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PAPER

A Vibration Control Method of an Electrolarynx Based on
Statistical F0 Pattern Prediction

Kou TANAKA†a), Nonmember, Tomoki TODA††b), and Satoshi NAKAMURA†c), Members

SUMMARY This paper presents a novel speaking aid system to help
laryngectomees produce more naturally sounding electrolaryngeal (EL)
speech. An electrolarynx is an external device to generate excitation sig-
nals, instead of vibration of the vocal folds. Although the conventional
EL speech is quite intelligible, its naturalness suffers from the unnatural
fundamental frequency (F0) patterns of the mechanically generated excita-
tion signals. To improve the naturalness of EL speech, we have proposed
EL speech enhancement methods using statistical F0 pattern prediction.
In these methods, the original EL speech recorded by a microphone is pre-
sented from a loudspeaker after performing the speech enhancement. These
methods are effective for some situation, such as telecommunication, but it
is not suitable for face-to-face conversation because not only the enhanced
EL speech but also the original EL speech is presented to listeners. In this
paper, to develop an EL speech enhancement also effective for face-to-face
conversation, we propose a method for directly controlling F0 patterns of
the excitation signals to be generated from the electrolarynx using the sta-
tistical F0 prediction. To get an ”actual feel” of the proposed system, we
also implement a prototype system. By using the prototype system, we find
latency issues caused by a real-time processing. To address these latency
issues, we furthermore propose segmental continuous F0 pattern modeling
and forthcoming F0 pattern modeling. With evaluations through simula-
tion, we demonstrate that our proposed system is capable of effectively
addressing the issues of latency and those of electrolarynx in term of the
naturalness.
key words: laryngectomee, electrolarynx, voice restoration, speech en-
hancement, statistical F0 pattern prediction

1. Introduction

Speech is a common tool in human communication. Since
speech is produced by the vocal apparatus, the produced
sounds are physically constrained by the conditions of
the human body. Unfortunately, there are many people
with disabilities that prevent them from producing speech
freely, leading to communication barriers and degrading
their Quality of Life (QoL). A typical example is laryngec-
tomees who have undergone an operation to remove them la-
rynges including the vocal folds for several reasons such as
injury and laryngeal cancer. Their ability to generate sound
source excitation signals is severely impaired because they
no longer have their vocal folds, although their vocal tracts
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remain.
An electrolarynx is an medical device for laryngec-

tomees to produce electrolaryngeal (EL) speech by mechan-
ically generating artificial excitation signals. The gener-
ated excitation signals are conducted into the speaker’s oral
cavity through the neck, and are articulated to produce EL
speech as shown in Fig. 1. EL speech is relatively intelligi-
ble, but its naturalness is very low owing to unnatural fun-
damental frequency (F0) patterns of the mechanically gen-
erated excitation signals.

To address this issue of EL speech, several techniques
have been proposed to control F0 patterns of the excita-
tion signals generated from an electrolarynx additionally
using intentionally controllable signals, such as expiratory
air pressure [1], up and down switches controlled by a fin-
ger [2], and forearm movements [3]. Although these meth-
ods can change the F0 patterns, it is inherently difficult to
control these signals to generate natural F0 patterns corre-
sponding to linguistic content of the speech. To make it pos-
sible to control the F0 patterns without conscious operation,
some methods using other physical signals generated by ar-
ticulation, such as neck surface electromyography (EMG)
and intramuscular cricothyroid (CT) EMG, have been pro-
posed [4]–[6]. Although the CT EMG has a strong correla-
tion (higher than 0.9) with F0 patterns, the CT muscles are
accessible only through invasive needle electrodes. On the
other hands, the surface EMG is easily measured, but the
F0 patterns predicted by using the surface EMG are still un-
natural compared with those of normal speech, and what is
worse, its quality strongly depends on the position of mea-
suring instrument.

To improve naturalness of EL speech, we have pro-
posed several EL speech enhanced methods based on sta-
tistical voice conversion techniques [7]–[9]. In these meth-
ods, acoustic features of EL speech are converted into

Fig. 1 Speech production mechanisms of non-disabled people (left fig-
ure) and total laryngectomees (right figure).
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Fig. 2 A proposed system to control F0 patterns of excitation signals of
an electrolarynx using statistical F0 pattern prediction for laryngectomees.

those of normal speech using Gaussian mixture models
(GMMs) [7]–[9]. We have shown that F0 pattern replace-
ment from the mechanically generated ones into those pre-
dicted from the spectral sequence of the EL speech using
the GMM significantly improves naturalness of EL speech
while preserving its intelligibility [9]. On the other hand,
the use of these enhancement methods needs to use a loud-
speaker to present the enhanced EL speech. This require-
ment strongly restricts situations where these enhancement
methods are available, e.g. telecommunication presenting
only the enhanced speech to the listener. By contrast, in
face-to-face conversation where the listener is close to the
speaker, this requirement is essential drawback because not
only enhanced EL speech but also original EL speech are
presented to the listener at the same time.

In this paper, we propose an EL speech enhancement
system (Fig. 2) effective for any situation, including face-
to-face conversation. F0 patterns of the excitation signals
produced by the electrolarynx are directly controlled using
real-time statistical F0 pattern prediction. Namely, an F0

value at a current frame is predicted in real-time from the
EL speech produced by articulating the excitation signals
with previously predicted F0 values. This proposed sys-
tem has the potential to allow laryngectomees to directly
produce enhanced EL speech with more natural F0 patterns
than the original EL speech, and present only the enhanced
EL speech to the listener. To get an ”actual feel” of the pro-
posed system, we also implement a prototype system. By
using the prototype system, we find latency issues caused
by a real-time processing. To address the latency issues, we
furthermore propose segmental continuous F0 pattern mod-
eling and forthcoming F0 pattern modeling. With evalua-
tions through simulation, we demonstrate that our proposed
system is capable of effectively addressing the issues of la-
tency and those of electrolarynx in term of the naturalness.

2. Statistical F0 Pattern Prediction

Our proposed enhancement system uses a statistical F0 pat-
tern prediction, which is a part of voice conversion tech-
niques [10], [11], to predict F0 patterns of normal speech
from spectral features of EL speech. It consists of training
and prediction processes as shown in Fig. 3. A joint proba-
bility density function [12] of F0 patterns of normal speech
and spectral features of EL speech is trained using a paral-

Fig. 3 The training and prediction process.

lel data set consisting of utterance pairs of EL speech and
normal speech. With properly trained parameters, the most
likely F0 patterns of normal speech given spectral features
of EL speech can be found by maximum likelihood estima-
tion of trajectory.

2.1 Feature Extraction

The spectral structure of some phonemes of EL speech is un-
stably because of the production mechanism of EL speech,
such as totally voiced speech. To address this issue, we use
the following segment feature Xt [13] extracted by applying
principal component analysis (PCA) to the stacked vector
consisting of the mel-cepstra of multiple frames around the
current frame t as source feature:

Xt = C[x⊤t−i, · · · , x⊤t , · · · , x⊤t+i]
⊤ + d (1)

where ⊤ is transposition, and C and d are a transformation
matrix and a bias vector extracted by PCA, respectively.

As a target feature, we use Yt = [y⊤t , ∆y⊤t ]⊤ consisting
of the static and dynamic features of smooth and continuous
F0 (CF0) patterns of normal speech. To simplify character-
istics of the parameter sequence to be modeled, CF0 are ob-
tained by removing rapid movements [14] with low-pass fil-
tering after interpolating F0 values at unvoiced frames. This
modification is reasonable because 1) it is difficult to ac-
curately model and reproduce these rapid movements with a
GMM and 2) a constant value at the unvoiced frames, clearly
different from F0 values (e.g., 0), disturbs accurate model-
ing of F0 trajectory.

2.2 Training Process

Let λG be the parameters of the following joint probability
density function of source and target features defined as a



TANAKA et al.: A VIBRATION CONTROL METHOD OF AN ELECTROLARYNX BASED ON STATISTICAL F0 PATTERN PREDICTION
2167

GMM:
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where αm is a m-th mixture component weight, and
N(·;µm,Σm) denotes a m-th Gaussian distribution with a
mean vector µm and a covariance matrix Σm. The mean vec-
tor µ(X,Y)

m consists of a mean vector µ(X)
m of source features

and a mean vector µ(Y)
m of target features. The covariance

matrix Σ(X,Y)
m consists of source and target covariance ma-

trices Σ(XX)
m and Σ(YY)

m and cross-covariance matrices Σ(XY)
m

and Σ(YX)
m . The total number of mixture components is M.

The corresponding joint feature vectors can be obtained by
performing automatic frame alignment with Dynamic Time
Warping (DTW). To align F0 patterns of normal speech and
spectral parameters of EL speech, we use alignments which
are obtained by using spectral parameters of EL speech and
normal speech in the same manner as in [8], [13].

2.3 Batch-Type Prediction Process

With properly trained parameters, the most likely F0 pattern
ŷ = [ŷ⊤1 , · · · , ŷ⊤t , · · · , ŷ⊤T ]⊤ is predicted from given source
feature sequence X = [X⊤1 , . . . , X

⊤
T ]⊤ as follows:

ŷ = argmax
y

P(Y|X, λG) subject to Y =Wy, (4)

P(Y|X, λG) =
∑

m

P(Y|X,m, λG)P(m|X, λG) (5)

≃ P(Y|X, m̂, λG)P(m̂|X, λG), (6)

where Y = [Y⊤1 , . . . ,Y
⊤
T ]⊤ denotes the joint static and dy-

namic feature sequence, W is a transform matrix to extend
the static feature sequence into the static and dynamic fea-
ture sequence [15]. To avoid the complicated formula

∑
m

in Eq. (5), we adopt the suboptimum mixture component se-
quence m̂ = {m̂1, . . . , m̂T },

m̂t = argmax
m

P(m|Xt, λG), (7)
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where E(Y |X)
m̂t ,t

is the conditional mean vector at frame t, which
is given by the mixture-dependent linear transformation of
the source feature vector Xt, and D(Y |X)

m̂t
is the conditional

covariance matrix depending of the mixture component m̂t.

Finally, the maximum-likelihood estimation of F0 patterns
ŷ is analytically determined as follows:

ŷ = (W⊤D(Y |X)
m̂

−1
W)−1W⊤D(Y |X)

m̂

−1
E(Y |X)

m̂ . (11)

Note that after predicting CF0 patterns over all frames, only
silence frames are automatically detected by using wave-
form power [9].

2.4 Real-Time Prediction Process

The real-time prediction process is achieved by us-
ing a computationally efficient real-time voice conver-
sion method [16] based on a low-delay conversion algo-
rithm [17]. To approximate the batch-type prediction pro-
cess with the frame-wise prediction process, we divide the
F0 sequence y into overlapped (L+ 1)-dimensional segment
vectors y(t) = [yt−L, . . . , yt]⊤ at individual frames. Treating
the segment vectors as a latent variable, the following linear
dynamical system can be designed:

y(t) = Jy(t−1) + [01×L, µ
(y|X)
m̂t ,t
+ n(y|X)

m̂t
]⊤, (12)

µ
(∆y|X)
m̂t ,t

= wy(t) + n(∆y|X)
m̂t
, (13)

where the state transition matrix J just shifts the previous
segment vector y(t−1), and the transformation matrix w to
calculate the dynamic features at frame t from the segment
vector. The observation µ(∆y|X)

m̂t ,t
, a parameter µ(y|X)

m̂t ,t
, process

noise n(y|X)
m̂t

, and observation noise n(∆y|X)
m̂t

are described with

the conditional mean vector E(Y |X)
m̂t ,t

and only diagonal com-

ponents of the conditional covariance matrix D(Y |X)
m̂t

at frame
t. The segment vector is recursively updated frame by frame
with Kalman filtering, and its first component yt−L is used
as the maximum-likelihood estimate ŷt−L. Therefore, the F0

value at frame t is determined by considering all past frames,
a current frame, and next L frames.

3. Control Strategy of an Electrolarynx Based on Sta-
tistical F0 Pattern Prediction

Our proposed enhancement system (shown in Fig. 2) to di-
rectly control F0 patterns of the excitation signals generated
from an electrolarynx consists of prediction and articulation
processes. In the prediction process, the F0 value is pre-
dicted from EL speech produced by a laryngectomee frame
by frame using the real-time prediction algorithm mentioned
in Sect. 2.4. In the articulation process, to produce the EL
speech, the laryngectomee articulates the excitation signals
of the electrolarynx reflecting predicted F0 values. There-
fore, this system allows laryngectomees to directly produce
enhanced EL speech with more naturally sounding F0 pat-
terns corresponding to linguistic contents because the source
spectral features of EL speech capture the linguistic con-
tents.

3.1 Implementation of Prototype System

A prototype one of our proposed enhancement system was
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Table 1 Electronic devices on the prototype system

Electrolarynx Yourtone

Microphone Crown CM-311A

CPU of the laptop Intel(R) Core(TM) i5-4200U

D/A converter AIO-160802AY-USB

Fig. 4 The latency caused by each process of our prototype system.

developed using a microphone, a laptop, and a digital/analog
(D/A) converter shown in Table 1. As shown in Fig. 2, EL
speech produced from a mouth of a laryngectomee is de-
tected by a usual close-talk microphone. The EL speech sig-
nal is recorded on a laptop and F0 patterns of normal speech
are predicted on the fly by using the real-time prediction al-
gorithm. The predicted F0 values are linearly converted to
voltage values to control the F0 values of the excitation sig-
nals. Then, through the D/A converter connected from the
laptop to the electrolarynx, an electric signal correspond-
ing to the determined voltage values is generated. Finally,
the electrolarynx generates the excitation signals reflecting
the predicted F0 values according to the input electric signal
generated from the D/A converter.

As mentioned in the previous section, the F0 patterns
are constantly delayed owing to the latency of the real-time
prediction process. Moreover, additional latency is caused
in our prototype system because of the use of D/A con-
verter. Figure 4 shows the latency caused by each process of
our prototype system. For the real-time prediction process,
50 msec latency is caused in our conventional implementa-
tion [16]. For the D/A part to convey the digital signals, it
takes around 50 msec. Consequently, the whole D/A part
causes 100 msec latency because the digital signal to be
written needs to be determined before starting writing. In
total, 150 msec latency is caused in the prototype system†.

3.2 A Simulation Experiment

To flexibly investigate the performance of our proposed
control method, we also design a simulation method of
EL speech production process using the controlled elec-
trolarynx. The simulated process is shown in the right
side of Fig. 5. EL speech signals produced by articulat-

†Note that the latency in the D/A part could be addressed by
the development of a special device for the electrolarynx. More-
over, we have successfully implemented statistical voice conver-
sion processing on a digital signal processor (DSP) [18]. It is thus
expected that all processors could be embedded into the electrolar-
ynx and total latency will be decreased to the 50 msec caused by
the real-time statistical F0 prediction.

Fig. 5 The proposed system and its simulation implementation.

ing the excitation signals based on the predicted F0 values
are artificially generated using the STRAIGHT [19] analy-
sis/synthesis method.

At first, 1) we extract spectral envelope parameters
and aperiodic components [20] from the original EL speech
in advance by using STRAIGHT analysis. These features
to approximate the EL speech production process capture
acoustic properties determined by articulation and the exci-
tation signals leaking out as noise from the electrolarynx,
except for the periodicity of the excitation signals. Then, 2)
spectral segment features are extracted from EL speech, and
F0 patterns of normal speech are predicted from them based
on the real-time F0 pattern prediction. 3) The predicted F0

patterns are just delayed to consider the delay time caused
by the whole process of our prototype system, such as men-
tioned D/A part. 4) Using the delayed F0 patterns and the
extracted aperiodic components, excitation signals are gen-
erated based on the mixed excitation model [21] to replace
actual excitation signals of the electrolarynx. 5) Finally, the
enhanced EL speech is approximately synthesized by filter-
ing the generated excitation signals with the extracted spec-
tral envelope parameters reflecting the articulation. Note
that in our prototype system, the F0 values of the enhanced
EL speech suffer from those of previous time step because
the F0 values are predicted from EL speech reflecting the F0

values of previous time step. However, the above-mentioned
processing without an iterative update, Step 3) to 5), results
in the F0 prediction using the spectral segment features ex-
tracted from the original EL speech. To reflect the impact of
the predicted F0 values of previous time step, 6) the spec-
tral segment features are extracted again from the synthe-
sized EL speech and F0 pattern prediction is also performed
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again using the extracted spectral segment features. Step 3)
to 6) are iteratively repeated until the predicted F0 patterns
converge. If they converge, the proposed system may be ex-
pected to work stably because the EL speech produced with
the predicted F0 patterns is consistent with that used in the
spectral segment feature extraction.

4. Addressing Latency Issues

Through the use of the prototype system, we confirmed that
it yields significant improvements in the naturalness of EL
speech while preserving its high intelligibility. However, we
also found that the naturalness of enhanced EL speech tends
to be lower than that yielded by the batch-type prediction.

As mentioned in Sect. 2.4, the latency to predict F0 pat-
terns is inherent in our proposed enhancement system. It has
been reported in a spectral conversion task [17] that the de-
lay time depending on the segment feature length L in the
real-time prediction process requires around 50 to 70 msec
to maintain the conversion accuracy of the batch-type pre-
diction process. On the other hand, no previous work has
examined the effect of latency for the F0 prediction accu-
racy. It is possible that longer delay will be required because
F0 is a suprasegmental feature, which has a strong corre-
lation over a wider range compared to segmental features,
such as spectral features. Moreover, in our prototype sys-
tem mentioned in Sect. 3.1, the additional latency is caused
by using D/A converter to convey predicted F0 values to the
electrolarynx. This latency on our proposed system leads to
asynchronous problem between articulation and F0 patterns
of excitation signals generated by the electrolarynx. To ad-
dress these issues, we also propose the use of segmented
continuous F0 patterns as trained target features and forth-
coming F0 prediction for reducing the latency caused by the
real-time prediction process while preserving F0 prediction
accuracy at the level of the batch-type prediction process.

4.1 Segmented Continuous F0 Patterns

In the previous CF0 modeling method, the prediction pro-
cess given in Eq. (4) is performed utterance by utterance.
Because inter-frame correlation over an utterance is consid-
ered in this process, a long delay is required in real-time
prediction to achieve sufficient prediction accuracy.

To reduce the delay time, we propose a segmented CF0

pattern modeling method to make the range of which we
consider inter-frame correlation shorter than an utterance.
Shorter segments are first extracted from each utterance, and
then, CF0 patterns of individual segments (i.e., segmented
CF0 patterns) are modeled and predicted separately. In this
paper, we determine the individual segments by extracting
time frames of which the waveform power is over a pre-
determined threshold. An example of the segmented CF0

patterns is shown in Fig. 6. Note that the segmented CF0

patterns are still different from the original F0 pattern, which
is segmented by unvoiced frames, in that 1) the segmented
CF0 patterns can also include unvoiced frames, and thus

Fig. 6 a) F0 patterns extracted from normal speech, b) smooth and con-
tinuous F0 patterns interpolated at unvoiced frames, and c) segmented CF0

patterns of (b) extracted by using the power of the waveform.

they tend to be longer than segments observed in the origi-
nal F0 patterns, and 2) each segmented CF0 pattern varied
more smoothly than the original F0 patterns.

4.2 Forthcoming F0 Prediction

In order to cancel the misalignment between articulation and
the constantly delayed F0 patterns predicted in the real-time
process, we investigate the possibility of predicting forth-
coming F0 values. We train the GMM for modeling the joint
probability density function P([X⊤t ,Y

⊤
t+F]⊤|λG) of the source

features at time frame t, Xt and the target features at time
frame t + F, Yt+F . The trained GMM is used to predict the
F0 value at F frames ahead. For example, if the latency of
the prototype system is set to 200 msec, we train the GMM
to predict the F0 values at 200 msec ahead. Consequently,
there is no mismatch between articulation and the predicted
F0 patterns. It is expected that there is a trade-off between
the prediction accuracy and the setting of F; i.e., larger F
accepts a longer delay time in the real-time prediction pro-
cess, which makes the real-time prediction accuracy close
to the batch-type prediction accuracy; on the other hand, it
is obviously more difficult to predict F0 values at frames far
away from the current one than those at closer frames.

5. Experimental Evaluation

5.1 Experimental Conditions

We conducted 5 objective evaluations to examine the perfor-
mance of the proposed methods and 1 subjective evaluation
to examine the naturalness of the proposed methods. The
first evaluation is a comparison of the prediction accuracy
among three types of F0 pattern modeling, F0, CF0, and the
proposed segmented CF0, in the batch-type prediction pro-
cess. The second evaluation is a comparison of the accuracy
of batch-type F0 prediction and real-time F0 prediction. The
third evaluation is for the validity of the proposed simulation
experiment to simulate our proposed enhancement system.
The fourth evaluation is conducted to investigate the nega-
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tive impacts caused by latency on the proposed system and
to examine the effectiveness of the proposed segmented CF0

pattern modeling. The last objective evaluation is conducted
to examine the effectiveness of the proposed forthcoming F0

prediction method.
The source speech was EL speech uttered by a male

speaker, and the target speech was normal speech uttered
by a professional female speaker. Each speaker uttered
about 50 sentences in the ATR phonetically balanced sen-
tence set [22]. We conducted a 5-fold cross validation test
in which 40 utterance pairs were used for training, and the
remaining 10 utterance pairs were used for evaluation. Sam-
pling frequency was set to 16 kHz. We employed FFT anal-
ysis with a 25 msec hanning window to extract the mel-
cepstra of EL speech as the spectral features. The frame shift
length was set to 5 msec. As the source features, the spec-
tral segment features were extracted from the mel-cepstra
at the current ± 4 frames. On the other hand, F0 values of
normal speech were extracted with STRAIGHT F0 analy-
sis [19] and CF0 patterns were generated as the target fea-
ture using a low-pass filter with 10 Hz cut-off frequency.
Moreover, the target F0 patterns were shifted so that their
mean value was equal to 100 Hz to predict F0 patterns suit-
able for the source male speaker. To obtain the time align-
ment path between source and target speakers, the numbers
of mixture components of the GMM trained for spectral pa-
rameters conversion were set to 64, and the mel-cepstral dis-
tortion without power information was 5.09 dB.

5.2 Best Number of Mixture Components

To choose the best setting from a variety number of mixture
components for later evaluations, we evaluated the predic-
tion accuracy of each F0 pattern modeling method in the
batch-type process using the correlation coefficient between
the predicted F0 pattern and the target F0 pattern. As shown
in Fig. 7, the best number of mixture components is 32 for
F0, 16 for CF0, and 16 for segmented CF0. We found
that reducing the variability of F0 patterns such as rapid
movements, we achieved to train F0 patterns with a smaller
number of mixture components. Moreover, as reported in
[9], we also confirmed that CF0 brings better performance
compared with the original F0 because continuous sequence
makes it possible to consider inter-frame correlation over an
utterance. The proposed segmented CF0 preserves such an
improvement relatively well while minimizing degradation

Fig. 7 Prediction accuracy of batch-type prediction.

of the prediction accuracy.

5.3 Comparison of Batch-Type Prediction and Real-Time
Prediction

As mentioned in Sect. 4.1, it is possible in the real-time pre-
diction that the larger delay time is required in the CF0 pat-
tern than in the F0 pattern to achieve the prediction accuracy
comparable to that of the batch-type prediction. To examine
this possibility, we calculated a correlation coefficient be-
tween the F0 pattern predicted by the real-time prediction
with various settings of the delay time and that by the batch-
type prediction.

The result is shown in Fig. 8. As for the F0 pattern,
even if setting the delay time to 85 msec (corresponding to
L = 10), a quite high correlation coefficient is achieved. On
the other hand, as for the CF0 pattern, the predicted pat-
terns are quite different from those by the batch-type pro-
cess, showing that the correlation coefficient is similar to the
case of F0 pattern when setting the delay time to less than 85
msec. Moreover, its accuracy convergence is much slower
compared to that observed in the F0 pattern. Consequently,
in the CF0 pattern, the delay time needs to be set to around
250 msec to achieve the prediction accuracy comparable to
that of the batch-type prediction. The CF0 pattern modeling
achieves high prediction accuracy while requiring the large
size of memory corresponding to the required delay time in
the prediction process. As we expected, the segmented CF0

modeling converges faster compared with the CF0 pattern
modeling because the number of frames considering inter-
frame correlation is limited. The segmented CF0 modeling
reduces the required size of memory and the computational
costs to predict F0 patterns while degrading the prediction
accuracy compared with CF0 pattern modeling.

5.4 Comparison of Prototype System and Simulated Sys-
tem

The F0 patterns predicted by the prototype system strongly
correlate to those with the simulated system, with a cor-
relation coefficient higher than 0.9. This high correlation
demonstrates that the proposed implementation is effective
and the simulated system is able to effectively approximate
the results of the prototype system. This result allows us to
replace the evaluations of our prototype system into those of

Fig. 8 Comparison of batch-type prediction and real-time prediction for
each F0 pattern.
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Fig. 9 Prediction accuracy of real-time prediction for each F0 pattern.
Solid lines are results w/ delay time correction at the time of evaluation,
and dash lines are results w/o delay time correction.

the simulated system.

5.5 Negative Impacts Caused by Latency

We evaluated the real-time prediction accuracy of each F0

modeling method using the correlation coefficient between
the predicted F0 pattern and the target F0 pattern. To evalu-
ate only the prediction accuracy, we also evaluate predicted
F0 patterns with delay time correction at time of evaluation.
As shown in solid lines in Fig. 9, the effect of the misalign-
ment between the predicted and the target F0 patterns, which
is observed on the prototype system, was removed in this
evaluation by shifting the predicted F0 patterns according to
the delay time settings in the calculation of the correlation
coefficient.

The result is shown in Fig. 9. As for the solid lines,
we confirmed a similar tendency to the results in Sect. 5.3.
As for the F0 pattern, we found that although the prediction
accuracy quickly converges at around 60 msec of the delay
time, the resulting correlation coefficient is lower than 0.4
because the prediction accuracy of the batch-type prediction
is also low, as shown in Fig. 7. As for the CF0 pattern, the
converged prediction accuracy is significantly higher than
that in the F0 pattern, as also observed in Fig. 7, and its con-
vergence is very slow. To achieve sufficient prediction ac-
curacy, the delay time needs to be set to around 250 msec.
On the other hand, the use of the proposed segmented CF0

patterns makes the convergence faster than that of the CF0

patterns while preserving its prediction accuracy. As for the
dash lines, the delay time is set to longer, the prediction
accuracy gets lower. However, the segmented CF0 pattern
makes it possible to alleviate the negative impact of latency
compared with the other baseline F0 modeling.

5.6 Evaluation of the Proposed Forthcoming F0 Prediction

We evaluated the real-time prediction accuracy also consid-
ering the effect of the misalignment between articulation and
the delayed F0 patterns predicted in the real-time process,
which was observed in a practical situation, using the corre-
lation coefficient between the predicted F0 pattern without
any correction of the delay time and the target F0 pattern.

The proposed forthcoming F0 prediction method was
applied to the CF0 pattern and proposed segmented CF0

Fig. 10 Comparison of basic modeling (dash lines) and forthcoming
modeling (solid lines).

pattern, and its effectiveness was examined. The result is
shown in Fig. 10. If not using the proposed forthcoming F0

prediction, the delay time is set to longer, the prediction ac-
curacy gets lower. This result shows that the adverse effect
of the misalignment on the actual prediction accuracy is sig-
nificantly large. This issue is well addressed by using the
proposed forthcoming F0 prediction for CF0 pattern model-
ing. Consequently, by setting the delay time to around 250
msec, the real-time prediction with the proposed forthcom-
ing F0 prediction method makes it possible to achieve pre-
diction accuracy comparable to that of the batch-type pre-
diction. However, as for the segmented CF0 patterns, even
if we apply the proposed forthcoming F0 prediction, its pre-
diction accuracy is not improved. This result shows that re-
stricting the unit considering inter-frame correlation makes
it difficult to predict F0 values at frames far away from the
current one than those at closer frames.

5.7 Naturalness of Predicted F0 patterns

Through the simulation experiment, we evaluated the nat-
uralness of F0 patterns predicted by using our proposed
F0 modeling. The term “naturalness” is used to indicate
a score that was measured by asking the listener to subjec-
tively evaluate whether the evaluated speech is similar to
natural human speech or not. In the opinion tests, 5 listen-
ers evaluated each speech quality using a 5-scaled opinion
score (1: Bad, 2: Poor, 3: Fair, 4: Good, and 5: Excellent).
The number of listeners was 5 and each listener evaluates
10 sentences per one system. Hence, each system is evalu-
ated with 50 sentences. Comparison methods are following
4 systems:

EL Original EL speech
Batch Enhanced EL speech with CF0 patterns predicted by

batch-type prediction algorithm. This is a baseline sys-
tem.

RT Enhanced EL speech with the real-time prediction algo-
rithm for segmented CF0 pattern modeling (delay time:
85 msec). This is a simulated system of our proposed
system.

Forthcoming Enhanced EL speech with forthcoming F0

prediction on real-time prediction algorithm for CF0

patterns modeling (delay time: 265 msec). This is also
a simulated system.
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Fig. 11 Naturalness of Predicted F0 patterns.

The result is shown in Fig. 11. As reported in [9], we
confirmed that Batch is significantly improved compared
with EL by predicting F0 patterns based on statistical F0

patterns. For our proposed methods RT and Forthcoming,
we achieved that two proposed systems caused no degra-
dation compared with Batch. These results show that our
proposed methods successfully overcome the latency issues
mentioned in Sect. 4.

6. Conclusion

In this paper, we have proposed a new electrolarynx capable
of automatically controlling F0 patterns of its excitation sig-
nals based on statistical F0 pattern prediction. Moreover, we
have also proposed two methods to address the latency is-
sues caused by the whole process of our proposed enhance-
ment system: segmented continuous F0 patterns modeling
and forthcoming F0 modeling. In additionally, we have
also designed the simulation experiment of our proposed
enhancement system to alleviate several construction costs,
such as recording to evaluate new proposal. Through im-
plementing a prototype system and its simulation, we have
demonstrated that our proposed system is capable of effec-
tively addressing the issues of electrolarynx.
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