions among VLs for each
path. In LASH routing, paths’ transitions never occur, and
each path must be assigned to one of the VLs, as shown
in Fig. 1 (a). It supports deadlock-free minimal paths at the
cost of a relatively large number of VLs. For instance, it uses

Fig. 1 Routings with virtual layers.

Table 1 Trade-offs on conventional algorithms.

Routing # of required VLs Time Complexity

LASH 9 for 256 SWs [7] O(|N |2)
LASH-TOR 4 for 256 SWs [7] O(|N |3)

up to 9 VLs for the 256-nodes case [7]. In LASH-TOR rout-
ing, on the other hand, each path can be split into sub-paths
among ordered VLs. Thus, it can achieve deadlock-freedom
with only 4 VLs for the same 256-nodes case [7]. However,
the time complexity can reach up to O(|N|3), which makes it
quite unrealistic for large-sized networks. The trade-offs be-
tween the two routing methods are summarized in Table 1.

To avoid cyclic channel dependencies in each VL, we
introduce ordered channels [22] that determine the follow-
ing theorem.

Theorem 1. A set of paths within a network is deadlock-free
if, and only if, there exists an channels’ ordering such that
each path uses the channels in a decreasing order.

This can be proved by a topological sort for a Channel
Dependency Graph (CDG) induced by a set of paths [23].
We propose a heuristic approach that aims to construct the
channel ordering in each VL in order to maximize the num-
ber of paths and the length of each path routed within the
VL. The number of required VLs is minimized with this
heuristic approach to use the transitions among the VLs
mentioned above.

3. ACRO for Deadlock-Free Routing

3.1 Problem Definition

According to the general models [22], the configuration of
an interconnection network is defined as follows.

Definition 1. An interconnection network I is represented
by a directed graph I = (N,C), where N is a set of switches
and C is a set of physical channels.

Definition 2. A deterministic routing function R : N × N →
C returns the physical output channel cout to be taken from
a node ni for packets whose destination node is nd.

In our methodology, a topology and a routing table,
represented in Fig. 2, are given as an interconnection net-
work and a routing function, respectively. The routing table
in Fig. 2 (b) takes a current node ni and a destination node
nd as inputs, and returns the next node nnext. Therefore, the
output channel cout in Def. 2 is determined as follows: cout

is (ni, nnext) if ni � nd; otherwise, cout becomes clocal,nd .

Fig. 2 An example of given inputs.
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The definition of a VL Li in a network I is the same
as that adopted in LASH-TOR [7]; that is, Li can be treated
as a virtual network that is isomorphic to the original phys-
ical network I. Additionally, in this work, Li is defined as
a strictly and decreasingly ordered set. It contains sorted
physical channels of I such that every path within Li is re-
stricted to use the corresponding VCs in a decreasing or-
der. Namely, each VL is a sorted set of C and is denoted as
Li := {ci,|C|−1, . . . , ci,0}.

Given the inputs of a topology and a routing ta-
ble, a strictly and decreasingly ordered set of layers L =
{L|L|−1, . . . , L0} is determined such that for every (source,
destination) pair, the path can reach the destination by using
channels in decreasing order within each Li and transitions
among layers in a decreasing order within L.

3.2 CDG (Channel Dependency Graph) Generation for
Each Destination

In the conventional implementation of LASH-TOR [7], at
least a cyclic dependency check must be done for a path.
Since a cyclic dependency search has a time complexity
of O(|C| + |E|), the minimum time complexity per VL be-
comes approximately O(|N|3). In the recent improvement
on LASH [21], only a cyclic dependency check per VL is
needed. This can be done by initially adding all paths to
a CDG and checking the cyclic dependencies for all edges.
Detected cycles are removed by moving a portion of paths
included in each cycle to the next VL. Then, the dependency
check is done again. It is iterated until no cyclic dependency
is detected. This solution is called an offline-manner which
can reduce the time complexity of search to O(|N|2). Here,
the extension of this offline-manner for LASH-TOR, called
ACRO is proposed to balance the number of VLs and the
time complexity.

The details of the proposed ACRO algorithm are shown
in Alg. 1. A set of paths from a set of nodes N to a desti-
nation node nd is determined as T ′nd

= (N,Cnd ), satisfying
Cnd ⊂ C. T ′nd

forms a directed tree whose root is nd, and
all edges are directed toward the direction of nd. T ′nd

pro-
duces a CDG for the destination nd. Here, it is represented as
Tnd = (C, End ), where End denotes a set of the channel depen-
dencies. Tnd is a set of directed trees, as shown in Fig. 4 (b),
and the node of the CDG is corresponding to ‘channel.’ To
avoid any confusion, a node in a CDG is called a ‘channel.’

In this work, all of the channel dependencies with all
paths in a traffic are determined as a set of CDGs for the
destination nodes rather than the source nodes. This choice
can be explained by the fact that, and as shown in Fig. 3 (b),
if a CDG is generated for each source node, the number of
referred elements in the table for each destination node is
equal to the number of hops between the source and desti-
nation nodes (Fig. 3 (a)). Therefore, the time complexity be-
comes O(|N| · log |N|) for each source node, where O(log |N|)
comes from the characteristics of irregular networks [24].
On the other hand, and as depicted in Fig. 4 (b), if a CDG
is generated for each destination node, only a column of the

Algorithm 1 Assignment of Virtual Layers.
Input: I = (N,C), a Routing Table
Output: a Set of Virtual Layers L

for all n ∈ N do
Create a CDG Tn = (C, En)

end for

for all n ∈ N do
Calculate sets of weight values;
{(hn,c,wn,c)|c ∈ C} (See Sect. 3.3.1)

end for

for all c ∈ C do
Create an empty hash table Hc

for 0 ≤ Δ < D do
Hc[Δ]← 0

end for
end for
/* Initially calculate fitness values */
for all n ∈ N do

for all c ∈ C do
if c has any parent in Tn then
Hc[hn,c]← Hc[hn,c] + wn,c

end if
end for

end for

for all c ∈ C do
f (c)← max({Δ|0 ≤ Δ < D,Hc[Δ] > 0} ∪ {0})

end for

Set boolean values {m(n, c) = False|n ∈ N, c ∈ C}

/* Set Virtual Layers repeatedly */
i← 0
repeat

Create a new empty strictly ordered set Li

Create a set U, a copy set of C
while U � ∅ do

From U remove umin which minimizes f (u),
breaking ties by Hu[ f (u)]
Add umin to the head of Li

for all n ∈ N do
if umin has no parent in Tn then

m(n, umin)← True
for all c′ ∈ Cchild(n, umin) do

Remove an edge (c′, umin) in Tn

Hc′ [hn,c′ ]← Hc′ [hn,c′ ] − wn,c′
while Hc′ [ f (c′)] = 0 ∧ f (c′) > 0 do

f (c′)← f (c′) − 1
end while

end for
end if

end for
end while
Add Li to the head of L
i← i + 1

until ∀n ∈ N ∀c ∈ C, m(n, c) = True

table is needed to be referred to (Fig. 4 (a)). As a result, the
time complexity becomes only O(|N|) for each destination
node.
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Fig. 3 Creation of CDG for src. #0.

Fig. 4 Creation of CDG for dst. #0.

3.3 Heuristic Approach to Reduce VLs

3.3.1 Weight Values of Channel in CDG

VCs in each VL should be ordered properly to minimize the
number of required VLs for deadlock-freedom. In this sec-
tion, a simple heuristic approach is introduced to minimize
the number of paths and the length of each path moved to
the next VL.

Cchild(n, c) is defined as a set of channels which are
children of the channel c in a CDG Tn. Two weight val-
ues, hn,c and wn,c, are introduced for c. hn,c represents the
“height” of c, and wn,c represents the number of the “deep-
est” leaves of c. These values are calculated by the following
equations:

hn,c =

{
0 (if Cchild(n, c) = ∅)
1 +max Hchild(n, c) (otherwise)

where

Hchild(n, c) := {hn,c′ |c′ ∈ Cchild(n, c)}
and

wn,c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (if Cchild(n, c) = ∅)∑
c′∈C′(n,c)

wn,c′ (otherwise)

where

C′(n, c)

:= {c′|c′ ∈ Cchild(n, c), hn,c′ = max Hchild(n, c)}

3.3.2 Hash Table for Each Channel

After introducing the weight values of a channel in a given
CDG, it has to be determined which channel of the cycle to
be broken in order to minimize the length and the number
of paths moved to the next VL. Consequently, this leads to
minimize the number of VLs needed. In the proposed al-
gorithm, a hash table for each channel c, Hc, is introduced.
It manages the number and length of the longest paths that
would be moved to the next VL by the channel. Note that
the longest paths are adopted as objectives, rather than all
paths including shorter paths.

In the earlier stage of this research [8], a fitness value
f (c) was used; however, it has to be implemented with a
long integer number that requires a large overhead for large
network sizes. The effect of this substitution is evaluated in
Sect. 4.1.2.

Considering all paths would make the memory com-
plexity in the algorithm quite large. Moreover, the num-
ber of dependencies to be solved is dominant to the longest
paths, and shorter paths are negligible.

The values of the tables are initially calculated as fol-
lows. If a channel c has any parent in Tn, a value in Hc

corresponding to the key hn,c is incremented by wn,c. Note
that this increment is not applied in the case of a root chan-
nel c because if the smallest order is set to this root channel,
no path would be moved to the next VL.

3.4 Assignment of VLs to Paths in Reverse Order

To make sure whether a channel is reachable in Tn, an
|N| × |C| boolean table is introduced. Each element of the
table is initially set to a boolean value ‘False’, which is spec-
ified by m(n, c) in Alg. 1. The termination condition of the
algorithm is that all channels c ∈ C are reachable in Tn for
all destinations n ∈ N.

The VLs and VCs are assigned for each path in the re-
verse order. Namely, unlike the conventional virtually lay-
ered networks, the VLs and VCs are assigned in the order
from the destination node to the source node.

After generating a new VL Li as an empty ordered
set, the order of channels is fixed in a one-by-one fashion.
Among the channels whose orders are not assigned yet, a
channel umin, which minimizes the largest key with a non-
zero value in Hu, f (u), is selected to append to the head of
Li. If there are some ties, they are broken by selecting one
of them which minimizes the value of Hu[ f (u)].

For each CDG Tn, if the channel umin does not have
a parent in Tn, the following procedures are performed.
Since the packet whose destination is n can reach umin in
the current VL Li, the boolean value of ‘True’ is assigned to
m(n, umin). Furthermore, edges from all the children of umin

to umin itself are removed if they exist.
The deletion of the edges denotes that the dependency

between the child of umin and umin will be dissolved in either
of the following two ways. If the order of the child is not as-
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signed yet, it will be inevitably larger than that of umin. This
means that the dependency is dissolved within the current
Li. Otherwise, the order of the child is surely smaller than
that of umin, which cannot dissolve the dependency. Even af-
ter all the channel orders are assigned in Li, the termination
condition is not satisfied. This leads to the generation of a
VL Li+1. The dependency will be dissolved by the transition
between the child in Li+1 and umin in Li.

After its execution, the deletion is reflected to the val-
ues of the hash tables by the decrement of Hc′ [hn,c′ ] by wn,c′

for each child of umin, c′ ∈ Cchild(n, umin).

3.5 Deadlock-Free Routing with ACRO

3.5.1 Implementation on Switches

A possible implementation of ACRO is that each switch has
a mapping table for VLs. The table holds boolean values
which represent whether an order of each input channel is
larger than that of each output channel.

Packets are restricted to be injected to an output chan-
nel of the first hop with a VL L|L|−1, which has the max-
imum order among all VLs. In the subsequent hops, the
table entries mentioned above are referred to in each switch.
If the input channel has larger order than the output channel
within a VL Li that is used in the input, the same VL Li is
used in the output; otherwise, Li−1 is used. It is important to
mention that the number of table entries for each switch is
independent of the number of switches |N|; but, it depends
on the number of input and output channels and the number
of required VLs. This reduced amount of information for
VL mapping enables a scalable implementation for larger
system sizes.

3.5.2 Livelock- and Deadlock-Freedom with ACRO

Livelock- and deadlock-freedom supported by ACRO is
proved by the following two theorems:

Theorem 2. A path exists between an arbitrary source-and-
destination pair with ACRO.

Proof. With the proposed algorithm described in Sect. 1,
a path between an arbitrary source-and-destination pair
is contained in a strictly ordered set of layers L′ =
{L|L′ |−1, . . . , L0}. When |L′| > 1 is satisfied, transitions be-
tween layers are performed in the switches given by the
strictly ordered set N′ = {n|L′ |−2, . . . , n0}. Deadlock-freedom
among VLs is supported with this path division. Moreover,
each subpath in each VL uses the channels in a strictly
decreasing order, which supports deadlock-freedom within
each VL. �

Theorem 3. The VC and VL assignment with ACRO and
its implementation described in Sect. 3.5.1 can endorse a
given topology and a routing table with both livelock- and
deadlock-freedom.

Proof. Each VC belonging to c in a VL Li is labeled with

a two-digit identifier (i, Idx(i, c))|C|, where Idx(i, c) is the or-
der of c in Li, and (i, j)|C| = i · |C| + j. Given these labeling
to VCs, a packet in each switch with the implementation in
Sect. 3.5.1 uses a pair of input and output channels which
are labeled in strictly decreasing order. Since all packets are
initially injected to the VL with the maximum order, VCs tra-
versed by the packets always have labels equal to or larger
than those in the same channel containing the established
paths in Theorem 2; therefore, packets are transferred with
VCs whose labels are in a strictly descending order until
reaching the destination nodes. �

4. Evaluation

In this section, the proposed VC assignment method is eval-
uated and compared with the conventional VC assignment
methods proposed in LASH and LASH-TOR. As shown in
Sect. 3, a topology of switches and a routing table are given
as inputs. Note that the routing table takes source and desti-
nation nodes, and returns the next node.

4.1 Number of Required VLs

In this section, the impact of the network size and the node
degree to the number of VLs is analyzed. Here, the degree
is corresponding to the number of ports of a switch.

4.1.1 Implementation of VC Assignment Algorithm

In this evaluation, the VC assignment algorithm in LASH is
implemented as follows. Let GCD,i be a CDG created by a set
of paths in Li. For a given path between a source node ns and
a destination node nd, the algorithm searches a set of VLs L
to find Li ∈ L. The path induces the channel dependencies,
which could be added to GCD,i without generating a cycle of
channel dependencies. If Li is found, the dependencies are
added to GCD,i. Otherwise, a new VL and the corresponding
CDG are created and the channel dependencies are added to
the new CDG.

The VC assignment algorithm in LASH-TOR is imple-
mented in a similar way as that in LASH: let GCD be a set
of CDGs created by sets of paths in a set of VLs L. For
the same inputs as in LASH, the algorithm searches L and
N to find {L′, S }, satisfying L′ ⊆ L and S ⊂ N. The path
would be split into the subpaths according to the transition
node s j ∈ S . Each subpath would induce the channel depen-
dencies, which could be added to each GCD,i ∈ GCD without
generating a cycle of dependencies within each Li ∈ L′ re-
spectively. If {L′, S } is found, the dependencies are added
to GCD; otherwise, a new VL and the corresponding CDG
are created and added to L and GCD, respectively. GCD

then incorporates the dependencies obtained from {L′, S }
that satisfies the condition mentioned above, and is exhib-
ited by the additional VL. The original implementation of
LASH-TOR can limit the number of VLs by permitting non-
minimal paths with up*/down* routing on the final VL. On
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Fig. 5 Number of required VLs (64 nodes).

Fig. 6 Number of required VLs (256 nodes).

the other hand, the proposed method ACRO completely sup-
ports paths induced by a given routing table. Thus, it does
not use the alternative longer paths. For fairness of compari-
son, the number of maximum VLs are not limited in LASH-
TOR; therefore, up*/down* routing is not used in the last
VL during this evaluation.

4.1.2 Experimental Results

Surely connected regular random topologies are adopted in
this evaluation, in which all of the edges are bidirectional.
The number of nodes is set to |N| = 64 and 256. The num-
ber of degree d is varied from 4 to 12. In this evaluation,
a hundred topologies are generated from different seeds for
each (|N|, d) pair. The corresponding routing tables take ex-
actly one minimal path for a source-and-destination pair.

Figure 5 and Fig. 6 show the maximum, minimum,
and average numbers of required VLs for 64- and 256-node
topologies, respectively. These results show that ACRO ef-
ficiently reduces the number of VLs compared with the VC
assignment methodology in LASH routing. For 64-node
topologies, it reduces the average and maximum numbers of
required VLs by up to 37% and 50%, respectively. Further-
more, for 256-node topologies, it reduces the average and
maximum numbers of required VLs by up to 60% and 63%,
respectively. Another interesting result is that the heuris-
tic used in ACRO achieves almost the same number of re-
quired VLs as the VC assignment methodology in LASH-
TOR routing in which paths are assigned to VLs sequen-
tially.

Moreover, ACRO accomplishes as small variance in
the number of required VLs as LASH-TOR. In our evalu-
ation, a difference of 2 between the maximum and the mini-
mum numbers of required VLs is observed for LASH in the
case of (|N|, d) = (64, 3). On the other hand, the differences
for ACRO and LASH-TOR never exceed 1.

As shown in Sect. 3.3.2, a fitness value was utilized in
our earlier stage of research [8]. It was implemented as a
long integer whose length was more than 1,000 bits for 256
nodes. In this work, contrarily, it is replaced with a hash
table to improve the scalability of the algorithm; thus, it can
be implemented as a typical 32-bit integer. However, this
change had negligible influence on the number of required
VLs.

4.2 Time and Memory Complexity

The original algorithm for the VC assignment in LASH [6]
is accelerated by a recent implementation [21]. In this im-
plementation, the time complexity and the memory com-
plexity of VC assignment algorithm are as follows:

Proposition 1. The time complexity of the algorithm for VC
assignment in LASH is

O(∇ · (|C| + |E|) + |N|2)

while the memory complexity is

O(∇ · D(I) · |N|2 + ∇ · (|C| + |E|)).
In this proposition, ∇ and D(I) are a number of required
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VLs and the diameter of a topology, respectively. Parame-
ters in the above proposition are to be hereinafter used.

On the other hand, the time and memory complexities
of VC assignment algorithm in LASH-TOR [7] are as fol-
lows:

Proposition 2. The time complexity of the algorithm for VC
assignment in LASH-TOR is

O(|N|2 · D(I) · ∇ · (|C| + |E|))
while the memory complexity is

O(∇ · (|C| + |E|))
From the proposed ACRO algorithm shown in Alg. 1,

the time and memory complexities are summarized as fol-
lows. The generation of CDGs for all the destinations has a
time complexity of O(|E| · |N|) and a memory complexity of
O(|C| · |N|). A time complexity to calculate all weight val-
ues hn,c,wn,c is O(|E| · |N|), while the memory complexity is
O(|C| · |N|). Initialization of the values in hashes Hc has a
time complexity of O(|C| · |N|) and a memory complexity of
O(|C| · D(I)). Checking whether umin has any parent in Tn

needs a time complexity of O(∇ · |C| · |N|) in total. The se-
lection of the channel which minimizes the fitness function
f (u) has a time complexity of O(|C|2 · ∇) in total. Moreover,
the modification of Hc′ and f (c′) needs time complexities of
O(∇ · |C| · |N|) and O(∇ · |C| · D(I)) in total, respectively.

The findings mentioned above are followed by these
propositions:

Proposition 3. The time complexity of the ACRO algorithm
is

O(∇ · |C| · (|N| + |C| + D(I)) + |N| · |E|)
while the memory complexity is

O(|C| · (|N| + D(I)).

Given that a topology is randomly generated and the
degree d is quite smaller than the network size |N|, the pro-
portionalities D(I) ∝ log |N|, |C| ∝ |N|, and |E| ∝ |N|
are satisfied [24]. From these proportionalities, it can be
said that ACRO reduces the time complexity by a factor of
O(|N| · log |N|) when compared with that of the VC assign-
ment algorithm in LASH-TOR, yet with almost the same
number of required VLs.

4.3 Algorithm Execution Time

In this section, execution time of ACRO itself is com-
pared with that of the conventional VC assignment meth-
ods; LASH and LASH-TOR described in Sect. 4.1.1. All
methods were implemented with Python scripts that use a
NetworkX package. They are executed on a server with
two Intel Xeon CPUs E5-2470 @ 2.30 GHz (2x8 cores)
and 128GB memory. The number of nodes is varied among
|N| = 64, 256 and 1024, and the number of degree d is set

Fig. 7 Execution time of each algorithm (d = 16).

to 16. Ten topologies are generated from different seeds for
each node.

The average and standard deviation values are shown
in Fig. 7. The results show that ACRO completed its VC
assignment in about 30 minutes for 1,024 nodes. On the
other hand, LASH and LASH-TOR consumed about 589
and 700 minutes for the same network size, respectively.
In this experiment, ACRO was executed 2.3, 8.4, and 19.9
times faster than LASH-TOR for 64, 256, and 1,024 nodes,
respectively. These results demonstrate the small time com-
plexity of ACRO, previously mentioned in Sect. 4.2.

5. Conclusion

In this work, a novel algorithm to make arbitrary routing
methods for irregular networks deadlock-free was proposed
with a reasonable number of virtual channels and a time
complexity. In the algorithm, VCs are assigned to paths
from the destination node to the source node. In order to
remove cyclic dependencies with a number of VLs as small
as possible, a heuristic approach is introduced. The pro-
posed VC assignment algorithm, ACRO, has a quite small
time complexity yet requires almost the same number of
VLs compared with that in LASH-TOR. Experimental re-
sults show that ACRO supports both the reduced number of
VLs and the time complexity as small as LASH at the same
time.
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