
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017
2493

PAPER

An Energy-Efficient Task Scheduling for Near-Realtime Systems
with Execution Time Variation

Takashi NAKADA†a), Member, Tomoki HATANAKA††, Hiroshi UEKI†††,
Masanori HAYASHIKOSHI†††, Nonmembers, Toru SHIMIZU††††, Senior Member,

and Hiroshi NAKAMURA††, Member

SUMMARY Improving energy efficiency is critical for embedded sys-
tems in our rapidly evolving information society. Near real-time data pro-
cessing tasks, such as multimedia streaming applications, exhibit a com-
mon fact that their deadline periods are longer than their input intervals due
to buffering. In general, executing tasks at lower performance is more en-
ergy efficient. On the other hand, higher performance is necessary for huge
tasks to meet their deadlines. To minimize the energy consumption while
meeting deadlines strictly, adaptive task scheduling including dynamic per-
formance mode selection is very important. In this work, we propose an
energy efficient slack-based task scheduling algorithm for such tasks by
adapting to task size variations and applying DVFS with the help of statis-
tical analysis. We confirmed that our proposal can further reduce the energy
consumption when compared to oracle frame-based scheduling.
key words: adaptive task scheduling, near real-time processing, execution
time variation, energy efficiency

1. Introduction

Energy consumption of embedded systems is a very critical
concern and minimizing it is always of great importance. In
most embedded systems, tasks periodically arrive and are
then executed. As information processing in such devices
becomes highly sophisticated, execution time of tasks vary
significantly. Buffering is effective to mitigate load imbal-
ance in the time domain. The key idea of near real-time sys-
tems is to trade off between the latency and required peak
performance.

In this paper, Input interval length is defined as the
distance between arrival times of successive tasks. WCET
(Worst Case Execution Time) is defined as the maximum ex-
ecution time. The simplest task scheduling algorithms as-
sume the execution time is the same as WCET. However,
the execution time is often shorter than WCET due to dy-
namic behaviors such as input-dependent variations.

To adapt to the variation of the execution time, DVFS
(Dynamic Voltage and Frequency Scaling) [1], [2] can be
very effective. Therefore, execution time variation aware

Manuscript received December 19, 2016.
Manuscript revised May 19, 2017.
Manuscript publicized June 26, 2017.
†The author is with Nara Institutet of Science and Technology,

Ikoma-shi, 630–0192 Japan.
††The authors are with the University of Tokyo, Tokyo, 113–

8656 Japan.
†††The authors are with Renesas Electronics Corporation,

Kodaira-shi, 187–8588 Japan.
††††The author is with Keio University, Yokohama-shi, 223–8522

Japan.
a) E-mail: nakada@is.naist.jp

DOI: 10.1587/transinf.2016EDP7497

Fig. 1 Periodic tasks with task size variation

adaptive task scheduling is indispensable for low power em-
bedded systems. To cope with this challenge, some exe-
cution time variation aware algorithms have been proposed.
However, these approaches are insufficient for near real-time
processing because most of them assume that the deadline
period is the same as the input interval and schedule tasks
within only one input interval.

We present a motivational example in Fig. 1. We start
from executing periodic dynamic tasks without any opti-
mization shown in Fig. 1 (A). In this execution, to meet the
deadline of whatever task size, the tasks are always executed
under a high performance mode (Orange). When we apply
DVFS technology to these tasks with a perfect execution
time prediction, the execution is then shown in Fig. 1 (B). In
this execution, we assume the deadline period is the same
as the input interval. In each interval, optimal execution is
achieved locally. Specifically, when the execution time is
middle (5th) or short (2nd, 4th, 6th), a middle (Green) or a
low (Blue) performance mode can be used respectively. For
near real-time systems, whose deadline periods are longer
than the input intervals, the ideal scheduling is then shown
as Fig. 1 (C). In this execution, middle performance mode
(Green) is always used and incurs the smallest energy con-
sumption. As a result, the execution time of large tasks

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

2494
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

are longer than the input interval, and the average execu-
tion time is the same as the input interval. This scheduling
is theoretically the most energy efficient.

Our approach here is to firstly propose a slack-based
task scheduling method that can adapt to dynamic behaviors
and take advantage of the longer deadline period. Slack time
is defined as the time from the current time to the earliest
deadline. For example, the slack time when the first task
completes is shown in Fig. 1 (C).

For near real-time systems, the execution time for a
task varies and is not fixed in advance. As an example, for
image processing or other types of streaming processing, re-
quired execution time heavily depends on the characteristics
of the input. Therefore, the target of our scheduling algo-
rithm are those tasks whose execution times are known only
after completion.

When the slack time is long enough, lower perfor-
mance is preferable to maximize the energy efficiency. The
slack time becomes shorter if some tasks, whose execution
time is long, continuously arrive. Then we need higher per-
formance to meet the deadline. In this circumstance, we
adaptively adjust the performance to minimize the energy
consumption. As the performance adjustment incurs addi-
tional time and energy overhead, frequent adjustment may
increase the total energy consumption. So, our scheduling
should be guided with several thresholds, which are com-
pared with the slack time and indicate when the performance
should be changed. Additionally, these values are obtained
at design time.

To seek for optimal thresholds, we derive the average
energy consumption from a statistical analysis. Firstly, we
introduce a finite state machine (FSM) that represents a sys-
tem controlled by the proposed slack-based task scheduling.
The states and the transitions represent which performance
is chosen and when the performance should be changed re-
spectively. By doing so, next task will be executed on an
optimal performance and the average energy consumption
will be minimized. When task and hardware parameters are
given, the average energy consumption can be calculated
from a statistical analysis. Finally, the optimal thresholds
can be obtained with a suitable heuristic search algorithm.

To realize energy-efficient task scheduling, the primary
contributions of this paper are as follows.

• We propose a slack-based scheduling that adapts to ex-
ecution time variation and takes advantage of deadline
periods that are longer than input intervals.
• We formulate our slack-based scheduling with an FSM

to properly regulate the performance of tasks and we
derive the average energy consumption from statistical
analysis as threshold for performance change.
• Through evaluation, we observe significant energy re-

duction with our proposal when compared to oracle
frame-based task scheduling.

The remaining parts of this paper are organized as fol-
lows. Section 2 and 3 introduce background and related
work respectively. Section 4 presents the description of

the target problem and the proposed slack-based schedul-
ing. Experimental results appear in Sect. 5. Finally, Sect. 6
concludes the paper.

2. Background

In this paper, we assume that a system that has a perfor-
mance adjustable core. Namely, our target system has a core
with DVFS technology.

We also assume that target tasks periodically arrive and
their sizes are unknown before their executions complete but
the probability distribution of the task sizes is given. The ex-
ecution time, including WCET, can be calculated by the task
sizes and the processor performances. This type of tasks is
called dynamic tasks. The tasks are independent with each
other, namely, each task and its task size are independent
from the previous tasks. Their deadline period is longer than
the input interval.

In general, the relation between energy, voltage and
clock frequency can be modeled by following known equa-
tion [3].

Eproc = α1T1CV2 f + T2VIleak

Here, Eproc represents the energy consumption of the micro-
processor. α1,T1,C,V and f represent a constant value, the
execution time, the circuit capacity, the supply voltage, the
operating frequency respectively. T2 and Ileak represent the
total time that includes idle period and the leakage current
respectively.

The first and the second terms represent the dynamic
and the static energy respectively. The former is caused by
switching activities of transistors. While, the latter is caused
by leakage current and always consumed whenever power is
supplied.

DVFS has been around for more than a decade [1]. It
allows the voltage and the clock frequency to be decreased
dynamically to trade time for dynamic energy. DPM (Dy-
namic Power Management) is also important to reduce the
static power when the processor core is in an idle state. An
overview of DPM techniques is given in a survey article [4].

To determine the appropriate power state, the length of
the next idle period is important. For short idle period, shal-
lower sleep mode is preferable and vice versa. This strategy
can be modeled with a function of cost against the length
of the idle period. This function turns out to be piecewise-
linear, increasing and concave [5]. Even if the task sizes are
known, NP-hardness of the optimal scheduling algorithm
was proven [6].

In this paper, executed tasks periodically arrive and
wake-up time is statically scheduled. So, when an idle state
is encountered, the time when the next task can be invoked
is definitely predictable. Then the length of the idle period
is also predictable. Additionally, since the restart time is
predictable, wakeup overheads are easily hidden by a pre-
wakeup technique. Therefore, the optimal power manage-
ment is easily determined by the strategy. To simplify the

NAKADA et al.: AN ENERGY-EFFICIENT TASK SCHEDULING FOR NEAR-REALTIME SYSTEMS WITH EXECUTION TIME VARIATION
2495

discussion, we assume that the optimal power mode is au-
tomatically chosen. Namely, after the execution is finished,
the length of an idle period is easily calculated. The opti-
mal power mode can be chosen from the length of the idle
period.

3. Related Work

In this section, we introduce existing energy efficient task
scheduling algorithms for dynamic tasks.

A simple strategy is a straightforward extension of a
static task scheduling [7]–[10]. Their target applications
consist of multiple dynamic subtasks. These algorithms ini-
tially assume the execution times of all subtasks are the
same as WCETs. During the execution, when the actual
execution time is shorter than WCET, they re-calculate and
switch to lower performance mode. However, these algo-
rithms always start from the highest performance mode to
meet the deadline period of the largest task, even if larger
task rarely appeared.

To solve this problem, more sophisticated schedul-
ing [11], [12] is proposed. This approach assumes a wider
range of performance modes and start from medium per-
formance mode. Then, if the execution time is longer than
expected, following subtasks should be in higher perfor-
mance mode, which is higher performance of the previ-
ous approaches. As a result, if larger tasks rarely arrived,
more power reduction can be obtained. To realize this
management, they introduced a scheduling table. At de-
sign time, they construct the table that indicates the opti-
mal scheduling. Using this table, run-time overhead is mini-
mized. Similar approaches are proposed for conditional task
graph [13], [14].

However, the main drawback of these frame-based op-
timization algorithms is, they assume that the deadline pe-
riod is the same as the input interval even it is indeed longer
than the input interval. In other words, these approaches
are not optimized for near real-time systems. As a result,
the scheduling is optimized within each input interval inde-
pendently and the improvement of the energy efficiency is
limited. Only a limited numbers of related work tackled this
problem.

A basic approach for near real-time systems is pro-
posed [15]. Since this approach focuses on static tasks, dy-
namic tasks are not supported.

Approaches for near real-time dynamic processing are
a prediction based and a feedback control based schedul-
ings [16], [17]. The effectiveness of these approaches relies
on the accuracy of their execution time predictors. When the
prediction fails, deadline constraint may be violated. Addi-
tionally, such run-time prediction must need additional com-
putational cost and is a waste of energy.

Another approach is buffer based scheduling [18]. This
scheduling postpones execution to keep continuous execu-
tion and tries to utilize minimum performance core. This
greedy approach can realize optimal scheduling only for
next task but not globally optimal. For example, when mini-

mum performance core is chosen and execution time of next
task is same as WCET, following task should be executed
on the highest performance core to meet deadline restric-
tion. Therefore, the greedy approach cannot minimize total
energy consumption. Moreover, they did not consider mode
switching overhead at all.

On the other hand, our approach can adapt to both the
execution time variation and take advantage of the longer
deadline. Our scheduling can schedule tasks across multi-
ple input intervals. Namely, multiple tasks are held in an
input buffer and then execute multiple tasks continuously.
Basic idea of this scheduling has been introduced in [19]. In
this paper, we introduce details of its algorithm and further
evaluation.

4. Slack-Based Task Scheduling

In this section, we propose a novel adaptive energy-efficient
task scheduling algorithm for near real-time data processing.
Specifically, our approach can adapt to the execution time
variation and take advantage of the longer deadline.

In general, a task behavior can be expressed by a task
graph. In case of the dynamic task, the task graph includes
branches as shown in Fig. 2. Each branch has a probability
of execution and each node represents the task size. Note
that the number of branches corresponds to the number of
task size variations and only one node is selected and ex-
ecuted for each input interval. If original task graph has
multiple subtasks through the path, they should be merged
before applying our algorithm. We also assume these sub-
tasks are non-preemptive.

4.1 Problem Definition

Firstly, we introduce input variables, which are related to
hardware and software, as shown in Table 1. These variables
are given or are easily computed from other given parame-
ters.

As we mentioned, the tasks are independent with each
other and the deadline d is longer than the input interval
I. The number of possible patterns is expressed by M. In
general, the task graph may contain multiple branches as

Fig. 2 An example task graph

2496
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Table 1 Input variables

Variables Definition

M Number of possible execution paths
p(a) Probability of path a
I Input Interval
d Deadline
N Number of modes
et(a, c) Execution time of path a on mode c
Ed(a, c) Dynamic energy of path a on mode c
ED Average dynamic energy per one execution
ES a Average static energy per one execution
ES s Static energy during sleep state per input interval
EOV Overhead energy of power state transitions
TOV Overhead latency of power state transitions

shown in Fig. 3 (A). If a task graph contains two sequen-
tial branches, which have two directions, this task graph
can be transformed into a task graph that contains only one
branch, which has four directions, as shown in Fig. 3 (B).
Each branch has only one subtask and nonpreemptive. If
these two branches have dependency, the probabilities may
differ from the values shown in Fig. 3 (B) but are still easily
obtained. In the same way, when the task graph contains
some loops, possible patterns of the execution time are enu-
merable and their probabilities are easily obtained.

Moreover, if there are multiple tasks, we have to trans-
form them into a task graph that contains only one branch.
For example, one application is 100ms execution every 1
second and the other is 50ms execution every 2 seconds.
The combined application is 100ms or 150ms execution ev-
ery 1 second and their probability distribution is 50% and
50%. This transformation lose some information of the ap-
plications and may reduce energy efficiency.

As a result, each path has an ID a (a = 1, 2, 3, . . . ,M).
p(a) represents the probability of the subtask on path a. If
these probabilities are not available in advance precisely,
expected probabilities are also acceptable. Even if these
expected values are significantly different from actual val-
ues, the deadline constraint is still guaranteed as long as the
WCET is given correctly. Although, the energy efficiency is
degraded.

Additionally, if the probability distribution is changed
depended on the execution phase or input data, we can pre-
pare the optimal scheduling for each execution phase or each
typical input data at design time. An adaptive scheduling
can be realized by monitoring execution behavior and se-
lecting suitable scheduling depending on expectation of cur-
rent execution phase or input data. In this paper, to simplify
the discussion, we assume that the probability distribution is
predictable and fixed through execution.

For a processor that has DVFS technology, each per-
formance mode has ID c (c = 0, 1, 2, 3, . . . ,N). N rep-
resents the number of available modes. c = 0 represents
sleep mode. We assume the higher performance modes have
larger IDs. et(a, c) and Ed(a, c) represent the execution time
and the dynamic energy when path a is executed on mode c
respectively.

ED and ES a are [(N + 1) × 1] vectors and ith entry rep-

Fig. 3 Task graph with multiple branches

resents the average dynamic energy and static energy of one
execution on mode i respectively. Note that 0th entries are
always 0. EOV is an [(N+1)× (N+1)] matrix and (i, j) entry
represents energy overhead of the transition from mode i to
mode j. ES s is constant and represents the total static energy
during an input interval. ES s is given by PS s × I.

We assume that the core in the higher performance
mode execute any tasks faster with larger energy consump-
tion. Otherwise, the low performance but larger energy con-
sumption mode should be removed. Therefore, the follow-
ing equations are satisfied.

For c1 < c2 : et(a, c1) > et(a, c2)

Ed(a, c1) < Ed(a, c2)

Our ultimate goal is to minimize the energy consump-
tion under performance constraint. However, the task size
of the target tasks varies probabilistically. The objective
function should minimize expected value of the energy con-
sumption without deadline violation.

As a result, objective function and the constraint con-
dition are as follows. We solve this optimization problem in
the following sections.

min (Average energy consumptionof core per input)

s.t. (Satisfy deadline constraints)

4.2 Task Scheduling

4.2.1 Overview

In this paper, we adopt a lumped execution [20], which ex-
ecutes multiple tasks continuously. To realize this execu-
tion, we do not execute a task just after it is available. We
postpone the execution but still make sure the deadline con-
straint can be met. After several tasks are ready, we start
the execution. We can then execute several tasks continu-
ously. When all the ready tasks are done, the execution is

NAKADA et al.: AN ENERGY-EFFICIENT TASK SCHEDULING FOR NEAR-REALTIME SYSTEMS WITH EXECUTION TIME VARIATION
2497

Table 2 Execution time

mode ID c et(1, c) et(2, c)

1 0.3 3.6
2 0.15 1.8
3 0.1 1.2
4 0.075 0.9

terminated and the core switches to the sleep mode.
To adapt to the variation of the task size. The exe-

cuting mode should be chosen carefully. Firstly, the max-
imum execution time on mode c (maxa et(a, c)) corresponds
to WCET. To ensure the schedulability, the execution time
when the longest path is executed on the highest perfor-
mance mode N must be shorter than the input interval I.
Meanwhile, the lowest performance mode must execute the
longest path shorter than the deadline d. Otherwise, such
performance modes should be disabled. These conditions
are given as follows.

max
a

(et(a,N)) < I, max
a

(et(a, 1)) < d

Notice that WCETs of all modes except mode N are
longer than the input interval I.

We introduce an overview of the proposed task
scheduling algorithm with an example shown in Fig. 2. In
this example, the small subtask has large probability and the
large subtask has small probability. We assume four proces-
sor modes and the execution time is shown in Table 2.

In this case, if we use only mode 4, we can obviously
satisfy the deadline constraints. However, the mode 4 seems
to be over performance. On the other hand, if we use other
mode, the deadline constraints may violated when the large
task arrived continuously.

As mentioned in Sect. 1, to realize this task scheduling,
we focus on the slack time, which is defined as the time from
present to the earliest deadline. In the end it comes down to a
problem that when the core performance should be changed.

4.2.2 Scheduling Algorithm

Here, we explain the details of the proposed task scheduling
algorithm. As we mentioned, the working mode is changed
based on the slack time. When a task finishes, the slack
time for the next oldest task is calculated. Note that the
oldest task has the earliest deadline. If the slack time ex-
ceeds thresholds, the working mode is changed. The mode
is mainly changed to its adjacent performance mode, but
if the slack time is largely changed, the core performance
should also be largely changed.

As a result, it comes down to a problem that when the
working mode should change. The scheduling variables are
shown in Table 3. Firstly, the thresholds from mode i to
mode i + 1 are defined as xi

up, the threshold from mode i + 1
to mode i are defined as xi

down. Finally, the first working
mode is defined as mode �. When current state is si, while
the slack time is between xi

up and xi−1
down, the tasks are exe-

cuted on mode i continuously. This range is defined as stage

Table 3 Scheduling variables

Param Definition

xi
up Threshold from si to si+1

xi
down Threshold from si+1 to si

� The first working mode

Fig. 4 State transition diagram and transition conditions

i. Therefore, x0
up is the threshold of the wake up from the

sleep state. x0
down is the threshold to the sleep state. From

a viewpoint of energy efficiency, there is no reason to sleep
while any task is available. Thus x0

down = d, namely, when
the next task is not ready, this system goes to the sleep state.

In this situation, since the wake up time is easily cal-
culated from the current time and the scheduling variable
(x0

up), the appropriate sleep mode can be determined and a
simple timer will wake the core up. If the calculated sleep
period is too short even for the shallowest sleep mode, the
appropriate mode is idle mode.

The slack time is calculated when a task is finished.
The slack time when nth task in a lumped execution is fin-
ished is defined as tn and written as follows.

t0 = x0
up (1)

tn = tn−1 + (I − et(a, c)) (2)

From this definition, if the execution time is longer than
the input interval, namely I − et(a, c) < 0, the slack time is
decreased. Otherwise, if the execution time is shorter than
the input interval, namely I − et(a, c) > 0, the slack time
is increased. When nth task is executed on mode i, if tn
is smaller than xi

up, the next state is s j that satisfies x j
up ≤

tn − TOV(i, j) < x j−1
up . Conversely, if tn is larger than xi−1

down, the

next state is s j that satisfies x j+1
down ≤ tn − TOV(i, j) < x j

down.
Otherwise, the next task is also executed on mode i. This
transition when N=2 is shown in Fig. 4.

The threshold xi
up, xi

down and the first working mode s�
satisfy following constraints.

x(i+1)
up ≤ xi

up (i = 1, 2, . . . ,N) (3)

xi
down ≤ x(i−1)

down (i = 1, 2, . . . ,N) (4)

xi
up ≤ xi

down (i = 0, 1, . . .N) (5)

WCET i ≤ xi
up (i = 1, 2, . . . ,N) (6)

x�up ≤ x0
up ≤ x(�−1)

down (7)

Here, WCETi is WCET of mode i. The constraints (3) and

2498
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Table 4 Variables for problem formulation

Variables Definition

P Transition probability matrix
π Stationary distribution of P
tactive Average active time
tsleep Average sleep time

Fig. 5 State transition diagram (N=4)

(4) keep the performance order. The constraint (5) guaran-
tees that at least one state is available for any slack time. The
constraint (6) is required to meet the deadline constraints.
The constraint (7) guarantees that the first transition is valid.
Note that the x0

up is not included in the constraints (3) and
(6). Since, the x0

up is the threshold for wake up, x0
up < x1

up is
valid. Whenever these constraints are satisfied, it is guaran-
teed to meet the deadline for any task sequence.

Next, we explain how the objective function follow
from the thresholds xi

up, xi
down and the first working mode �.

4.3 Energy Analysis Based on FSM

In this section, we introduce a finite state machine (FSM)
to analyze proposed scheduling statistically. The introduced
variables are shown in Table 4. Each state corresponds to
the working mode or the sleep state. Thus, the total number
of states is N + 1. When the working mode is changed, the
state is also changed. The state transition diagram is shown
in Fig. 5. The sleep state is s0, the mode i is working at si.
Since the first working mode is fixed in our scheduling, pos-
sible transition from the s0 is only one and the first working
mode is a scheduling variable.

Then, we can define a transition probability matrix P
from this FSM. P is an [(N+1)× (N+1)] matrix and its row
sums are always 1. (i, j) entry of P, namely pi j, is defined
as follows.

pi j = (probability of the transition from si to s j)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

from mode i to mode j if i j � 0
from mode i to sleep state if i � 0, j = 0
from sleep state to mode j if i = 0, j � 0
0 if i = j = 0

(8)

Here p0 j also satisfies the following equations.

p0 j =

{
1 if mode j is the first working mode
0 otherwise

(9)

In the example shown in Fig. 4, p01 = 1.
A stationary distribution π is also defined for P. π is

[1 × (N + 1)] vector and πP = π is satisfied. Therefore, π
represents that how often each state is active.

Additionally, an average active time tactive and average
sleep time tsleep are defined as follows.

tactive = average total lumped execution time (10)

tsleep = average time between lumped executions (11)

Using these values, the objective function J is defined
as follows.

J = π(ED + ES a)+ ‖ π(P ∗ EOV) ‖ + tsleep

tactive + tsleep
ES s

(12)

Here, ∗ and ‖ · ‖ represent the products of correspond en-
tries and the sum of all entries respectively. Therefore, the
first and second terms represent average dynamic and static
energy consumption per task. The third term represents av-
erage overhead energy per transition. The fourth term repre-
sents static energy per input interval during sleep state. The
stationary distribution π, average sleep time tactive and av-
erage sleep time tsleep can be obtained from the transition
probability matrix P.

The initial distribution of the slack time depends on the
previous state. Namely, the probability of transition from
si to s j depends on the previous state. Therefore, before
calculating P, we define N2 − N + 2 state as follows and
construct their transition probability matrix P̂. P̂ is an [(N2−
N + 2) × (N2 − N + 2)] matrix.

state s0

σ(�, 0)
σ(1, 2)
σ(1, 3)
. . .
σ(1,N)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
N − 1

σ(2, 1)
σ(2, 3)
. . .
σ(2,N)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
N − 1

. . .
σ(N, 1)
σ(N, 2)
. . .
σ(N,N − 1)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
N − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

× N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

N(N − 1) + 2 (13)

Here, σ(j, i) means the current state is si and the previous
state is s j.

To obtain the initial distribution of state i, we assume
that the distribution of the slack time is uniform at the previ-
ous state j just before the transition. Then initial distribution
ri(t) of si is given below.

NAKADA et al.: AN ENERGY-EFFICIENT TASK SCHEDULING FOR NEAR-REALTIME SYSTEMS WITH EXECUTION TIME VARIATION
2499

ri(t) =

{ ∫ ∞
−∞ v j(τ)U j(t − τ)dτ if xi

up ≤ t ≤ xi−1
down

0 otherwise.

(14)

Here, U j(t) is a uniform distribution that is valid only
on the previous stage j, v j(t) means that the probability dis-
tribution of slack time variation is t, when one task is ex-
ecuted on mode j. Notice that ri(t) is defined only on the
stage i ([xi

up, xi−1
down]) Therefore, the integrated value of ri(t)

within [−∞, ∞] may be smaller than 1 and it is required to
be normalized as follows.

r̃i(t) =
ri(t)∫ ∞

−∞ ri(t)dt
(15)

Then the transition probabilities are obtained from the
initial distributions. After one task is executed, the probabil-
ity distribution of the slack time v1

i (t) can be obtained from
a convolution of the initial distribution ri(t) and the proba-
bility distribution of the slack time variation pi(t).

v1
i (t) =

∫ ∞
−∞

pi(τ)r̃i(t − τ)dτ (16)

Here pi(t) is defined as follows.

pi(t) =

{
p(a) if I − et(a, i) = t
0 otherwise.

(17)

In the same way, the probability distribution of slack
time after n executions vn

i (t) is obtained from a convolution
of the vn−1

i (t) and pi(t).

vn
i (t) =

∫ ∞
−∞

pi(τ)v
n−1
i (t − τ)A(t − τ)dτ (18)

Here, A(t) is a window function and given by

A(t) =

{
1 if xi

up ≤ t ≤ xi−1
down

0 otherwise.
(19)

This window function limits vn−1
i on the stage i.

At the nth transition, the probability of the slack time
exceeds xi

up or xi−1
down are defined as p(n)

le f t, p(n)
right respectively.

However, the slack time may exceed more than 1 threshold
after one execution. Thus, the probability of the slack time
exceed m threshold are defined as p(n)

le f t(m), p(n)
right(m) and given

by

p(n)
le f t(m) =

∫ xi+m−1
up

xi+m
up

vn
i (t)dt −

n−1∑
k=1

p(k)
le f t(m)

p(n)
right(m) =

∫ xi−m−1
down

xi−m
down

vn
i (t)dt −

n−1∑
k=1

p(k)
right(m)

As a result, the state transition probability P̂ is obtained
from p(n)

le f t(m) and p(n)
right(m) as follows.

p̂σ(j,i),σ(i,i+m) =

∞∑
k=1

p(k)
le f t(m)

k

p̂σ(j,i),σ(i,i−m) =

∞∑
k=1

p(k)
right(m)

k

p̂σ(j,i),σ(j,i) = 1 − p̂σ(j,i),σ(i,i+m) − p̂σ(j,i),σ(i,i−m)

Here σ(j, i) represents the current state is i and the previous
state is j. This expression corresponds to the definition of
P̂ is given by (13). Then an [(N2 − N + 2) × (N2 − N + 2)]
matrix P̂ is calculated.

Next, we obtain stationary distribution π̂ from P̂. We
start from q0, whose 1st entry is set to 1 and others are 0 as
follows.

q0 =
(
1 0 . . . 0

)
(20)

Then, n time state transition is applied to q0 and its proba-
bility distribution is defined as qn. Thus, q0 is given by

qn = q0P̂n. (21)

When ‖ qn − qn−1 ‖2 becomes negligibly small, this compu-
tation is converged and the stationary distribution π̂ is ob-
tained. This π̂ corresponds to right eigenvalues of the matrix
P̂.

Then, using the P̂ and the π̂, the state transition matrix
P and its stationary distribution π are given by

pi, j =
∑

k

p̂σ(k,i),σ(i, j) × π̂σ(k,i) (22)

πi =
∑

k

π̂σ(k,i). (23)

The average active time and the average sleep time are
obtained as follows. For each lumped execution, N tasks are
executed on average. The total time (tactive+ tsleep) obviously
equals to (N × I).

The average number of executed tasks N is given by

N =
∞∑

n=0

n · u(n) (24)

Here, u(n) is the probability of the lumped execution exe-
cutes exactly n tasks. To obtain u(n), we start from a prob-
ability distribution udist(0), which represents the probability
of the first working mode (s�) is 1. If sstar is s1, udist(0) is
given by

udist(0) =
(
0 1 0 . . . 0

)
. (25)

Then the followings are given by

udist(1) = (0 1 0 · · · 0)P̂

udist(2) = (0 u′dist(1))P̂

...

udist(n) = (0 u′dist(n−1))P̂

Here, u′dist(n) is a 1×N vector and has from 2nd to (N +1)th
entries of udist(n). Then, u(n) is the first entry of udist(n).
When n · u(n) becomes negligibly small, N is obtained.

2500
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

The average sleep time tsleep is also given by

tsleep =

∫ ∞
−∞

tr̃0(t)dt − x0
up. (26)

Here, r̃0(t) is initial distribution of s0.
Now, the average active time tactive is obviously given

by

tactive = N × I − tsleep. (27)

Finally, when the scheduling variables xup, xdown and
the first working mode s� are given, we can obtain the tran-
sition probability matrix P and other parameters, then the
objective function J can be obtained.

4.4 Obtaining Optimal Scheduling

In the previous section, we explain how to obtain the objec-
tive function J from the scheduling variables xup, xdown and
the first working mode s�. In this section, we explain how to
seek for the optimal scheduling. In general, the scheduling
variables xup and xdown can be real numbers and the number
of possible combinations is infinity. To simplify the algo-
rithm, we define a unit time and these scheduling variables
are limited to integral multiples of the unit time. Then the
problem is N+1-dimensional discrete optimization problem.
In this paper, we introduce and compare three search algo-
rithms, Greedy search, Random search, Uniform search and
Genetic algorithm. We explain these algorithms one by one.

4.4.1 Greedy Search

The greedy search is one of the simplest search algorithms.
When a set of scheduling parameters is given, this algorithm
tries to modify each parameter to the neighbor value and
evaluates it. If new parameters are better than the current pa-
rameters, the current parameters are replaced with the new
parameters. Then the same algorithm is applied repeatedly.
When any neighbor parameters are worse than the current
parameters, this search is terminated. Obviously, this algo-
rithm can guarantee the local optimum.

In our evaluation, we always apply this algorithm after
other algorithm to guarantee the local optimum.

4.4.2 Random Search

The random search is also one of the simplest search algo-
rithms. First, randomly generate valid N sets of the schedul-
ing parameters. Then evaluate all sets and pick the best set
of the parameters. Finally, we apply the greedy search for
the best one.

4.4.3 Uniform Search

The uniform search is a simple search algorithm. First, we
define the search granularity Δt. For each scheduling param-
eters, the values every Δt are set to search point. Then all

possible combinations of all parameters are evaluated and
pick the best set of the parameters. Note that the initial
working mode is always searched for every possible pattern.
Finally, we apply the greedy search for the best one.

4.4.4 Genetic Algorithm

The genetic algorithm (GA) is a well-known search algo-
rithm and is effective for a huge search space. The GA has
two parameters, the number of genes K and the number of
maximum generations L. One gene corresponds to one set
of scheduling variables. Initial K genes are randomly gen-
erated.

First of each itaration, expected energy consumption of
all genes are evaluated. Top 10% of energy efficient genes
are simply copied into the next generation. The rest (90%)
is generated by crossing. The crossing randomly pick two
genes and mix them. We randomly mix them stage by stage.
If invalid gene is generated, we normalize or adjust it ran-
domly. Then, 1% of the genes are mutated. Finally, 1%
of the genes are mutated. Namely, we randomly pick one
parameter and modify it randomly within valid range.

Then repeat this procedure until the number of the
loops reaches to the number of maximum generations L. Af-
ter L generations, the best gene is the answer of the genetic
algorithm. Same as the other algorithms, the greedy search
is applied to the answer to guarantee the local optimum.

5. Evaluation

5.1 Evaluation Setup

In this section, we introduce software parameters, hardware
parameters and their implementation for the evaluation.

5.1.1 Target Applications

In this evaluation, we use a synthetic application which is
shown in Table 5 and 6. We also use an H.264 decoder with
three kinds of videos, animation (ani), High-motion (high)
and Low-motion (low). Their detailed parameters are bor-
rowed from [21] and are shown in Table 7 and 8. In these
videos, there are three type of frames, I, P and B. In each
frame type, we assume the execution time follows a nor-
mal distribution with a standard deviation of (max-min)/2
between min and max.

5.1.2 Hardware Environment

We use an evaluation board, which equipped with hetero-
geneous MCUs instead of a DVFS capable processor. To
realize equivalent environment with a DVFS processor, the
maximum number of active core is limited to one.

We measured energy parameters using the evaluation
board. The board is equipped with an RL78 [22] Micro Con-
troller Unit (MCU) and an RX63N [23] MCU, some sen-
sors, a communication unit and an external NVM. Sensors

NAKADA et al.: AN ENERGY-EFFICIENT TASK SCHEDULING FOR NEAR-REALTIME SYSTEMS WITH EXECUTION TIME VARIATION
2501

Table 5 Evaluation settings (Synthetic task)

Parameters Values

Number of paths M 2
Size ratio of paths R (=p(2)/p(1)) 0.1, 0.5, 0.9
Input interval I 100 ms
Deadline d 1000 ms
Execution Time of path 1 on Mode1 et(1, 1) 360ms

Table 6 Task probabilities (Synthetic task)

Pattern Probabilities Average task size (relative)
ID p(1) p(2) R=0.1 R=0.5 R=0.9

P0 0.0 1.0 1.0 5.0 9.0
P1 0.1 0.9 1.9 5.5 9.1
P2 0.2 0.8 2.8 6.0 9.2
: : : : : :

P9 0.9 0.1 9.1 9.5 9.9
P10 1.0 0.0 10.0 10.0 10.0

Table 7 Evaluation settings (Decode task)

Input interval I 50 ms
Deadline d 250 ms to 1000 ms

Table 8 Execution time (Decode task)

Type I:P:B Execution Time on Mode1 [ms]
I frame P frame B frame

min max min max min max

ani 1:2:27 127.5 198.9 15.3 198.9 20.4 178.5
high 1:1:4 76.5 127.5 25.5 127.5 20.4 76.5
low 1:4:10 76.5 102.0 35.7 66.3 25.5 40.8

Table 9 Evaluation settings (Hardware)

mode ID j 1 2 3 4
Relative Performance 1.0 2.0 3.0 4.0
Power Consumption
in Active Pd(j)+PS a(j)[W] 0.025 0.066 0.120 0.194
in Sleep PS s(j) [μW] 0.69 2.07 6.20 18.6

on the board can help us to measure the energy consump-
tion of each unit separately. In this evaluation, we collect
energy parameters of the MCUs, Mode1 and 4 are RL78
and RX63N respectively. Mode2 and 3 are generated by in-
terpolating between parameters retrieved from Mode1 and
4. The collected and assumed parameters are shown in Ta-
ble 9. The energy parameters, which are used in the object
function, are calculated from the power and execution time.
The performance ratio of these two MCUs is 4. To simplify
the evaluation, we also assume the execution times of other
tasks are in proportion to their task size. If this assumption
is not satisfied, all of the execution times (et(a, c)) and the
energy consumption (Ed(a, c)) must be given particularly.

5.1.3 Implementation

To implement the optimal scheduling on a real system, only
a small additional table is required. When a task is finished,
the slack time is calculated and compared with the thresh-
olds in the table. If the slack time exceeds the threshold,

Table 10 Evaluated patterns of uniform search (d=1000ms)

Δt [ms] # of Patterns

500 30
300 226
200 1176
150 8950
100 71807

50 5224186

1 > 1 × 1017∗

∗: expected

another mode should be selected. The computation cost of
this comparison is negligibly small.

To obtain the optimal scheduling at a reasonable cost,
we quantize every time-domain parameters with 0.1ms.

5.2 Solution Cost and Search Method

To evaluate the search algorithms, we need to estimate the
solution cost. The solution cost is defined by counting
the number of evaluations. We assume the total computa-
tion time is proportional to the evaluation count. Though,
the execution time of each evaluation varies depending on
the scheduling parameters and execution time of generating
scheduling parameters is negligibly small. Current imple-
mentation can evaluate roughly 500 patterns per second with
dual Xeon E5-2620 v2 (24 threads).

With the uniform search, as a preliminary study, the
relationship between Δt and the evaluation count is evalu-
ated and is shown in Table 10. In this evaluation, deadline
d is fixed to 1000ms. From this result, if we try brute force
searching, i.e. for every 1μs uniform search, the total num-
ber of evaluations is expected to be more than 1× 1017. Due
to this enormous search space, the brute force search is prac-
tically unacceptable. Therefore, efficient search methods are
strongly required.

The results are shown in Fig. 6 and 7. Note that the
x-axes represent the solution cost and are in log scale. Ran-
dom, Uniform and GA represent the random search, the uni-
form search and genetic algorithm respectively. These re-
sults are obtained before applying the greedy search.

From these results, the GA reached the minimum en-
ergy consumption after evaluate 2 million patterns. The Uni-
form also achieved comparable energy efficiency. A draw-
back of the Uniform is that it does not guarantee monotonic
decrease (see 200 and 5M with P1 and 5M with P9) in con-
trast to others that do. Since the search space is multidimen-
sional, if we half the granularity Δt, the number of patterns
becomes more than 50 times larger as shown in Table 10.
Thus if we want to search slightly larger number of patterns,
Δt should be slightly smaller. As a result, due to the resolu-
tion mismatching, the search point are shifted and the result
may be worse. The Random is about 6% worse than others
with P9.

According to these results, we decide to use the GA
with M = 10000 and L = 1000 is sufficient to get the opti-
mal solution and we use this for further evaluations.

2502
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Fig. 6 Solution cost and quality (Synthetic task, R=0.1, P1)

Fig. 7 Solution cost and quality (Synthetic task, R=0.1, P9)

5.3 Validation

To validate our estimation of the average energy consump-
tion based on statistical analysis, we compare the estimated
value with the measured value on the evaluation board. We
use the synthetic task and only use Mode1 and Mode4,
which are actually equipped on the board, and implement
the application with proposed slack-based scheduler. The
optimal scheduling, which are sought by GA, is set.

The average energy consumption is calculated from the
total energy consumption during 90 seconds and the number
of executed tasks. In this evaluation, d is fixed to 1000ms.
As a result, we confirmed that our estimation is very accu-
rate and even the largest error is less than 6%.

5.4 Energy Efficiency

To clarify the merit of our task scheduling algorithm, we
evaluate the average energy consumption.

For comparison, we also calculate the energy consump-
tion of fixed scheduling (Fixed), which always assume the
largest task and use the highest performance mode, and or-
acle frame-based scheduling (Oracle f-based), which as-
sumes perfect execution time prediction is possible. We also
calculate that of ideal scheduling (Ideal), which equals to the
minimum energy consumption to achieve required through-
put.

Figure 8 shows a comparison of the energy consump-
tion and the energy breakdown, when deadline period d
varies from 250ms to 1000ms for proposed and fixed to

Fig. 8 Energy breakdown

Table 11 Obtained schedulings

Variables ani high low
x0

up [ms] 249.3 248.4 190.2
x1

up [ms] 249.9 167.9 127.5
x2

up [ms] 160.7 95.9 76.5
x3

up [ms] 116.0 74.6 72.0
x0

down [ms] 249.9 249.9 249.9
x1

down [ms] 249.9 243.8 166.6
x2

down [ms] 211.9 117.5 108.4
x3

down [ms] 133.4 74.6 92.9
� 1 0 0

250ms for greedy. In Fig. 8, overhead is only calculated
for Proposed and greedy because other results are based
on abstracted energy models.

Table 11 shows obtained scheduling when deadline pe-
riod is 250ms. For heavy application, such as ani, every xi

up

and xi
down are set to large values to keep high performance

core active and minimize core switching overhead. For light
application, such as low, these variables are set to small val-
ues to keep energy efficient core active and minimize core
switching overhead.

In this evaluation, Fixed always assumes WCET and
executes all tasks on Mode4(ani) or Mode3(high and low).
Oracle f-based always executed on the desired frequency,
regardless of four modes, based on perfect execution time
prediction. In contrast, Proposed slack-based task schedul-
ing adaptively selects from all of MCUs. Additionally, Ideal
scheduling only uses adequate Modes. greedy [18] always
select as low performance as possible mode and uses all of
MCUs. However, this stratagy is too agressive and cannot
minimize utilize ratio of the high performance mode. Addi-
tionally, overhead is larger than our scheduling due to fre-
quent mode switching.

This result shows proposed scheduling can achieve up
to 9.8% lower power consumption than Oracle f-based,
which is a theoretical lower bound of frame-based schedul-
ings. The longer the deadline period, the smaller the energy
consumption. When the deadline period is 1000ms, the im-
provement of the energy efficiency is almost saturated and
only 3.6% larger energy consumption than that of the ideal
scheduling can be observed.

NAKADA et al.: AN ENERGY-EFFICIENT TASK SCHEDULING FOR NEAR-REALTIME SYSTEMS WITH EXECUTION TIME VARIATION
2503

6. Conclusion

Near real-time data processing, such as multimedia stream-
ing applications, has a deadline period that is longer than the
input interval and the tasks have dynamic behaviors such
as input-dependent variations. In this situation, energy ef-
ficient task scheduling is important, especially for meeting
the deadline strictly.

To cope with this challenge, we proposed a slack-based
task scheduling. This scheduling is carried out by com-
paring the slack time to several thresholds and the sched-
uler then throttles core performance when these thresholds
are overpassed. These thresholds are obtained from hard-
ware and task parameters at design time. To obtain optimal
thresholds, we formulate the scheduling with an FSM. Then,
the average energy consumption is derived from statistical
analysis. Finally, the optimal scheduling is sought by GA.

We confirmed that our approach can reduce the aver-
age energy consumption by up to 9.8% compared to ora-
cle frame-based execution, when the deadline period is 20
times longer than the input interval. We conclude that our
slack-based scheduling can drastically reduce the energy
consumption of embedded systems while strictly guarantee-
ing the deadline constraint.

Acknowledgments

This work is supported by Normally-Off Computing Project
of NEDO in Japan and JSPS KAKENHI Grant Number
JP16K12405.

References

[1] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
reduced cpu energy,” Proc. 1st USENIX Conference on Operating
Systems Design and Implementation, pp.13–23, 1994.

[2] W. Huang and Y. Wang, “An optimal speed control scheme sup-
ported by media servers for low-power multimedia applications,”
Multimedia Systems, vol.15, no.2, pp.113–124, 2009.

[3] T.D. Burd and R.W. Brodersen, “Energy efficient cmos microproces-
sor design,” Proc. 28th Hawaii International Conference on System
Sciences, pp.288–297, 1995.

[4] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
Very Lagre Scale Integr. (VLSI) Syst., vol.8, no.3, pp.299–316,
2000.

[5] M.E.T. Gerards and J. Kuper, “Optimal dpm and dvfs for
frame-based real-time systems,” ACM Trans. Archit. Code Optim.,
vol.9, no.4, pp.41:1–41:23, 2013.

[6] S. Albers and A. Antoniadis, “Race to idle: New algorithms for
speed scaling with a sleep state,” ACM Trans. Algorithms, vol.10,
no.2, pp.9:1–9:31, Feb. 2014.

[7] J.-J. Chen, H.-R. Hsu, K.-H. Chuang, C.-L. Yang, A.-C. Pang,
and T.-W. Kuo, “Multiprocessor energy-efficient scheduling with
task migration considerations,” 16th Euromicro Conference on Real-
Time Systems, pp.101–108, 2004.

[8] C. Xian, Y.-H. Lu, and Z. Li, “Energy-aware scheduling for real-time
multiprocessor systems with uncertain task execution time,” 44th
ACM/IEEE Design Automation Conference, pp.664–669, 2007.

[9] R. Xu, R. Melhem, and D. Mossé, “A unified practical approach

to stochastic dvs scheduling,” Proc. 7th ACM & IEEE International
Conference on Embedded Software, pp.37–46, 2007.

[10] T. Zitterell and C. Scholl, “A probabilistic and energy-efficient
scheduling approach for online application in real-time systems,”
Proc. 47th Design Automation Conference, pp.42–47, 2010.

[11] J. Cong and K. Gururaj, “Energy efficient multiprocessor task
scheduling under input-dependent variation,” Design, Automation
Test in Europe Conference Exhibition, pp.411–416, 2009.

[12] M. Qiu, C. Xue, Z. Shao, and E.H.-M. Sha, “Energy minimization
with soft real-time and dvs for uniprocessor and multiprocessor em-
bedded systems,” Proc. Conference on Design, Automation and Test
in Europe, pp.1641–1646, 2007.

[13] D. Shin and J. Kim, “Power-aware scheduling of conditional
task graphs in real-time multiprocessor systems,” Proc. 2003 In-
ternational Symposium on Low Power Electronics and Design,
pp.408–413, 2003.

[14] M. Lombardi, M. Milano, M. Ruggiero, and L. Benini, “Stochas-
tic allocation and scheduling for conditional task graphs in multi-
processor systems-on-chip,” Journal of Scheduling, vol.13, no.4,
pp.315–345, 2010.

[15] T. Nakada, H. Yanagihashi, H. Ueki, T. Tsuchiya, M. Hayashikoshi,
and H. Nakamura, “Energy-efficient continuous task scheduling for
near real-time periodic tasks,” The 8th IEEE International Confer-
ence on Internet of Things (iThings), pp.675–681, Dec. 2015.

[16] C. Xian, Y.-H. Lu, and Z. Li, “Dynamic voltage scaling for mul-
titasking real-time systems with uncertain execution time,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol.27, no.8,
pp.1467–1478, 2008.

[17] S. Durand, A.-M. Alt, D. Simon, and N. Marchand, “Energy-aware
feedback control for a h.264 video decoder,” Int. J. Syst. Sci., vol.46,
no.8, pp.1432–1446, 2015.

[18] C. Im, S. Ha, and H. Kim, “Dynamic voltage scheduling with buffers
in low-power multimedia applications,” ACM Trans. Embed. Com-
put. Syst., vol.3, no.4, pp.686–705, Nov. 2004.

[19] T. Nakada, T. Hatanaka, H. Ueki, M. Hayashikoshi, T. Shimizu, and
H. Nakamura, “An adaptive energy-efficient task scheduling under
execution time variation based on statistical analysis,” IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-
SoC), pp.1–7, Sept. 2016.

[20] T. Nakada, K. Okamoto, T. Komoda, S. Miwa, Y. Sato, H. Ueki, M.
Hayashikoshi, T. Shimizu, and H. Nakamura, “Design aid of multi-
core embedded systems with energy model,” IPSJ Online Transac-
tions, vol.7, no.3, pp.37–46, 2014.

[21] B. Lee, E. Nurvitadhi, R. Dixit, C. Yu, and M. Kim, “Dynamic volt-
age scaling techniques for power efficient video decoding,” J. Syst.
Architect., vol.51, no.10-11, pp.633–652, 2005.

[22] Renesas Electronics Corporation, “RL78 Family.” http://japan.
renesas.com/products/mpumcu/rl78/index.jsp.

[23] Renesas Electronics Corporation, “RX63N, RX631.” http://japan.
renesas.com/products/mpumcu/rx/rx600/rx63n 631/index.jsp.

Takashi Nakada received his M.E. and
Ph.D. degrees from Toyohashi University of
Technology in 2004 and 2007 respectively. He
has been an Associate Professor at the Nara In-
stitute of Science and Technology since 2016.
His research interests includes Normally- Off
Computing, processor architecture and related
simulation technologies. He is a member of
IEEE and ACM.

http://dx.doi.org/10.1007/s00530-009-0153-5
http://dx.doi.org/10.1109/hicss.1995.375385
http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1145/2400682.2400700
http://dx.doi.org/10.1145/2556953
http://dx.doi.org/10.1109/emrts.2004.1311011
http://dx.doi.org/10.1109/dac.2007.375248
http://dx.doi.org/10.1145/1289927.1289939
http://dx.doi.org/10.1145/1289927.1289939
http://dx.doi.org/10.1145/1837274.1837287
http://dx.doi.org/10.1109/date.2009.5090698
http://dx.doi.org/10.1109/date.2007.364537
http://dx.doi.org/10.1145/871506.871607
http://dx.doi.org/10.1007/s10951-010-0184-y
http://dx.doi.org/10.1109/dsdis.2015.71
http://dx.doi.org/10.1109/tcad.2008.925778
http://dx.doi.org/10.1080/00207721.2013.822607
https://doi.org/10.1145/1027794.1027796
http://dx.doi.org/10.1109/vlsi-soc.2016.7753565
http://dx.doi.org/10.2197/ipsjtrans.7.122
http://dx.doi.org/10.1016/j.sysarc.2005.01.002

2504
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.10 OCTOBER 2017

Tomoki Hatanaka received his B.E. and
M.E. degrees from the University of Tokyo in
2014 and 2016 respectively. His research inter-
ests are task scheduling and its analysis.

Hiroshi Ueki received the B.S. and M.S.
degrees in physics and nuclear technology from
Kyoto University. Since 1991, he has been
involved in microcontroller and SoC design,
in Mitsubishi Electric Corporation and Rene-
sas Electronics Corporation. He developed
CPU and peripheral circuits for HDD con-
troller, flash-memory control module for micro-
controller and power management module for
SD-card controller. He is now section manager
of power module design of System Integration

Business Division in Renesas Electronics Corporation.

Masanori Hayashikoshi received his B.S.
and M.S. degrees in electronic engineering from
Kobe University in 1984 and 1986 respectively.
In 1986, he joined the LSI Research and De-
velopment Laboratory, Mitsubishi Electric Cor-
poration. He is currently a Chief Professional
of Core Technology Business Division in Re-
nesas Electronics Corporation. Since 1986, he
has been engaged in the research and devel-
opment of EEPROM’s, high density DRAM’s,
Low power SDRAM’s, embedded MRAM’s for

MCUs, and Normally-Off computing architecture as the challenge for fur-
ther low-power solution with NVRAM.

Toru Shimizu received his Ph.D. degree
of Information Science from The University of
Tokyo in 1986. Since 1986, he has been in-
volved in microprocessor and micro-controller
R&D projects in Mitsubishi Electric and Rene-
sas Electronics. His R&D works include a RISC
microprocessor integrated with a large DRAM
and a single-chip symmetric multi-core micro-
processor with an on-chip shared memory. He
is a professor in Keio University from 2014. His
research interest covers not only LSI architec-

ture and its design but system and software design based on LSIs. He is an
IEEE Fellow.

Hiroshi Nakamura is a Professor in the De-
partment of Information Physics and Computing
at The University of Tokyo. He is also the di-
rector of Information Technology Center at The
University of Tokyo. He received the Ph.D. de-
gree in Electrical Engineering from The Univer-
sity of Tokyo in 1990. His research interests in-
clude power-efficient computer architecture and
VLSI design for high-performance and embed-
ded systems. He is a senior member of IEEE
and ACM.

