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A Spatiotemporal Statistical Model for Eyeballs of Human Embryos

Masashi KISHIMOTO†a), Atsushi SAITO†, Tetsuya TAKAKUWA††, Shigehito YAMADA††,
Hiroshi MATSUZOE†††, Nonmembers, Hidekata HONTANI†††, Member, and Akinobu SHIMIZU†b), Fellow

SUMMARY During the development of a human embryo, the position
of eyes moves medially and caudally in the viscerocranium. A statistical
model of this process can play an important role in embryology by facil-
itating qualitative analyses of change. This paper proposes an algorithm
to construct a spatiotemporal statistical model for the eyeballs of a human
embryo. The proposed modeling algorithm builds a statistical model of the
spatial coordinates of the eyeballs independently for each Carnegie stage
(CS) by using principal component analysis (PCA). In the process, a q-
Gaussian distribution with a model selection scheme based on the Aaike
information criterion is used to handle a non-Gaussian distribution with a
small sample size. Subsequently, it seamlessly interpolates the statistical
models of neighboring CSs, and we present 10 interpolation methods. We
also propose an estimation algorithm for the CS using our spatiotemporal
statistical model. A set of images of eyeballs in human embryos from the
Kyoto Collection was used to train the model and assess its performance.
The modeling results suggested that information geometry-based interpola-
tion under the assumption of a q-Gaussian distribution is the best modeling
method. The average error in CS estimation was 0.409. We proposed an
algorithm to construct a spatiotemporal statistical model of the eyeballs of
a human embryo and tested its performance using the Kyoto Collection.
key words: computational anatomy, spatiotemporal model, embryo,
Carnegie stage, growth

1. Introduction

Statistical models of anatomical structures have played an
important role in revealing variations of anatomical land-
mark points and surfaces. Many studies have shown the
usefulness of medical image analysis techniques, such as
segmentation and the assessment of the degree of abnormal-
ity by measuring deviation from a normal distribution [1]–
[3]. Most such research has used data obtained through the
observation of adults, whose anatomical structures can be
assumed to be mature and homologous. While such data
evinces statistical variation among subjects, there is no sig-
nificant difference due to aging. However, when dealing
with fetuses or infants, differences due to growth cannot be
assumed to be negligible. To account for such changes, a
spatiotemporal statistical model is required.
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A number of spatiotemporal statistical models describe
changes in time-varying features—growth in geometrical
features, such as a point or a surface, and changes in
the appearances of anatomical structures along a temporal
axis [4]–[10]. Such models can be categorized according
to the training data used to construct a spatiotemporal sta-
tistical model: namely, time-series data and longitudinal
data [4]. Time-series data consists of a set of items indexed
by any temporal marker, such as age, as an indicator of the
given developmental stage. No assumption is made regard-
ing whether a subset of the samples is observed from the
same subject at different time points. In contrast, longitudi-
nal data contains data repeatedly observed for same individ-
ual subjects.

This paper focuses on a spatiotemporal statistical
model of the human embryo that can be useful for embryol-
ogy in the qualitative analysis of change, where time-series
data is available; that is, a time-indexed subject is observed
once, and each data is from a different subject. Research on
the construction of spatiotemporal statistical models from
time-series data and longitudinal data [4]–[10] is as follows:
the work in [4] involved constructing a spatiotemporal sta-
tistical model that can describe the evolution of the shape
of longitudinal data, where the diffeomorphic deformation
of the shapes was statistically modeled. It should be noted
that a methodology for constructing a spatiotemporal statis-
tical model that requires temporal change in the same sub-
ject cannot be applied to time-series data where no observa-
tion data is repeatedly available for the same subject. Only
the work in [5] and [10] might be useful for our purpose
here. Researchers in [5] constructed a cross-sectional at-
las from time-series data and evaluated the correlation be-
tween the modes of variation and ages of the subjects. The
work in [10] involved the construction of a model by simply
assigning temporal weights to training data and construct-
ing a spatiotemporal statistical model using weighted prin-
cipal component analysis (PCA), which is a kind of cross-
sectional approach with weights. A problem in these cross-
sectional approach is the high complexity of the distribution
to be analyzed. Although a number of non-linear statisti-
cal analysis methods [11], [12] have been proposed, PCA-
based approaches play an important role in constructing sta-
tistical models due to their simplicity and robustness. In
fact, both papers [5], [10] employed PCA. However, since
PCA assumes a monomodal distribution, such as a Gaussian
distribution, a cross-sectional approach to time-varying data
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might render the distribution complex, hence degrading per-
formance. A possible solution to this problem is to divide
it into sub-problems, or to construct a model for each spe-
cific time and attempt to seamlessly concatenate the models
constructed for different times.

This paper proposes an algorithm to construct a spa-
tiotemporal statistical model for the location of the eyeballs
in a human embryo using time-series data. The contribu-
tions of this study are as follows:

1. We propose an algorithm to construct a spatiotempo-
ral statistical model with a continuous time parameter from
time-series data, where a two-stage approach is employed.
A statistical model for a specific time is constructed inde-
pendently, and models for neighboring times are seamlessly
interpolated. This approach is inspired by [13] and extended
to a number of interpolation approaches in this paper.

2. We introduce q-Gaussian distribution-based param-
eter estimation [14] to spatiotemporal model construction.
The approach allows the PCA-based approach to handle a
non-Gaussian distribution with a small sample size.

3. A comparative study of 10 interpolation meth-
ods was carried out using images of human embryos from
Carnegie stages (CSs) 17 to 23 of the Kyoto Collection [15].
Moreover, the effectiveness of the q-Gaussian distribution-
based parameter estimation approach was verified. Note that
the CS is a standardized staging system to supply a unified
developmental chronology of the embryo [16]. The stages
are decided according to the development of internal and
external anatomical structures. The number of CS is origi-
nally an integer but extended to a continuous number in this
study.

Fig. 1 Two-stage modeling approach for spatiotemporal statistical modeling

2. Method

In the developmental stages of a human embryo, the posi-
tion of eyes moves medially and caudally in the viscerocra-
nium [17]. The quantitative analysis of this growth is impor-
tant in embryology. Our aim is to create a spatiotemporal
model that describes this development in the context of the
CS using time-series data from human embryos in the Kyoto
Collection. Human embryos were scanned using a phase-
contrast X-ray CT (PCX-CT) or a magnetic resonance imag-
ing (MRI) scanner, and the centers of the eyeballs were iden-
tified by a human observer; they were used to construct the
spatiotemporal statistical model. The input to the modeling
process is a coordinate vector of the left and right eyeballs,
the length of each of which is six following spatial standard-
ization, where manually defined points on the first cervical
vertebrae are aligned for all training cases. The proposed
modeling algorithm is composed of two stages, i.e., model-
ing of each CS, and modeling intermediate neighboring CSs
(Fig. 1).

In the first stage, coordinate vectors of the eyeballs of
all embryos are mapped to a feature space spanned by eigen-
vectors, which are obtained as a result of PCA involving all
CSs for efficient representation. Each CS is subsequently
statistically modeled using PCA. Note that the number of
eigenvectors is determined such that the ratio of their cu-
mulative contribution is higher than 97%. The second stage
involves modeling by interpolating intermediate models of
neighboring CSs so that the model has a continuous time pa-
rameter and describes an eyeball location between CSs, such
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as location of CS18.4. A simple solution for interpolation is
linear interpolation between neighboring average vectors as
well as in terms of the rotation angle between neighboring
covariance matrices [13]. We first present this simple mod-
eling algorithm, and extend it in the subsequent subsection.

2.1 Spatiotemporal Modeling by Linear Interpolation

For simplicity of mathematical expression and without loss
of generality, we present equations for interpolation between
the covariance matrix of CS-0 and that of CS-1. Interpola-
tions between CS-n and CS-n+1 (n = 17, . . . , 22) in the “Re-
sults” section can be easily derived from these equations.

Let the average vectors and covariance matrices of CS-
0 and CS-1 be μ0 and μ1, and Σ0 and Σ1, respectively. Let
E0 and E1 be matrices composed of the eigenvectors of Σ0

and Σ1. The average vector of CS-c (0 � c �1) by linear
interpolation can be described as follows:

μc = (1 − c)μ0 + cμ1 (1)

The covariance matrix of CS-c(0 � c �1) by rotation can be
defined as follows:

Σc = (UD(ϕ)cU†E0)Λc(UD(ϕ)cU†E0)T (2)

where U, U†, and D(ϕ)c represent a unitary matrix, its ad-
joint matrix, and a diagonal matrix generated by decompos-
ing the rotation matrix R(ϕ)c from E0 to E1, respectively.
Vector ϕ is a rotation vector with dimension �k/2�, where
k is number of dimensions of the feature space. Λc is a di-
agonal matrix that consists of interpolated values between
eigenvalues λ0 j of Σ0 and λ1 j ( j = 1, 2, . . . , k) of Σ1:

λc j = ((1 − c)
√
λ0 j + c

√
λ1 j)

2 (3)

The above covariance interpolation is ad hoc, and as-
sumes that the nth eigenvector of CS-0 corresponds to the
nth eigenvector of CS-1. However, such an assumption
might not hold in our study. Thus, we employ four ad-
ditional approaches to interpolation, Affine-invariant [18],
Log-Euclidean [18], Wasserstein geometry [19], and infor-
mation geometry [20], [21], none of which requires corre-
spondence between eigenvectors.

Please note that it is not necessary for the proposed ap-
proaches to perform PCA in the statistical modeling of each
CS. In that stage, they estimate an average vector and a co-
variance matrix of each CS in a feature space. These ap-
proaches, however, require PCA after the second stage to
define axes of a spatiotemporal statistical model with a con-
tinuous time parameter.

2.2 Spatiotemporal Modeling without Correspondence be-
tween Eigenvectors

Affine-invariant Riemannian metrics were introduced to
avoid defects in tensors due to Euclidean operations, and
were successfully applied to diffusion tensor imaging [18].

The covariance matrix of CS-c (0 � c �1) is interpolated
along a standard geodesic on a manifold of positive-definite
symmetric matrices and is given as follows:

Σc = Σ
1/2
0 exp{c log(Σ−1/2

0 Σ1Σ
−1/2
0 )}Σ1/2

0 (4)

where the exp of any matrix M is defined by

exp(M) =
∞∑

k=0

Mk

k!

The matrix logarithm is given as the inverse of the ex-
ponential. Although the affine-invariant Riemannian metric
exhibits excellent theoretical properties, its computational
complexity is high. To address this limitation, a new fam-
ily of Riemannian metrics called Log-Euclidean was pro-
posed. It too shows excellent theoretical properties and sim-
ilar results to Affine-invariant Riemannian metrics [18]. It
is superior to the affine-invariant metric in terms of lower
computational complexity. The covariance matrix of CS-c
(0 � c �1) by Log-Euclidean is presented as follows:

Σc = exp{(1 − c) log(Σ0) + c log(Σ1)} (5)

Wasserstein geometry can derive a covariance matrix
of CS-c (0 � c �1) from the viewpoint of an optimal trans-
port plan [19]. For Gaussian distributions, the covariance
matrix of CS-c (0 � c �1) is defined so that the transporta-
tion cost between two probability distributions is minimal:

Σc = {(1 − c)I + cW}Σ0{(1 − c)I + cW} (6)

where

W = Σ1/2
1 (Σ1/2

1 Σ0Σ
1/2
1 )−1/2Σ

1/2
1 (7)

Information geometry [20] is an alternative approach to
defining the covariance matrix of CS-c (0 � c �1) by lin-
early interpolating between the amounts of information of
two probability distributions:

Σc = {(1 − c)Σ−1
0 + cΣ−1

1 }−1 (8)

Note that all of the above are interpolation methods involv-
ing two covariance matrices. Average interpolation is not
defined except in information geometry, where it is given by
the following equation [21]:

μc = Σc{(1 − c)Σ−1
0 μ0 + cΣ−1

1 μ1}−1 (9)

In this study, we compare all combinations between
two average interpolation methods, or linear interpolation
by Eq. (1) and information geometry-based interpolation by
Eq. (9), and the five covariance matrix interpolation methods
represented in Eqs. (2) and (4)-(6), (8). In total, 10 interpo-
lation methods are compared in the “Result” section.

Above approaches do not require PCA in the statistical
modeling of each CS, because they do not use correspon-
dence between eigenvectors. However, it is necessary for
the approaches to perform PCA after the second stage to
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Fig. 2 q-Gaussian distribution with μ = 0, Σ = 1.5

define axes of a spatiotemporal statistical model with a con-
tinuous time parameter.

2.3 q-Gaussian-Based Parameter Estimation

PCA assumes a monomodal distribution, such as a Gaus-
sian distribution. PCA under the assumption of a Gaussian
distribution works well for most cases. It does, however,
sometimes fail in modeling due to the presence of an out-
lier and/or bias induced by overfitting to small datasets [22].
Furthermore, the distribution might be other than Gaus-
sian, such as a student-t distribution, which is heavy tailed.
To handle the above problem, we employ a q-Gaussian
distribution-based approach [14] to estimate the average
vector and the covariance matrix. The probability density
function of a q-Gaussian distribution with average μ and co-
variance Σ is as follows:

Pq(x,μ,Σ) ≡ Z[1 +
1
ν

(x − μ)TΣ−1(x − μ)]
1

1−q (10)

where

Z ≡ Γ( ν+d
2 )

(πν)
d
2 Γ( ν2 )|Σ| 12

ν = −d − 2
1 − q

The symbol d represents the dimensionality of space, and q
must be smaller than 1 + 2

d in order to satisfy the integra-
bility of the probability density function. When parameter
q is 1, it is a Gaussian distribution. When q is greater than
1, the distribution is heavy tailed, and closer to a student-t
distribution (Fig. 2).

Due to the flexibility in the representation of the proba-
bility distribution, we expect that a q-Gaussian distribution-
based approach might make the CS modeling process better
than the conventional approach. However, it should be noted
that the selection of parameter q, as well as the estimation of
average μ and covariance Σ, are crucial to the success of the
modeling process. In this study, we employ the Akaike in-
formation criterion (AIC) [23] to select parameter q, which
is derived from a KL-divergence between the q-Gaussian
distribution and the true one. Parameter q with minimum
AIC is selected and used to build a spatiotemporal statistical
model:

AIC(q) = −2 log Lq(μ̂, Σ̂) + 2k (11)

where k is the number of parameters of the distribution and
Lq(μ̂, Σ̂) is the likelihood, with average and covariance esti-
mated by the following EM algorithm with a fixed parame-
ter q [24], where the initial values of the EM algorithm are
given by a training dataset:

• E-STEP

w(m)
i =

ν + d

ν + (xi − μ(m))T (Σ(m))−1(xi − μ(m))

• M-STEP

μ(m+1) =

∑M
i=1 w(m)

i xi

∑M
i=1 w(m)

i

Σ(m+1) =
1
M

M∑
i=1

w(m)
i (xi − μ(m+1))(xi − μ(m+1))T

Consequently, the algorithm to select the best q for a given
dataset is shown below:

Algorithm 1 Optimization of q
Initialize; q = 1
while (q < 1 + 2

d ) do
Estimate μ and Σ by the EM algorithm given a fixed q
Compute AIC(q)
q⇐ q + Δq

end while
Output; q∗ with minimum AIC

To ensure that the selected value of q is better, we com-
pute Lq(μ̂, Σ̂) in a leave-one-out fashion. Note that the result
of our study is consistent with the result when maximizing
likelihood Lq, because k is constant. Finally, the average μ
and covariance Σ were estimated by the EM algorithm, with
the optimized q using all the training data. The proposed
q-Gaussian distribution-based approach is used not only to
construct a feature space, but also to build a statistical model
for each CS.

2.4 Carnegie Stage Estimation

An interesting application of the proposed spatiotemporal
statistical model is to estimate the CS of a given test data.
To this end, the Mahalanobis distance from the given data x
to the average μc (0 � c �1) is calculated:

√
(x − μc)TΣ−1

c (x − μc) (12)

In the estimation process, c is sampled exhaustively between
0 to 1 with an interval of Δc. Subsequently, we find c with
the minimum Mahalanobis distance and decide it as the es-
timated CS.
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3. Results

3.1 Materials

This research was approved by Kyoto University’s ethi-
cal review board. As shown in the top row of Fig. 3, we
used time-series data from 180 human embryos in Carnegie
stages 17 to 23 of the Kyoto Collection [15] which com-
prises approximately 44,000 human embryos. In most cases,
pregnancy was terminated during the first trimester for so-
cioeconomic reasons under the Maternity Protection Law of
Japan. Some of the specimens (−20%) were undamaged,
well-preserved embryos, from which 180 human embryos
were randomly selected. Human embryos were scanned
using a 2.35T MR system [25]. The 3D T1-weighted im-
ages were acquired using gradient echo sequence (TR =
100ms,T E = 8ms). The resolution of these images is
120μm3. The modeling target was the center of the lens of
the eyeballs, or bilateral lens vesicles, as shown in the bot-
tom row and was entered manually on the images by use of
the Amira software (version 5.4.5; Visage Imaging, Berlin,
Germany). Two people identified landmarks and there were
no landmarks that were impossible to be identified. Figure 4
shows the landmarks on maxillofacial area. Please note that
we used a volume rendering image to show landmarks in-
stead of a cross-sectional image, because of better visibility.

Table 1 shows the number of samples for each CS, and
Fig. 5 shows a bird’s eye and frontal views of all data. The

Fig. 3 Materials used to construct a spatiotemporal statistical model of
the human embryo. (a) Examples of human embryos in Carnegie stages 17
to 23 of the Kyoto Collection. (b) Centers of lenses (yellow dots) that were
the targets of modeling. Points of the first cervical vertebrae were aligned
for all training data

Fig. 4 Left and right lens vesicle of the modeling target

figure confirms that both eyeballs develop toward the out-
side, symmetrically with respect to the median plane of the
viscerocranium. In the statistical modeling process of these
data, the numbers of eigenvectors of the first and second
stages were three, their cumulative contribution ratios were
greater than 97%. Interval Δc to estimate CS and Δq in Al-
gorithm 1 were set to 0.01 in this study.

3.2 Spatiotemporal Model by Linear Interpolation

Figure 6 shows a spatiotemporal statistical model of the eye-
balls obtained by linear interpolation, where the trajectories
of the average (α = 0) and the deviation along the first prin-
cipal axis are highlighted using different colors.

3.3 Comparative Study of 10 Spatiotemporal Statistical
Models

We first constructed 10 models under the assumption of a
Gaussian distribution and compared them in terms of speci-
ficity [26], [27]. Note that there is another performance
index called generalization that quantifies the ability of a

Table 1 Number of embryo-related data for each CS

CS 17 18 19 20 21 22 23 sum
Sample # 30 27 21 28 30 26 18 180

Fig. 5 Bird’s eye and frontal views of all eyeballs

Fig. 6 Spatiotemporal statistical model of eyeballs in a human embryo
during CS 17 to 23 constructed through linear interpolation under the as-
sumption of a Gaussian distribution. This figure shows the trajectories of
the average and the deviation along the 1st principal axis. The bottom right
is a colored map displaying Carnegie stage “CS” and the 1st principal score
“α1”.
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Fig. 7 Specificity of 10 interpolation methods where a Gaussian distribution was assumed. The com-
bination of covariance-matrix interpolation (R: Rotation, A: Affine-invariant, L: Log-Euclidean, W:
Wasserstein geometry, I: Information geometry) and average vector interpolation (L: Linear interpola-
tion, I: Information geometry) is denoted by “Covariance Average”. Red numeral means “Specificity”.

Fig. 8 Gaussian distributions of all CSs in a feature space, and manifolds
of spatiotemporal statistical models by R L and I I (Iso-surface where the
Mahalanobis distance from the average is 3). ei represents ith eigenvector.

model to describe instances not part of the training set. Gen-
eralization can be defined as an average of the reconstruc-
tion error between test data and back-projected data from
the eigenshape space of a statistical model. However, all
10 models used a common feature space and eigenspace for
each CS. Thus, the generalization was the same for all inter-
polation methods. Note that different interpolation methods
generate different trajectories of the average and the eigen-
vectors in feature space, resulting in differences in speci-
ficity values, which reflect the ability to represent only valid
instances of the object. In this study, we defined specificity
as the average of the minimum reconstruction error between
a test data item and 1,000 artificial data items generated
by random numbers, the average and variance of which are
identical to their counterparts values in a statistical model.
Specificity was calculated by two-fold cross-validation.

Figure 7 shows boxplots of the specificities of the 10
models under the assumption of a Gaussian distribution. It
can be seen from this figure that the information geometry-
based approach yielded the best performance with respect
not only to covariance interpolation, but also to average in-
terpolation.

Figure 8 shows a Gaussian distributions of all CSs in a
feature space and manifolds of models by R L and I I, re-

spectively. In this figure, we see that the interpolation due
to I I generated a model with low variance, whereas the R L
interpolation rendered greater the variance of earlier CSs.
We assumed that lower variance would lead to higher speci-
ficity.

3.4 Comparative Study of q-Gaussian-Based Parameter
Estimation

We constructed 10 models under the assumption of a q-
Gaussian distribution, and compared them in terms of speci-
ficity. Figure 9 shows boxplots in terms of specificity. It can
be confirmed from this figure that the information geometry-
based approach yielded the best performance with respect
not only to covariance interpolation, but also to average in-
terpolation.

Figure 10 shows q-Gaussian distributions with opti-
mized values of q(= 1.23, 1.34, 1.16, 1.00, 1.19, 1.19, 1.29)
for all CSs, where the optimized q in feature space was 1.17.
The figures in the middle and to the right show manifolds of
models by R L and I I, respectively. It should be noted that
the distribution (left figure) of each CS have more compact
support in comparison with Fig. 8, and the directions of the
distributions are more aligned than those in Fig. 8, due to
the superiority of q-Gaussian-based parameter estimation.
The difference led to improvement in specificity from Fig. 7
to Fig. 9. Moreover, the manifolds of the right part (I I) in
Fig. 10 seemed to explain the transition between CSs appro-
priately, whereas the manifold of the middle figure (R L) is
piecewise linear, and seemed to fail to present the details of
the transition between the CSs, resulting in lower specificity.

Figure 11 shows a spatiotemporal statistical model by
I I under the assumption of q-Gaussian distribution. The fig-
ure indicates that the variance in the location of the eyeballs
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Fig. 9 Specificity of 10 interpolation methods under assumption of a q-Gaussian distribution with op-
timized parameter q. Combinations of covariance matrix interpolation (R: Rotation, A: Affine-invariant,
L: Log-Euclidean, W: Wasserstein geometry, I: Information geometry) and average vector interpolation
(L: Linear interpolation, I: Information geometry) are denoted by “Covariance Average” in the figure.
Red numeral means “Specificity”.

Fig. 10 q-Gaussian distributions of all CSs in a feature space, and mani-
folds of spatiotemporal statistical models by R L and I I (Iso-surface where
the Mahalanobis distance from average = 3). ei represents ith eigenvector.

Fig. 11 Spatiotemporal statistical model of eyeballs in a human embryo
in CS 17 to 23 constructed by I I (average and covariance were interpolated
by information geometry) under the assumption of a q-Gaussian distribu-
tion. These figures show the trajectories of the average and the deviation
along the 1st principal axis. The bottom right is a colored map displaying
Carnegie stage “CS” and the 1st principal score “α1”.

was smaller than that in Fig. 6 because the length of the seg-
ments proportional to the standard deviation along the 1st
eigenvector became shorter.

Fig. 12 Relationship between true CS and estimated CS in the best spa-
tiotemporal model

3.5 Carnegie Stage Estimation

The CSs were estimated in a leave-one-out manner. We con-
structed a spatiotemporal statistical model, or the best one
by information geometry (I I), under the assumption of a
q-Gaussian distribution by using the training dataset except
for a test data. Then we applied the CS estimation algorithm
with the model to the test data. We repeated this estimation
process by changing the test data. Figure 12 shows the re-
lationship between the true CS and the estimated CS, where
the average error in the proposed estimation algorithm was
0.409.

4. Discussion

This paper proposed an algorithm to build a spatiotempo-
ral statistical model of the eyeballs with a continuous time
parameter by using time-series data from embryos, and pre-
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sented a comparative study of 10 interpolation schemes. We
confirmed that the information geometry-based approach
under the assumption of a q-Gaussian distribution is the
most suited to statistically modeling the spatiotemporal de-
velopment of the eyeballs. The symmetrical growth of the
right and left eyeballs in Fig. 5 seems to be efficiently and
accurately modeled in Fig. 11.

To confirm the superiority of the information
geometry-based approach over the linear interpolation-
based approach in terms of specificity, we subjected the
models to the Mann-Whitney U-test by R L (interpolation
by rotation for covariance matrix and linear interpolation for
the average) and I I (covariance and average were interpo-
lated by information geometry) under the assumption of a q-
Gaussian distribution. The null hypothesis H0 was that the
distributions of specificity of the two approaches is identi-
cal. The p-value was 0.010, and H0 was rejected (p < 0.05).
The superiority of information geometry might be explained
by appealing to the fact that information geometry-based ap-
proaches interpolate between two distributions along the di-
rection in which the Kullback-Leibler divergence between
two points decreases maximally. The fact might derive more
appropriate manifolds between two probabilistic distribu-
tions and bring the superiority demonstrated in the exper-
iment. Further study using large dataset is required to con-
firm it in the future.

We also evaluated the difference between the Gaussian
assumption and the q-Gaussian assumption in detail, when
using the information geometry-based approach. We con-
ducted statistical tests of the performance index between
two assumptions (H0: the two distributions of the perfor-
mance index are identical). For detailed comparisons, we
calculated not only specificity, but also generalization as
performance index. Note that q-Gaussian-based parame-
ter estimation was adopted for feature space construction,
where the number of dimensions of a given input vector was
reduced from six to three. The Gaussian approach and the
q-Gaussian-based approach derived different sets of eigen-
vectors, the directions of which were different from one an-
other. Even though the number of dimension was identi-
cal, or three, for both approaches, the eigenspace spanned
by the eigenvectors was different. This is why general-
ization was measured and compared between the Gaussian
and the q-Gaussian-based approaches. Figure 13 shows a
comparison between the Gaussian and the q-Gaussian-based
approaches in terms of generalization (Wilcoxon signed-
rank test) and specificity (Mann-Whitney U-test). Recall
that both performance indices evaluated reconstruction er-
ror, where a smaller error is better. The figure tells us that
the q-Gaussian-based approach is superior to the Gaussian
based one in terms of statistically significant difference.

We also discuss the estimation error. The average
estimation error of 0.409 was achieved using information
geometry-based interpolation. We compared the errors in
information geometry-based approach under the assump-
tion of a q-Gaussian distribution with those under that of
a Gaussian distribution (Fig. 14). Although the difference

Fig. 13 Generalization and specificity of the information geometry-
based model under assumptions of a q-Gaussian distribution and a Gaussian
distribution

Fig. 14 Estimation error in the information geometry approach under as-
sumptions of a q-Gaussian distribution and a Gaussian distribution

was not statistically significant (by the Wilcoxon signed-
rank test), the q-Gaussian-based approach yielded slightly
better performance. The results suggested that a q-Gaussian
distribution-based approach might be found to be statisti-
cally effective in terms of CS estimation when the size of
data for statistical test increases.

The average error might not be small enough to qualita-
tively analyze changes in embryology. One possible reason
for the error is that the CS is a staging system that supplies a
developmental chronology, and is mainly determined by the
morphological development of the external appearance of
the body of the embryo [16]. Since the location of the eye-
balls is not considered in determining the CS of an embryo,
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there occur overlaps in data between neighboring CSs, as
shown in Fig. 5. Such overlaps give rise to inevitable error in
CS estimation. Another possible reason is due to the quan-
tization error in the staging process by a human observer,
which is also difficult to solve. Although there are a number
of difficulties in estimating the CS, it is be useful for quali-
tatively analyzing the changes in studies in embryology. For
future work, we plan to improve estimation performance.

This paper focused on the eyeballs of embryos in a
certain range of the CS. There are, however, a number of
anatomically important landmarks of an embryo that need
to be modeled. We plan to model the development of the
eyeballs as well as the ears, and other important anatomi-
cal landmarks of the embryo. An extension of the proposed
approach to modeling the surfaces of embryonic organs is
another interesting task for future research. Furthermore,
an algorithm for abnormal detection is an important appli-
cation of the spatiotemporal model, and we plan to develop
it for computer-aided diagnosis of embryos. For example,
once we have a set of landmarks of a given embryo obtained
through a non-invasive imaging scanner, we can estimate the
deviation from the average using the proposed spatiotempo-
ral model. When the deviation is large, we would say that
the given subject is abnormal, and vice versa. Finally, an
extension of the modelling algorithm is important. For ex-
ample, we assumed that numbers of dimensions of neigh-
boring CSs are same and our experiments met the assump-
tion. However, the assumption might not be true for differ-
ent anatomical structures. To deal with changes in dimen-
sionality between neighboring CSs, we have to extend our
modeling approaches that remains as future work.

5. Conclusion

This paper proposed an algorithm to construct a spatiotem-
poral statistical model for the movement by growth of eye-
balls in a human embryo. The algorithm consists of two
stages: modeling in each CS, and interpolation between
models of neighboring CSs. In the first stage, a q-Gaussian
distribution was introduced to handle a non-Gaussian dis-
tribution with a small sample size. In the second stage, 10
combinations of interpolation between neighboring CS were
presented; furthermore, an estimation algorithm for the CS
of given test data was presented. The algorithm was ap-
plied to the Kyoto Collection of images of human embryos
to build a spatiotemporal model of the eyeballs, and perfor-
mance was evaluated in terms of specificity, generalization,
and CS estimation error. The best model was yielded by in-
formation geometry-based interpolation under assumption
of a q-Gaussian distribution.
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