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PAPER

Multiple Chaos Embedded Gravitational Search Algorithm

Zhenyu SONG†, Nonmember, Shangce GAO†a), Member, Yang YU†, Jian SUN†,††,
and Yuki TODO†††, Nonmembers

SUMMARY This paper proposes a novel multiple chaos embedded
gravitational search algorithm (MCGSA) that simultaneously utilizes mul-
tiple different chaotic maps with a manner of local search. The embedded
chaotic local search can exploit a small region to refine solutions obtained
by the canonical gravitational search algorithm (GSA) due to its inherent
local exploitation ability. Meanwhile it also has a chance to explore a huge
search space by taking advantages of the ergodicity of chaos. To fully uti-
lize the dynamic properties of chaos, we propose three kinds of embed-
ding strategies. The multiple chaotic maps are randomly, parallelly, or
memory-selectively incorporated into GSA, respectively. To evaluate the
effectiveness and efficiency of the proposed MCGSA, we compare it with
GSA and twelve variants of chaotic GSA which use only a certain chaotic
map on a set of 48 benchmark optimization functions. Experimental results
show that MCGSA performs better than its competitors in terms of conver-
gence speed and solution accuracy. In addition, statistical analysis based on
Friedman test indicates that the parallelly embedding strategy is the most
effective for improving the performance of GSA.
key words: chaos, gravitational search algorithm, local search, optimiza-
tion, meta-heuristics

1. Introduction

Meta-heuristics have been successfully and widely used
for solving various optimization problems in the past
decades [1]. A considerable number of meta-heuristics
have been proposed based on metaphors of natural evolu-
tion, swarm mechanisms or man-made processes [2]. These
meta-heuristics include evolutionary computation [3], parti-
cle swarm optimizations [4], ant colony algorithms [5], arti-
ficial immune systems [6], etc. Among them, gravitational
search algorithm (GSA) which is inspired from the New-
ton’s law of gravity and motion [7] has demonstrated to be
a powerful optimization tool when applied to function opti-
mization problems and many real-world problems [7]–[10].

Like other nature-inspired meta-heuristic algorithms,
GSA is a population-based adaptive search technique. In
GSA, a population of candidate solutions are modeled as
a swarm of objects. At each iteration, the objects update
their position by moving stochastically towards regions pre-
viously visited by the other objects. The object with heav-
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ier mass has a larger effective attraction radius and hence
a greater intensity of attraction. By lapse of time, the ob-
jects tend to move towards the heaviest object. In compari-
son with other well-known optimization algorithms, such as
the particle swarm optimization, GSA has been confirmed
higher performance in searching ability [7]. However, GSA
still has some inherent disadvantages, such as it usually
sticks on local optimal solutions, which indicates that it is
unable to improve the solutions’ quality in the latter search
phases [11], [12].

Many attempts have been made to alleviate the inher-
ent local minima trapping problem and further improve the
search performance of GSA [12]. Li and Zhou [13] modified
the velocity updating rule by utilizing the memory and so-
cial information of agents, aiming to accelerate GSA’s con-
vergence speed. An opposition-based learning rule was pro-
posed for population initialization and generation jumping
in GSA [14]. A niching GSA was proposed by dividing
the main swarm of masses into several small sub-swarms
to maintain the diversity of population [15], thus improving
the performance of GSA for multimodel optimization prob-
lems.

Considerable effort has been devoted to incorporating
chaos into meta-heuristics in recent years. Chaos is a univer-
sal phenomenon of nonlinear dynamic systems and it is ap-
parently an irregular motion, seemingly unpredictable ran-
dom behavior exhibited by a deterministic nonlinear sys-
tem under deterministic conditions. Due to the ergod-
icity and dynamic properties of chaos, chaotic maps can
help meta-heuristic optimization algorithms to enhance the
diversity among individuals and avoid premature conver-
gence. In the literature, chaotic maps have been incorpo-
rated into evolutionary algorithms [16], particle swarm opti-
mization [17], biogeography-based optimisation [18], water
cycle algorithm [19], fruit fly optimization [20], Krill Herd
algorithm [21], bat algorithm [22], differential evolution al-
gorithm [23], harmony search algorithm [24], firefly algo-
rithm [25], ant swarm optimization [26], imperialist compet-
itive algorithm [27], and others.

In our previous work [28], we proposed two kinds of
chaos-based GSAs. One used chaotic sequences to substi-
tute random numbers for different parameters, and the other
used chaotic variables to perform a chaotic local search.
Both embedding strategies of chaos were found to be benefit
for improving GSA’s search ability, and the latter seemed to
be more efficient. The work [28] has been extended by con-
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sidering five different chaotic maps. Preliminary experimen-
tal results in [29] empirically showed that all introduced five
chaotic maps generally exhibited effectiveness of improving
the performance of GSA. Nevertheless, there is no specific
chaotic maps can enable GSA to achieve the best solution
for all optimization problems, suggesting that the perfor-
mance of chaotic GSAs are related not only to the search
capacity of the algorithm, but also to the landscape of the
solved problems.

In this paper, we investigate the capability of chaotic
local search using different chaotic maps and different in-
corporation strategies for improving the search performance
of GSA. The motivation of this study comes from the fol-
lowing aspects. First, the effectiveness of the incorporation
of chaos into GSA needs to be verified via extensive exper-
iments. Second, as a number of chaotic maps is available,
it is required to find out which one is the most appropri-
ate for GSA. Third, a well-established embedding strategy
which can fully utilize the search dynamics of chaos needs
to be designed. Based on these considerations, we propose
a multiple chaos embedded gravitational search algorithm
(MCGSA) in this paper.

In all prior chaotic meta-heuristics [16]–[29], only a
single certain chaotic map is embedded into the meta-
heuristic algorithm to perform the chaotic search. Few re-
search studies the integration of multiple chaotic systems
which simultaneously perform the search. The prior chaotic
GSA in [28] only utilized the well-known Logistic maps to
realize the chaotic search, and the extended one [29] com-
pared the performance difference during five chaotic maps.
Obviously, the search capacity of such single chaos em-
bedded GSA is limited. Multiple chaos can be expected
to provide more dynamic properties for alleviating the lo-
cal problem trapping problem of GSA. To realize these,
we first construct twelve variants of single chaos embedded
GSA using twelve different chaotic maps. Then, three novel
multiple chaos embedded GSAs (MCGSA) are proposed,
i.e., the twelve chaotic maps are (1) randomly, (2) paral-
lelly, and (3) memory-selectively incorporated into GSA.
The resultant chaotic GSAs are called CGSA-R, CGSA-
P, and CGSA-M, respectively. Extensive experiments are
conducted based on 48 widely used benchmark numerical
optimization functions. Experimental results and statistical
analysis verified that MCGSA can perform better than the
traditional GSA and those single chaos embedded GSAs.

The remainder of this paper is organized as follows.
Section 2 gives a brief description of the traditional GSA.
Section 3 summarizes the twelve chaotic maps used in this
study. In Sect. 4, we first introduce the single chaos em-
bedded GSA. Then three kinds of MCGSA are presented in
details. Section 5 provides experimental results. Section 6
concludes the paper.

2. Brief Description of Traditional GSA

GSA is a population based meta-heuristic algorithm inspired
by the law of gravity among objects. Each agent in the popu-

lation of GSA is considered as objects and its performance is
measured by its mass. The position of agent corresponds to
a solution of the optimization problem needed to be solved.
Moving the position of agent can result in an improvement
of the solution’s quality.

Formally, every agent Xi = (x1
i , . . . , x

d
i , . . . , x

D
i ), (i =

1, 2, . . . ,N) attracts each other by gravitational forces in a D-
dimensional search space, where xd

i represents the position
of i-th agent in the d-th dimension. The corresponding ve-
locity of agent Xi is expressed by Vi = (v1

i , . . . , v
d
i , . . . , v

D
i ).

The mass of each agent in iteration t, denoted by Mi(t), is
calculated via the map of its fitness as follows:

Mi(t) =
fit(Xi(t)) − worst(t)
best(t) − worst(t)

(1)

where fit(Xi(t)) represents the fitness of agent Xi by calcu-
lating the objective function. For a minimization problem,
best(t) and worst(t) are defined as

best(t) = min
j=1,2,...,N

fit(Xj(t)) (2)

worst(t) = max
j=1,2,...,N

fit(Xj(t)) (3)

The force acting on the i-th agent from the j-th agent is de-
fined as:

Fd
i j(t) = G(t)

Mi(t) × Mj(t)

Ri j(t) + ε
(xd

j (t) − xd
i (t)) (4)

where Ri j(t) = ||xi(t), x j(t)||2 is the Euclidean distance be-
tween two agents, and ε is a small constant, preventing the
denominator in Eq. (4) from being zero. In addition, G(t) is
the gravitational constant at time t, defined by

G(t) = G0 exp

(
−α t

tmax

)
(5)

where G0 is the initial value, α is a shrinking constant, tmax

is the maximum number of iterations. For the i-th agent, the
overall force that acts on it is a randomly weighted sum of
the forces exerted from the surrounding agents.

Fd
i (t) =

∑
j∈Kbest, j�i

rand jF
d
i j(t) (6)

where Kbest is the set of first K agents with the best fit-
ness and biggest mass, rand j is a random number uniformly
generated in the interval [0, 1]. Furthermore,

K =

⌊(
β +

(
1 − t

tmax

)
(1 − β)

)
N

⌋
(7)

It is clear that K is initially set to N and is decreased linearly,
which is controlled by a constant β. The operation �·� is the
floor function. Based on the law of motion, the acceleration
of the i-th agent is calculated by:

ad
i (t) =

Fd
i (t)

Mi(t)
(8)
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Then, the next velocity of an agent is considered as a frac-
tion of its current velocity added to its acceleration. There-
fore, its position and its velocity could be updated as fol-
lows:

vd
i (t + 1) = randiv

d
i (t) + ad

i (t) (9)

xd
i (t + 1) = xd

i (t) + vd
i (t + 1) (10)

where randi is a random variable in [0, 1]. It should be noted
that both randi and rand j are uniformly generated random
numbers, and they generally differ from each other. In fact
they are an attempt of giving randomized characteristics to
the search.

3. Chaotic Maps

One dimensional non-invertible maps are the simplest sys-
tems with the capability of generating chaotic motion.
In this study, twelve well-known one-dimensional chaotic
maps widely used in related researches [16]–[27] are con-
sidered.

(1) Logistic map: this classic logistic map appears
in nonlinear dynamics of biological population evidencing
chaotic behavior, and can be written as in the following.

zk+1 = μzk(1 − zk) (11)

where zk is the kth chaotic number. Obviously, zk ∈ (0, 1)
under the conditions that the initial z0 ∈ (0, 1) and that z0 �
{0.0, 0.025, 0.5, 0.75, 1.0}. In our experiment, we set μ = 4
and the initial number z0 = 0.152.

(2) Piecewise linear chaotic map (PWLCM): it has
been known as ergodic and has uniform invariant density
function on their definition intervals. The simplest PWLCM
is governed by the following equation.

zk+1 =

{
zk/p, zk ∈ (0, p)

(1 − zk)(1 − p), zk ∈ [p, 1)
(12)

In the experiment, p is set to be 0.7 and z0 = 0.002.
(3) Singer map: it is a one-dimensional system as given

in the following.

zk+1 = μ(7.86zk−23.31z2
k+28.75z3

k−13.302875z4
k) (13)

Singer map exhibits chaotic behaviors when the parameter
μ is set as a value between 0.9 and 1.08. In this study, we
set μ = 1.073 and z0 = 0.152.

(4) Sine map: it belongs to a unimodal map which is
similar to the Logistic map, can it is written as the following
equation.

zk+1 =
a
4

sin(πzk) (14)

where the parameter a ∈ (0, 4], and thus z ∈ (0, 1). We set
a = 4 and z0 = 0.152 in the experiment.

(5) Sinusoidal map: this iterator can be defined as

zk+1 = az2
k sin(πzk) (15)

where a = 2.3 and we set the initial number of this chaotic
system as z0 = 0.74.

(6) Tent map: this map is similar to the well-known Lo-
gistic map, and displays some specific chaotic effects. These
two maps can be converted to each other, and there is a rela-
tionship of topological conjugacy between them. Tent map
can be defined by the following equation.

zk+1 =

{
zk/β, 0 < zk ≤ β

(1 − zk)/(1 − β), β < zk ≤ 1
(16)

We set β = 0.4 and z0 = 0.152.
(7) Bernoulli shift map: this map belongs to the class

of piecewise linear maps similar to the Tent map. It is for-
mulated as follows

zk+1 =

{
zk/(1 − λ), 0 < zk ≤ 1 − λ

(zk − 1 + λ)/λ, 1 − λ < zk < 1
(17)

We set λ = 0.4 and z0 = 0.152.
(8) Chebyshev map: it is a common chaotic map, and

has wide application in the neural network, digital commu-
nication and security. Its equation is expressed as

zk+1 = cos(φ cos−1 zk) (18)

where the parameter φ is set to be 5 and the initial chaotic
number z0 = 0.152.

(9) Circle map: this map is a simplified model for both
driven mechanical rotors and the phase locked loop in elec-
tronics. It is a one-dimensional map which maps a circle
onto itself. It is represented by the following equation.

zk+1 = zk + a − b
2π

sin(2πzk) mod (1) (19)

For a = 0.5 and b = 2.2, it can generate chaotic sequence in
(0, 1). Also, we set z0 = 0.152 in the experiment.

(10) Cubic map: it is one of the most commonly used
maps in generating chaotic sequence in various applications
like cryptography. It can be formally defined by

zk+1 = ρzk(1 − z2
k) (20)

We set ρ = 2.59 and z0 = 0.242.
(11) Gaussian map: it is represented using the follow-

ing equation

zk+1 =

{
0, zk = 0

(μ/zk) mod (1) zk � 0
(21)

We set μ = 1 and z0 = 0.152.
(12) Iterative chaotic map with infinite collapses

(ICMIC): this map has infinite fixed points, and can be de-
fined using

zk+1 = sin(a/zk) (22)

where a ∈ (0,+∞) is an adjustable parameter, and we set
a = 70 in our experiment. It is clear that ICMIC generates
chaotic sequence z ∈ [−1, 0) ∪ (0, 1].
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Algorithm 1:
01: for all agent i (i = 1, 2, . . . ,N) do
02: initialize position Xi randomly in search space [L,U]
03: end-for
04: while termination criteria not satisfied do
05: for all agent i do
06: compute overall force Fd

i (t) according to Eqs. (1)–(7)
07: compute acceleration ad

i (t) according to Eq. (8)
08: update velocity according to Eq. (9)
09: update position according to Eq. (10)
10: end-for
11: find out the global best agent Xg

12: implement the chaotic local search approach
13: decrease the chaotic search radius
14: end-while

4. Chaotic Gravitational Search Algorithm (CGSA)

Chaos is a kind of a characteristic of nonlinear dynamic
system which exhibits bounded dynamic unstable, pseudo
random, ergodic, non-period behavior depended on initial
value and control parameters [30]. Due to its ergodicity and
randomicity, a chaotic system changes randomly, but even-
tually goes through every state if the time duration is long
enough. This characteristic of chaotic systems can be uti-
lized to build up a search operator for optimizing objective
functions. Nevertheless, chaos optimization works well in a
small search space but generates unacceptable optimization
time in a large search space [31]. Therefore, chaotic search
is often incorporated into other global optimizers such as
evolutionary algorithms to enhance their search ability [16]–
[27].

Compared with the methodology which uses chaotic
sequences to substitute random values of the controlling
parameters in GSA, chaotic local search has been demon-
strated to be more effective for improving the performance
of GSA [28]. As a matter of fact, chaotic local search is
often adopted in related researches [17]–[27]. Thus, we em-
ploy the chaotic local search in this study.

The framework of CGSA is illustrated in Algorithm 1
and each variant of CGSA differs from each other by speci-
fying the chaotic local search procedure.

4.1 Single Chaos Embedded CGSA

The chaotic local search that utilizes only a single chaotic
map is defined as follows.

Xg′ (t) = Xg(t) + r(t)(U − L)(z(t) − 0.5) (23)

where Xg(t) denotes the position of the current global best
agent in the population at the t-th iteration number. Xg′ (t)
is indicated as the new agent generated by the chaotic local
search. U and L are the upper bound and lower bound of the
search space, respectively. z(t) is a chaotic variable gener-
ated from one of the considered chaotic maps. r(t) ∈ (0, 1)
is a chaotic search radius which is used to control the ex-
ploitation range of the search. It is worth pointing out that

Eq. (23) actually denotes a batch local search manner. In a
generation, the same chaotic variable z(t) is used to update
all components of the vector Xg (i.e., for all D dimensions).

Without the loss of generality, we suppose the opti-
mization problem is a minimization one. After the local
search is performed, an agent updating procedure is carried
out according to the following equations.

Xg(t + 1) =

{
Xg′ (t) If fit(Xg′ (t)) ≤ fit(Xg(t))
Xg(t) Otherwise

(24)

Xi(t + 1) = Xi(t) For i = 1, 2, . . . ,N And i � g (25)

The newly generated solution Xg′ will replace the current
global best agent if the fitness is improved, while the others
survive to enter into the next iteration.

Regarding the single chaos embedded CGSA, some re-
marks are given in the following.

1. The local search is performed on the global best agent,
not only aiming to improve the search performance of
GSA, but also being able to save computational time
when compared to the scheme that applies the local
search to all agents;

2. Once the acquired values of Xg′ in Eq. (23) locate out
of the search bound, these values will be reset to the
closest boundary value; and

3. Considering the fact that chaotic search is efficient in
small range, a shrinking scheme is used to narrow the
search neighborhood by lapse of iteration using r(t +
1) = 0.988 × r(t).

The variants of single chaos embedded CGSA us-
ing the chaotic map in Eqs. (11)–(22) are called CGSA-1–
CGSA-12, respectively.

4.2 Multiple Chaos Embedded CGSA

Different chaotic maps exhibit different and distinct dy-
namic properties [32], [33]. Multiple chaos are supposed
to provide more opportunities for a meta-heuristic to help
it jump out of the local minima via the ergodicity and ran-
domicity of chaos. The method of incorporating multiple
chaos into meta-heuristics remains challenging and fasci-
nating. In the prior researches no sophisticated scheme
has been proposed. Thus, we innovatively propose three
novel multiple chaos embedding schemes in this paper. The
twelve chaotic maps in Eqs. (11)–(22) are (1) randomly,
(2) parallelly, and (3) memory-selectively incorporated into
GSA, respectively.

4.2.1 CGSA-R

The chaotic local search that randomly makes use of multi-
ple chaos is defined in the following.

Xg′ (t) = Xg(t) + r(t)(U − L)(z j(t) − 0.5) (26)

where z j(t) is a chaotic variable generated from the j-th
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chaotic map, and j is an uniformly distributed number gen-
erated from the set {1, 2, . . . , 12}. In each iteration, only a
single selected chaotic map is used. All twelve chaotic maps
are used during the whole iterations and each one is imple-
mented for approximately tmax/12 times. Thereafter, the up-
dating procedure shown in Eqs. (24) and (25) is performed.

4.2.2 CGSA-P

The chaotic local search that parallelly uses multiple chaos
can be defined as follows.

X j
g′ (t) = Xg(t) + r(t)(U − L)(z j(t) − 0.5) (27)

where X j
g′ , j = 1, 2, . . . , 12 presents a candidate solution

temporarily generated by the chaotic local search and it in-
dicates that twelve candidate solutions are simultaneously
generated using twelve different chaotic maps. Thereafter,
the best one among the twelve candidate solutions is taken
to compare with the current global best solution Xg(t). If the
fitness can be improved, then replace the original one; oth-
erwise remain the same. The updating rule can be formally
expressed as:

Xg(t + 1) =

{
X jmin

g′ (t) If fit(X jmin

g′ (t)) ≤ fit(Xg(t))
Xg(t) Otherwise

(28)

jmin = j ∈ {1, 2, . . . , 12} s.t. min
j=1,2,...,12

fit(X j
g′ (t)) (29)

4.2.3 CGSA-M

The basic idea of CGSA-M is derived from the adaptive trail
vector generation strategy for differential evolution [34].
Similarly, we use this memory-based strategy for adap-
tively selecting different chaotic maps, and hereby named
memory-selectively incorporation scheme. The implemen-
tation of the memory-selectively incorporation scheme can
be described in the following.

In CGSA-M, with respect to each current global best
agent Xg, one chaotic map is selected from twelve chaotic
maps according to the probability learned from the success
rate and failure rate in generating improved solutions within
a certain number (i.e. LP) of previous iterations. The se-
lected strategy is applied to the current global best agent Xg,
to generate a new agent X′g for comparing the fitness after
utilizing the j-th chaotic map with X′g to decide whether Xg

would be replaced by X′g, as shown in Eq. (23).
Initially, the probability of selecting each chaotic map

is set to be 1/12, suggesting that all chaotic maps have the
equal probability to be selected. With the lapse of iteration,
the selection probabilities are updated according to the fol-
lowing rules.

p j,t =
S j,t∑12
j=1 S j,t

(30)

S j,t =

∑t−1
g=t−LP ns j,g∑t−1

g=t−LP ns j,g +
∑t−1

g=t−LP n f j,g

+ φ,

( j = 1, 2, . . . , 12; t > LP)

(31)

where p j,t denotes the probability of selecting the j-th
chaotic map at the t-th iteration. ns j,t indicates the number
of new individuals generated by the j-th chaotic map and
successfully entering the next iteration within the previous
LP iterations with respect to generation t, and n f j,t denotes
the number of these new individuals which failed to enter
into the next iteration. S j,t represents the success rate, and
φ = 0.01 is set to avoid the null success rate. It is apparent
that the larger the success rate for the j-th chaotic map, the
higher the probability of applying it to generate new indi-
vidual at the current iteration.

5. Experimental Results

To evaluate the performance of the proposed multiple chaos
embedded gravitational search algorithms, i.e., CGSA-R,
CGSA-P, CGSA-M, we make a comparison with the orig-
inal gravitational search algorithm [7] and twelve single
chaos embedded gravitational search algorithms using dif-
ferent chaotic maps (i.e., CGSA-1–CGSA-12). The experi-
ment is conducted using Matlab on a personal PC.

In order to make a statistical analysis, all compared al-
gorithms are implemented 30 times based on a total number
of 48 benchmark functions. These benchmark functions are
taken from [35], [36]. F1–F23 are the most commonly used
benchmark numerical functions [35], where F1 and F5 are
unimodal functions; F6 is a step function which has only one
minimum and is discontinuous; F7 is a noisy quartic func-
tion; F8–F13 are multimodal functions with plenty of local
minima and the number of the local minima in these func-
tions increase exponentially with the dimension of the func-
tion; F14–F23 are low dimensional functions which only
have a few local minima. These functions can successfully
test the searching capacity of algorithms in terms of conver-
gence speed and global exploration ability. In other words,
unimodal functions are able to reflect the convergence speed
of the algorithm in a direct manner, and multimodal ones are
likely to estimate the algorithms’ ability of escaping from
local minima. Nevertheless, these traditional 23 benchmark
functions suffer from two problems: (1) global minima lie

at the center of the search range (usually at
−→
0 D), which

might be easily utilized as a prior knowledge; (2) local min-
ima lie along the coordinate axes or no linkage among the
variables exists [34]. Shifted or rotated functions proposed
in CEC ’05 [36] can solve these problems in traditional 23
benchmarks functions. F24–F48 are CEC ’05 functions,
where F24–F28 are shifted unimodal functions; F29–F37
are shifted multimodal functions; F38–F48 are rotated hy-
brid composition functions. Figure 1 illustrates the charac-
teristics of the unimodal function F5 and the shifted rotated
Griewank’s function F30 respectively, in terms of the two-
dimensional sketch and the contour.

The user-defined parameters in GSA and CGSAs are
set as follows. The population size N is 50. The maxi-
mum iteration number tmax is 1000. ε in Eq. (4) is set to
be 1.0E−100 to make sure that it exerts little influence on
the gravitational force. The shrinking constant α in Eq. (5)
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Table 1 Experimental results of benchmark functions (F1–F6) using traditional GSA, CGSA with 12
different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F1 F2 F3 F4 F5 F6
GSA 2.04E−17 ± 6.21E−18 2.31E−08 ± 3.49E−09 2.46E+02 ± 9.31E+01 3.23E−09 ± 7.46E−10 2.61E+01 ± 2.63E−01 0.00E+00 ± 0.00E+00
CGSA-1 1.16E−17 ± 3.11E−18 1.60E−08 ± 1.87E−09 2.25E+02 ± 9.03E+01 2.73E−09 ± 6.76E−10 2.82E+01 ± 1.12E+01 0.00E+00 ± 0.00E+00
CGSA-2 9.99E−18 ± 2.93E−18 1.59E−08 ± 2.35E−09 2.07E+02 ± 8.51E+01 3.07E−09 ± 6.73E−10 2.81E+01 ± 1.16E+01 0.00E+00 ± 0.00E+00
CGSA-3 1.08E−17 ± 2.86E−18 1.64E−08 ± 2.18E−09 2.24E+02 ± 7.96E+01 3.05E−09 ± 5.90E−10 3.29E+01 ± 2.58E+01 0.00E+00 ± 0.00E+00
CGSA-4 1.09E−17 ± 2.77E−18 1.67E−08 ± 2.73E−09 2.19E+02 ± 7.41E+01 1.04E−02 ± 5.72E−02 2.83E+01 ± 1.23E+01 0.00E+00 ± 0.00E+00
CGSA-5 1.21E−17 ± 3.11E−18 1.58E−08 ± 2.26E−09 1.97E+02 ± 6.53E+01 5.98E−04 ± 3.27E−03 2.93E+01 ± 1.39E+01 0.00E+00 ± 0.00E+00
CGSA-6 1.10E−17 ± 3.38E−18 1.65E−08 ± 2.25E−09 2.16E+02 ± 8.26E+01 3.63E−03 ± 1.99E−02 2.87E+01 ± 1.42E+01 0.00E+00 ± 0.00E+00
CGSA-7 1.07E−17 ± 2.78E−18 1.54E−08 ± 1.82E−09 2.16E+02 ± 8.32E+01 2.85E−09 ± 4.93E−10 2.60E+01 ± 2.00E−01 0.00E+00 ± 0.00E+00
CGSA-8 1.12E−17 ± 3.21E−18 1.63E−08 ± 3.16E−09 1.92E+02 ± 7.68E+01 4.57E−03 ± 2.50E−02 2.85E+01 ± 1.30E+01 0.00E+00 ± 0.00E+00
CGSA-9 1.12E−17 ± 2.88E−18 1.60E−08 ± 2.23E−09 2.19E+02 ± 9.91E+01 5.68E−03 ± 3.11E−02 2.95E+01 ± 1.93E+01 0.00E+00 ± 0.00E+00
CGSA-10 9.98E−18 ± 3.00E−18 1.62E−08 ± 2.03E−09 2.33E+02 ± 9.46E+01 4.10E−03 ± 2.24E−02 3.06E+01 ± 1.54E+01 0.00E+00 ± 0.00E+00
CGSA-11 1.26E−17 ± 5.33E−18 1.66E−08 ± 2.74E−09 2.48E+02 ± 1.05E+02 2.80E−09 ± 5.74E−10 2.61E+01 ± 2.86E−01 0.00E+00 ± 0.00E+00
CGSA-12 1.11E−17 ± 3.24E−18 1.59E−08 ± 2.78E−09 2.12E+02 ± 8.33E+01 3.11E−02 ± 1.70E−01 3.71E+01 ± 5.06E+01 0.00E+00 ± 0.00E+00
CGSA-R 1.17E−17 ± 4.12E−18 1.66E−08 ± 2.50E−09 2.11E+02 ± 8.92E+01 2.85E−09 ± 5.10E−10 8.64E+00 ± 1.18E+01 0.00E+00 ± 0.00E+00
CGSA-P 9.10E−18 ± 2.87E−18 1.66E−08 ± 2.50E−09 2.11E+02 ± 7.30E+01 2.91E−09 ± 7.14E−10 7.02E+00 ± 1.75E+01 0.00E+00 ± 0.00E+00
CGSA-M 1.19E−17 ± 3.82E−18 1.58E−08 ± 2.48E−09 2.32E+02 ± 7.41E+01 2.85E−09 ± 5.00E−10 1.46E+01 ± 3.55E+01 0.00E+00 ± 0.00E+00

Table 2 Experimental results of benchmark functions (F7–F12) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F7 F8 F9 F10 F11 F12
GSA 1.97E−02 ± 1.23E−02 −2.66E+03 ± 4.17E+02 1.53E+01 ± 4.67E+00 3.60E−09 ± 4.55E−10 4.15E+00 ± 2.29E+00 3.76E−02 ± 1.32E−01
CGSA-1 1.16E−02 ± 4.62E−03 −2.89E+03 ± 4.95E+02 1.98E+01 ± 4.45E+00 2.68E−09 ± 4.81E−10 4.28E+00 ± 1.75E+00 4.33E−02 ± 9.29E−02
CGSA-2 1.11E−02 ± 5.43E−03 −2.81E+03 ± 4.97E+02 1.89E+01 ± 4.21E+00 2.63E−09 ± 4.26E−10 3.70E+00 ± 1.25E+00 3.44E−02 ± 9.33E−02
CGSA-3 1.12E−02 ± 6.63E−03 −2.98E+03 ± 4.87E+02 2.12E+01 ± 6.12E+00 2.69E−09 ± 3.44E−10 3.61E+00 ± 1.38E+00 1.07E−01 ± 3.79E−01
CGSA-4 1.34E−02 ± 4.72E−03 −2.96E+03 ± 5.55E+02 2.22E+01 ± 5.43E+00 2.74E−09 ± 3.00E−10 4.14E+00 ± 1.71E+00 3.91E−02 ± 7.32E−02
CGSA-5 1.18E−02 ± 6.83E−03 −2.82E+03 ± 5.33E+02 1.99E+01 ± 5.10E+00 2.65E−09 ± 3.60E−10 3.82E+00 ± 1.26E+00 3.45E−02 ± 6.76E−02
CGSA-6 1.26E−02 ± 4.55E−03 −2.90E+03 ± 4.23E+02 2.05E+01 ± 4.86E+00 2.67E−09 ± 3.44E−10 4.32E+00 ± 1.25E+00 1.62E−02 ± 4.61E−02
CGSA-7 1.21E−02 ± 6.41E−03 −3.01E+03 ± 3.85E+02 2.19E+01 ± 5.51E+00 2.67E−09 ± 4.13E−10 3.77E+00 ± 1.57E+00 6.28E−02 ± 2.14E−01
CGSA-8 1.10E−02 ± 5.58E−03 −2.68E+03 ± 3.60E+02 2.26E+01 ± 5.34E+00 2.65E−09 ± 3.76E−10 4.03E+00 ± 1.25E+00 4.30E−02 ± 9.36E−02
CGSA-9 1.07E−02 ± 4.40E−03 −2.74E+03 ± 4.43E+02 2.17E+01 ± 7.08E+00 2.75E−09 ± 4.76E−10 3.95E+00 ± 1.17E+00 4.15E−02 ± 9.66E−02
CGSA-10 1.08E−02 ± 4.58E−03 −2.94E+03 ± 4.91E+02 2.06E+01 ± 5.40E+00 2.65E−09 ± 3.47E−10 3.98E+00 ± 1.42E+00 3.99E−02 ± 9.56E−02
CGSA-11 1.20E−02 ± 5.24E−03 −2.89E+03 ± 4.98E+02 2.14E+01 ± 6.89E+00 2.60E−09 ± 3.36E−10 4.41E+00 ± 1.80E+00 5.09E−02 ± 1.15E−01
CGSA-12 1.10E−02 ± 4.52E−03 −2.72E+03 ± 4.58E+02 2.18E+01 ± 6.90E+00 2.88E−09 ± 4.76E−10 4.27E+10 ± 1.81E+00 1.73E−02 ± 3.93E−02
CGSA-R 1.13E−02 ± 4.65E−03 −3.06E+03 ± 6.34E+02 1.46E+01 ± 3.91E+00 2.68E−09 ± 3.14E−10 3.70E+00 ± 1.61E+00 4.09E−02 ± 8.16E−02
CGSA-P 1.18E−02 ± 3.80E−03 −3.07E+03 ± 5.83E+02 1.53E+01 ± 3.54E+00 2.63E−09 ± 3.90E−10 4.15E+00 ± 1.50E+00 1.08E−02 ± 3.29E−02
CGSA-M 1.10E−02 ± 4.31E−03 −3.38E+03 ± 6.92E+02 2.17E+01 ± 6.00E+00 2.56E−09 ± 3.64E−10 3.72E+00 ± 1.40E+00 3.85E−02 ± 1.20E−01

Fig. 1 The 2-dimensional sketch (a) and the contour (b) for the unimodal
function F5 and the shifted rotated Griewank’s function F30, respectively.

controls the decrease speed of G(t) and is set to be 0.02tmax.
The initial value of the gravitational parameter G0 = 100.
The attraction scope parameter β in Eq. (7) is set to be 2%.
As suggested in [34], we adopt LP = 50 for CGSA-M.

Tables 1–8 summarize the experimental results of
GSA, CGSA with 12 different chaos, CGSA-R, CGSA-
P and CGSA-M for 48 tested benchmark functions. The
recorded results are shown in the form of Ave.±Dev., where

Ave. denotes the average of the optimization error (final
best-so-far solution) of 30 independent runs for each algo-
rithm, and Dev. represents its standard deviation. The best
result among the compared 16 algorithms is shown in bold.
From Tables 1–8, we can find that

1. The best results are always obtained by one of the vari-
ants of chaotic GSA rather than GSA, which suggests
that the chaotic local search definitely improves the
search performance of GSA.

2. The proposed MCGSA (including CGSA-R, CGSA-P
and CGSA-M) can acquire the best solutions for 31 out
of 48 benchmark functions.

3. On the other hand, all twelve variants of single chaos
embedded GSA can perform the best for only 18
benchmark functions.

4. Thus, it can be stated that the multiple chaos incorpo-
ration scheme is generally better than the single one for
improving the performance of GSA.

To give some insights into the search performance of
compared algorithms, Figs. 2 and 3 depict the convergence
graphs and distributions of the final solutions for functions
F5 and F30 respectively. Two kinds of convergence graphs
are utilized: one is the average best-so-far solutions versus
the iteration number, and the other is the ratio of the best-
so-far solution versus the iteration number. In Figs. 2 (a) and
3 (a), the horizontal axis in a linear scale indicates the gen-
eration (i.e., iteration number) of the algorithm, while the
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Table 3 Experimental results of benchmark functions (F13–F18) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F13 F14 F15 F16 F17 F18
GSA 7.32E−04 ± 2.79E−03 3.61E+00 ± 2.86E+00 1.94E−03 ± 3.48E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.13E−16 3.00E+00 ± 5.08E−15
CGSA-1 1.23E−03 ± 3.81E−03 1.20E+00 ± 5.46E−01 1.45E−03 ± 9.07E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.13E−16 3.00E+00 ± 4.29E−15
CGSA-2 7.32E−04 ± 2.79E−03 1.31E+00 ± 6.55E−01 1.22E−03 ± 5.66E−04 −1.03E+00 ± 5.45E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 2.33E−15
CGSA-3 1.37E−03 ± 4.50E−03 1.84E+00 ± 1.38E+00 1.19E−03 ± 5.53E−04 −1.03E+00 ± 5.68E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 2.09E−15
CGSA-4 1.09E−03 ± 3.36E−03 1.43E+00 ± 7.65E−01 1.21E−03 ± 6.07E−04 −1.03E+00 ± 6.05E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 2.39E−15
CGSA-5 1.12E−18 ± 2.98E−19 1.30E+00 ± 6.71E+00 1.51E−03 ± 8.29E−04 −1.03E+00 ± 5.53E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 2.23E−15
CGSA-6 1.12E−18 ± 3.59E−19 1.43E+00 ± 8.90E−01 1.26E−03 ± 6.88E−04 −1.03E+00 ± 6.12E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 2.17E−15
CGSA-7 1.97E−03 ± 4.53E−03 1.37E+00 ± 6.17E−01 1.24E−03 ± 6.20E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.13E−16 3.00E+00 ± 4.42E−15
CGSA-8 1.37E−03 ± 3.59E−03 1.61E+00 ± 1.17E+00 1.15E−03 ± 6.32E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.13E−16 3.00E+00 ± 4.81E−15
CGSA-9 1.61E−03 ± 4.29E−03 1.51E+00 ± 9.80E−01 1.22E−03 ± 4.47E−04 −1.03E+00 ± 5.83E−16 3.98E−01 ± 2.93E−04 3.00E+00 ± 2.22E−15
CGSA-10 9.56E−04 ± 4.10E−03 1.80E+00 ± 9.53E−01 1.36E−03 ± 6.59E−04 −1.03E+00 ± 5.90E−16 3.98E−01 ± 4.66E−06 3.00E+00 ± 1.47E−15
CGSA-11 3.66E−04 ± 2.01E−03 1.45E+00 ± 7.64E−01 1.29E−03 ± 9.15E−04 −1.03E+00 ± 5.68E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 2.26E−15
CGSA-12 2.60E−04 ± 1.42E−03 1.39E+00 ± 6.67E−01 1.02E−03 ± 4.64E−04 −1.03E+00 ± 5.68E−16 3.98E−01 ± 9.43E−05 3.00E+00 ± 2.02E−15
CGSA-R 3.10E−04 ± 1.70E−03 1.59E+00 ± 1.23E+00 1.30E−03 ± 6.95E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.13E−16 3.00E+00 ± 4.93E−15
CGSA-P 1.01E−03 ± 3.12E−03 1.20E+00 ± 4.80E−01 1.25E−03 ± 5.48E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.13E−16 3.00E+00 ± 5.50E−15
CGSA-M 3.66E−04 ± 2.01E−03 1.37E+00 ± 1.14E+00 1.02E−03 ± 3.63E−04 −1.03E+00 ± 0.00E+00 3.98E−01 ± 1.73E−05 3.00E+00 ± 4.97E−15

Table 4 Experimental results of benchmark functions (F19–F24) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F19 F20 F21 F22 F23 F24
GSA −3.86E+00 ± 2.71E−15 −3.32E+00 ± 1.36E−15 −7.35E+00 ± 3.44E+00 −1.04E+01 ± 0.00E+00 −1.05E+01 ± 9.03E−15 1.28E+03 ± 5.03E+02
CGSA-1 −3.86E+00 ± 2.71E−15 −3.28E+00 ± 5.70E−02 −7.39E+00 ± 3.11E+00 −9.97E+00 ± 1.67E+00 −1.02E+01 ± 1.37E+00 1.27E+03 ± 6.94E+02
CGSA-2 −3.86E+00 ± 2.48E−15 −3.29E+00 ± 5.54E−02 −7.31E+00 ± 3.20E+00 −9.27E+00 ± 2.34E+00 −1.00E+01 ± 1.64E+00 1.57E+03 ± 8.15E+02
CGSA-3 −3.86E+00 ± 2.54E−15 −3.30E+00 ± 4.51E−02 −7.89E+00 ± 3.12E+00 −9.52E+00 ± 2.01E+00 −9.92E+00 ± 1.90E+00 1.14E+03 ± 7.77E+02
CGSA-4 −3.86E+00 ± 2.45E−15 −3.29E+00 ± 5.54E−02 −8.65E+00 ± 2.84E+00 −9.62E+00 ± 2.06E+00 −1.05E+01 ± 1.78E−15 1.49E+03 ± 9.77E+02
CGSA-5 −3.86E+00 ± 2.36E−15 −3.28E+00 ± 5.83E−02 −7.72E+00 ± 3.12E+00 −9.19E+00 ± 2.52E+00 −9.74E+00 ± 2.10E+00 1.15E+03 ± 5.86E+02
CGSA-6 −3.86E+00 ± 2.37E−15 −3.30E+00 ± 4.84E−02 −7.13E+00 ± 3.19E+00 −9.52E+00 ± 2.01E+00 −1.01E+00 ± 1.68E+00 1.25E+03 ± 7.38E+02
CGSA-7 −3.86E+00 ± 2.71E−15 −3.31E+00 ± 4.11E−02 −8.15E+00 ± 3.18E+00 −9.27E+00 ± 2.34E+00 −9.67E+00 ± 2.30E+00 1.44E+03 ± 7.28E+02
CGSA-8 −3.86E+00 ± 2.71E−15 −3.28E+00 ± 5.70E−02 −6.98E+00 ± 3.53E+00 −9.44E+00 ± 2.21E+00 −1.02E+00 ± 1.36E+00 1.26E+03 ± 8.00E+02
CGSA-9 −3.86E+00 ± 2.45E−15 −3.30E+00 ± 4.51E−02 −8.06E+00 ± 3.10E+00 −9.54E+00 ± 2.28E+00 −9.92E+00 ± 1.90E+00 1.47E+03 ± 7.29E+02
CGSA-10 −3.86E+00 ± 2.46E−15 −3.30E+00 ± 4.51E−02 −8.89E+00 ± 2.37E+00 −9.62E+00 ± 2.07E+00 −9.83E+00 ± 2.18E+00 1.45E+03 ± 9.86E+02
CGSA-11 −3.86E+00 ± 2.49E−15 −3.26E+00 ± 6.05E−02 −7.64E+00 ± 3.22E+00 −9.52E+00 ± 2.00E+00 −1.02E+00 ± 1.37E+00 1.49E+03 ± 7.68E+02
CGSA-12 −3.86E+00 ± 2.40E−15 −3.30E+00 ± 4.51E−02 −6.99E+00 ± 3.52E+00 −9.89E+00 ± 1.94E+00 −1.00E+00 ± 1.64E+00 1.33E+03 ± 7.20E+02
CGSA-R −3.86E+00 ± 2.71E−15 −3.32E+00 ± 1.36E−15 −8.22E+00 ± 2.62E+00 −1.04E+01 ± 0.00E+00 −1.05E+01 ± 9.03E−15 1.13E+03 ± 7.35E+02
CGSA-P −3.86E+00 ± 2.71E−15 −3.32E+00 ± 1.36E−15 −7.64E+00 ± 3.02E+00 −9.87E+00 ± 1.61E+00 −1.05E+01 ± 9.03E−15 1.20E+03 ± 7.27E+02
CGSA-M −3.86E+00 ± 2.71E−15 −3.29E+00 ± 5.54E−02 −7.88E +00 ± 2.91E+00 −9.87E+00 ± 1.61E+00 −1.05E+01 ± 9.03E−15 1.15E+03 ± 4.78E+02

Table 5 Experimental results of benchmark functions (F25–F30) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F25 F26 F27 F28 F29 F30
GSA 2.00E+04 ± 2.05E+03 5.09E+07 ± 7.46E+07 6.79E+04 ± 1.34E+04 2.28E+04 ± 2.12E+03 1.26E+08 ± 8.42E+07 1.21E+04 ± 2.97E+02
CGSA-1 1.97E+04 ± 1.98E+03 4.69E+07 ± 4.64E+07 5.36E+04 ± 1.07E+04 2.29E+04 ± 3.02E+03 1.10E+08 ± 6.11E+07 1.15E+04 ± 5.33E+02
CGSA-2 1.95E+04 ± 3.08E+03 4.36E+07 ± 4.97E+07 5.61E+04 ± 1.12E+04 2.32E+04 ± 3.61E+03 1.09E+08 ± 4.28E+07 1.16E+04 ± 4.40E+02
CGSA-3 1.93E+04 ± 2.73E+03 4.33E+07 ± 3.22E+07 5.04E+04 ± 8.65E+03 2.27E+04 ± 2.55E+03 1.03E+08 ± 4.56E+07 1.14E+04 ± 6.32E+02
CGSA-4 1.98E+04 ± 2.16E+03 3.81E+07 ± 3.92E+07 5.62E+04 ± 9.62E+03 2.16E+04 ± 2.44E+03 1.15E+08 ± 7.45E+07 1.16E+04 ± 4.98E+02
CGSA-5 1.97E+04 ± 2.07E+03 4.18E+07 ± 5.02E+07 5.14E+04 ± 9.68E+03 2.30E+04 ± 2.89E+03 1.13E+08 ± 5.72E+07 1.16E+04 ± 4.34E+02
CGSA-6 1.96E+04 ± 2.32E+03 3.77E+07 ± 2.93E+07 5.55E+04 ± 1.45E+04 2.30E+04 ± 2.61E+03 1.14E+08 ± 5.68E+07 1.13E+04 ± 5.01E+02
CGSA-7 2.03E+04 ± 2.26E+03 3.96E+07 ± 3.64E+07 5.50E+04 ± 1.26E+04 2.30E+04 ± 2.67E+03 1.23E+08 ± 6.93E+07 1.14E+04 ± 5.48E+02
CGSA-8 1.98E+04 ± 2.68E+03 4.94E+07 ± 4.80E+07 5.76E+04 ± 1.57E+04 2.19E+04 ± 2.76E+03 1.09E+08 ± 5.74E+07 1.15E+04 ± 5.05E+02
CGSA-9 2.01E+04 ± 2.02E+03 4.52E+07 ± 5.25E+07 5.35E+04 ± 9.18E+03 2.24E+04 ± 2.99E+03 1.23E+08 ± 6.99E+07 1.15E+04 ± 5.23E+02
CGSA-10 2.07E+04 ± 2.22E+03 3.50E+07 ± 3.50E+07 4.98E+04 ± 9.69E+03 2.24E+04 ± 2.75E+03 1.36E+08 ± 9.57E+07 1.14E+04 ± 4.86E+02
CGSA-11 1.98E+04 ± 2.35E+03 4.38E+07 ± 3.35E+07 5.77E+04 ± 1.34E+04 2.29E+04 ± 2.57E+03 1.33E+08 ± 7.86E+07 1.15E+04 ± 5.05E+02
CGSA-12 1.96E+04 ± 2.36E+03 4.32E+07 ± 4.17E+07 5.58E+04 ± 1.33E+04 2.22E+04 ± 2.71E+03 1.22E+08 ± 6.04E+07 1.16E+04 ± 4.12E+02
CGSA-R 1.95E+04 ± 2.22E+03 3.33E+07 ± 2.73E+07 5.93E+04 ± 1.68E+04 2.23E+04 ± 2.57E+03 1.15E+08 ± 7.58E+07 1.09E+04 ± 4.99E+02
CGSA-P 2.01E+04 ± 2.74E+03 3.18E+07 ± 2.41E+07 5.53E+04 ± 1.07E+04 2.28E+04 ± 3.18E+03 1.00E+08 ± 5.17E+07 8.70E+03 ± 6.70E+02
CGSA-M 1.96E+04 ± 2.69E+03 4.05E+07 ± 5.30E+07 5.44E+04 ± 1.15E+04 2.21E+04 ± 2.22E+03 1.04E+08 ± 7.30E+07 1.12E+04 ± 4.59E+02

vertical axis in a logarithmic scale represents the average fit-
ness of the best-so-far solutions generated by the algorithm.
From these two sub-figures, it can be found that all algo-
rithms converge quickly in early phases of the iteration, and
trapped into local minima at the later phases. The best final
solutions are obtained by CGSA-P for both F5 and F30.

On the other hand, the ratio of the best-so-far solutions
found by chaotic GSAs to those found by GSA is depicted in
Figs. 2 (b) and 3 (b), aiming to verify the effects of chaotic
local search on the GSA. From Fig. 2 (b), we observe that
all chaotic GSAs can find better solutions than GSA in ear-
lier phases, suggesting that the chaotic local search is able
to improve GSA in an exploitation manner. However, some

of chaotic GSAs generate worse solutions than GSA in the
latter search phase and cannot improve solutions’ qualities
any further. It reveals that the chaotic local search cannot
always improve the performance of GSA for all the time.
Its effects strongly depend on the used chaotic map, which
is usually the common case in chaotic meta-heuristics. In
this figure, it is clear that the proposed MCGSA (includ-
ing CGSA-R, CGSA-P and CGSA-M) can generate better
solutions than the other compared algorithms. A same phe-
nomenon that MCGSA performs better than the others can
also be observed in Fig. 3 (b).

Due to the stochastic feature of all compared 16 algo-
rithms, a box-and-whisker diagram is used to depict the dis-
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Table 6 Experimental results of benchmark functions (F31–F36) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F31 F32 F33 F34 F35 F36
GSA 2.03E+01 ± 9.60E−02 4.47E+01 ± 8.85E+00 3.58E+01 ± 7.50E+00 1.99E+00 ± 1.35E+00 5.28E+03 ± 6.81E+03 6.04E+00 ± 1.10E+00
CGSA-1 2.03E+01 ± 1.14E−01 5.48E+01 ± 1.14E+01 4.55E+01 ± 1.21E+01 4.16E+00 ± 2.55E+00 1.58E+03 ± 2.80E+03 5.16E+00 ± 1.10E+00
CGSA-2 2.02E+01 ± 9.34E−02 5.51E+01 ± 1.16E+01 5.22E+01 ± 1.20E+01 3.76E+00 ± 2.04E+00 2.53E+03 ± 3.97E+03 5.15E+00 ± 1.23E+00
CGSA-3 2.02E+01 ± 7.44E−02 5.21E+01 ± 9.32E+00 4.93E+01 ± 9.41E+00 4.57E+00 ± 3.28E+00 1.74E+03 ± 2.31E+03 5.06E+00 ± 1.19E+00
CGSA-4 2.03E+01 ± 7.26E−02 4.88E+01 ± 9.36E+00 4.88E+01 ± 1.30E+01 4.17E+00 ± 2.52E+00 2.10E+03 ± 2.98E+03 5.27E+00 ± 1.30E+00
CGSA-5 2.02E+01 ± 7.29E−02 5.35E+01 ± 1.30E+01 5.01E+01 ± 1.40E+01 3.98E+00 ± 2.09E+00 2.31E+03 ± 3.95E+03 5.36E+00 ± 1.12E+00
CGSA-6 2.03E+01 ± 9.75E−02 5.08E+01 ± 9.70E+00 5.34E+01 ± 1.16E+01 3.68E+00 ± 2.19E+00 1.67E+03 ± 2.16E+03 5.16E+00 ± 1.21E+00
CGSA-7 2.03E+01 ± 7.66E−02 5.07E+01 ± 1.12E+01 4.79E+01 ± 1.11E+01 3.56E+00 ± 2.34E+00 2.85E+03 ± 3.75E+03 5.28E+00 ± 1.27E+00
CGSA-8 2.03E+01 ± 1.04E−01 5.24E+01 ± 9.35E+00 4.79E+01 ± 9.65E+00 4.19E+00 ± 2.29E+00 3.25E+03 ± 9.69E+03 5.41E+00 ± 1.03E+00
CGSA-9 2.03E+01 ± 9.20E−02 5.59E+01 ± 1.14E+01 5.18E+01 ± 1.37E+01 3.96E+00 ± 2.48E+00 2.63E+03 ± 5.25E+03 5.29E+00 ± 1.02E+00
CGSA-10 2.03E+01 ± 8.85E−02 5.44E+01 ± 9.68E+00 4.78E+01 ± 1.20E+01 3.47E+00 ± 1.98E+00 2.21E+03 ± 2.35E+03 5.18E+00 ± 1.21E+00
CGSA-11 2.02E+01 ± 9.50E−02 5.21E+01 ± 1.12E+01 4.66E+01 ± 1.13E+01 4.04E+00 ± 2.07E+00 2.29E+03 ± 3.07E+03 5.16E+00 ± 1.32E+00
CGSA-12 2.03E+01 ± 1.02E−01 5.12E+01 ± 9.90E+00 5.17E+01 ± 1.34E+01 3.59E+00 ± 2.29E+00 1.46E+03 ± 1.62E+03 5.02E+00 ± 1.25E+00
CGSA-R 2.03E+01 ± 8.38E−02 4.19E+01 ± 7.18E+00 3.50E+01 ± 7.43E+00 1.80E+00 ± 1.43E+00 1.62E+03 ± 2.54E+03 4.88E+00 ± 9.47E−01
CGSA-P 2.03E+01 ± 8.82E−02 4.05E+01 ± 7.41E+00 3.41E+01 ± 8.11E+00 1.98E+00 ± 1.56E+00 2.92E+03 ± 4.00E+03 4.95E+00 ± 1.27E+00
CGSA-M 2.03E+01 ± 1.03E−01 5.79E+01 ± 1.34E+01 5.10E+01 ± 1.03E+01 4.04E+00 ± 2.85E+00 2.26E+03 ± 4.35E+03 5.28E+00 ± 1.21E+00

Table 7 Experimental results of benchmark functions (F37–F42) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F37 F38 F39 F40 F41 F42
GSA 1.43E+01 ± 1.30E−01 3.23E+02 ± 4.85E+01 2.40E+02 ± 2.17E+02 3.51E+02 ± 2.60E+02 9.66E+02 ± 3.40E+01 9.55E+02 ± 5.03E+01
CGSA-1 1.38E+01 ± 2.57E−01 3.45E+02 ± 5.86E+01 2.07E+02 ± 1.69E+02 2.16E+02 ± 1.79E+02 9.70E+02 ± 4.99E+01 9.69E+02 ± 3.73E+01
CGSA-2 1.38E+01 ± 3.06E−01 3.50E+02 ± 6.74E+01 1.70E+02 ± 1.54E+02 2.82E+02 ± 2.11E+02 9.72E+02 ± 3.77E+01 9.64E+02 ± 5.77E+01
CGSA-3 1.38E+01 ± 2.28E−01 3.66E+02 ± 8.37E+01 2.55E+02 ± 1.93E+02 3.04E+02 ± 2.13E+02 9.69E+02 ± 4.84E+01 9.70E+02 ± 4.81E+01
CGSA-4 1.38E+01 ± 3.32E−01 3.55E+02 ± 8.21E+01 1.93E+02 ± 1.68E+02 1.63E+02 ± 1.36E+02 9.71E+02 ± 3.83E+01 9.59E+02 ± 6.24E+01
CGSA-5 1.39E+01 ± 2.79E−01 3.44E+02 ± 6.06E+01 2.21E+02 ± 1.77E+02 2.37E+02 ± 1.83E+02 9.73E+02 ± 3.56E+01 9.44E+02 ± 6.90E+01
CGSA-6 1.37E+01 ± 3.13E−01 3.72E+02 ± 7.22E+01 2.44E+02 ± 1.83E+02 2.71E+02 ± 2.02E+02 9.41E+02 ± 7.80E+01 9.66E+02 ± 4.73E+01
CGSA-7 1.38E+01 ± 2.59E−01 3.55E+02 ± 6.21E+01 1.26E+02 ± 9.50E+01 2.36E+02 ± 1.92E+02 9.74E+02 ± 5.02E+01 9.78E+02 ± 1.78E+01
CGSA-8 1.38E+01 ± 3.12E−01 3.31E+02 ± 8.11E+01 1.14E+02 ± 9.44E+01 2.72E+02 ± 2.17E+02 9.75E+02 ± 3.62E+01 9.64E+02 ± 4.85E+01
CGSA-9 1.38E+01 ± 2.71E−01 3.45E+02 ± 6.12E+01 1.30E+02 ± 1.19E+02 2.27E+02 ± 1.92E+02 9.70E+02 ± 4.86E+01 9.64E+02 ± 5.79E+01
CGSA-10 1.37E+01 ± 3.25E−01 3.27E+02 ± 4.61E+01 1.59E+02 ± 1.57E+02 2.51E+02 ± 1.91E+02 9.71E+02 ± 5.00E+01 9.53E+02 ± 6.40E+01
CGSA-11 1.38E+01 ± 3.06E−01 3.45E+02 ± 7.11E+01 1.33E+02 ± 1.26E+02 2.25E+02 ± 1.87E+02 9.55E+02 ± 6.39E+01 9.68E+02 ± 5.92E+01
CGSA-12 1.38E+01 ± 2.35E−01 3.44E+02 ± 7.20E+01 1.69E+02 ± 1.48E+02 3.06E+02 ± 2.09E+02 9.46E+02 ± 7.45E+01 9.73E+02 ± 4.77E+01
CGSA-R 1.38E+01 ± 3.02E−01 3.43E+02 ± 6.88E+01 2.29E+02 ± 1.67E+02 2.49E+02 ± 2.00E+02 9.76E+02 ± 2.42E+01 9.68E+02 ± 4.76E+01
CGSA-P 1.38E+01 ± 2.48E−01 3.02E+02 ± 9.91E+00 1.77E+02 ± 1.38E+02 2.82E+02 ± 1.97E+02 9.51E+02 ± 5.77E+01 9.50E+02 ± 6.09E+01
CGSA-M 1.37E+01 ± 2.81E−01 3.56E+02 ± 7.79E+01 2.20E+02 ± 1.90E+02 2.55E+02 ± 1.95E+02 9.83E+02 ± 2.00E+01 9.76E+02 ± 3.78E+01

Table 8 Experimental results of benchmark functions (F43–F48) using traditional GSA, CGSA with
12 different chaos, CGSA-R, CGSA-P, and CGSA-M.

Algorithm F43 F44 F45 F46 F47 F48
GSA 9.66E+02 ± 3.78E+01 6.73E+02 ± 2.92E+02 9.31E+02 ± 1.71E+01 7.58E+02 ± 2.82E+02 2.55E+02 ± 2.11E+02 1.68E+03 ± 1.29E+01
CGSA-1 9.63E+02 ± 5.66E+01 7.83E+02 ± 3.29E+02 9.62E+02 ± 2.61E+01 8.10E+02 ± 3.10E+02 4.94E+02 ± 4.57E+02 1.73E+03 ± 2.59E+01
CGSA-2 9.68E+02 ± 4.90E+01 6.96E+02 ± 3.04E+02 9.63E+02 ± 2.28E+01 8.27E+02 ± 3.01E+02 7.36E+02 ± 4.79E+02 1.72E+03 ± 2.35E+01
CGSA-3 9.55E+02 ± 7.27E+01 7.61E+02 ± 3.25E+02 9.65E+02 ± 2.49E+01 8.84E+02 ± 2.91E+02 4.97E+02 ± 4.32E+02 1.72E+03 ± 2.19E+01
CGSA-4 9.64E+02 ± 5.75E+01 7.61E+02 ± 3.26E+02 9.61E+02 ± 2.91E+01 8.79E+02 ± 3.02E+02 3.93E+02 ± 3.94E+02 1.72E+03 ± 1.82E+01
CGSA-5 9.74E+02 ± 3.67E+01 7.62E+02 ± 3.26E+02 9.56E+02 ± 1.88E+01 8.18E+02 ± 2.92E+02 5.39E+02 ± 4.70E+02 1.73E+03 ± 2.85E+01
CGSA-6 9.73E+02 ± 3.76E+01 7.82E+02 ± 3.23E+02 9.57E+02 ± 2.79E+01 7.63E+02 ± 2.94E+02 5.14E+02 ± 4.53E+02 1.73E+03 ± 1.79E+01
CGSA-7 9.71E+02 ± 3.63E+01 8.28E+02 ± 3.34E+02 9.72E+02 ± 2.77E+01 8.17E+02 ± 3.19E+02 4.18E+02 ± 4.05E+02 1.73E+03 ± 2.81E+01
CGSA-8 9.65E+02 ± 4.69E+01 7.84E+02 ± 3.30E+02 9.59E+02 ± 2.63E+01 7.83E+02 ± 3.03E+02 5.51E+02 ± 4.60E+02 1.73E+03 ± 3.08E+01
CGSA-9 9.68E+02 ± 4.73E+01 7.40E+02 ± 3.20E+02 9.52E+02 ± 2.52E+01 8.21E+02 ± 3.02E+02 3.88E+02 ± 3.83E+02 1.73E+03 ± 2.64E+01
CGSA-10 9.57E+02 ± 5.46E+01 9.13E+02 ± 3.20E+02 9.59E+02 ± 2.14E+01 8.58E+02 ± 2.99E+02 4.52E+02 ± 4.26E+02 1.73E+03 ± 2.23E+01
CGSA-11 9.80E+02 ± 3.54E+01 6.52E+02 ± 2.80E+02 9.66E+02 ± 2.31E+01 7.56E+02 ± 2.89E+02 5.76E+02 ± 4.71E+02 1.73E+03 ± 2.54E+01
CGSA-12 9.71E+02 ± 4.89E+01 8.07E+02 ± 3.29E+02 9.70E+02 ± 3.09E+01 8.55E+02 ± 3.10E+02 5.79E+02 ± 4.74E+02 1.73E+03 ± 2.08E+01
CGSA-R 9.63E+02 ± 4.72E+01 7.83E+02 ± 3.30E+02 9.76E+02 ± 2.29E+01 7.29E+02 ± 2.74E+02 4.52E+02 ± 4.30E+02 1.66E+03 ± 1.42E+01
CGSA-P 9.83E+02 ± 1.87E+01 6.52E+02 ± 2.80E+02 9.29E+02 ± 1.76E+01 8.03E+02 ± 3.04E+02 2.37E+02 ± 1.76E+02 1.75E+03 ± 2.76E+01
CGSA-M 9.80E+02 ± 3.83E+01 8.26E+02 ± 3.32E+02 9.79E+02 ± 3.76E+01 7.74E+02 ± 2.95E+02 5.52E+02 ± 4.72E+02 1.73E+03 ± 2.86E+01

tribution of final obtained best-so-far solutions in Figs. 2 (c)
and 3(c). In these figures, five characteristic values includ-
ing the smallest observation, lower quartile, median, upper
quartile, and the largest observation are illustrated. Sym-
bol + indicates outliers. From these sub-figures, it is quite
clear that MCGSA outperforms its competitive algorithms.
Especially, CGSA-P performs the best among all compared
algorithms.

To further demonstrate the effectiveness and robust-
ness of the proposed MCGSA, the average rankings of the
algorithms obtained by the Friedman test [37], [38] on all
tested 48 benchmark optimization functions are summarized
in Tables 9–11. The Friedman test is a nonparametric sta-

tistical test which applies the post hoc method of Iman-
Davenport [38]. It can rank the algorithms for each prob-
lem separately. The best performing algorithm among all
compared algorithms should have rank 1, the second best
rank 2, and so on. From these results, it can be found that
the best performing algorithm usually changes for a certain
optimization function. It is difficult to find such an algo-
rithm which can perform the best for all tested problems
(also known as the No Fee Lunch Theorem [39]). Thus, we
confirm that the performance of an algorithm not only de-
pends on its searching capacity, but also relies on the fitness
structure (shown as in Fig. 1) of the solved function.

Furthermore, the values in the last column of Table 11
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Fig. 2 Search performance of the algorithms for comparison on F5.

Table 9 Rankings of 16 variants of GSAs based on Friedman test for benchmark optimization
function F1–F16.

Algorithm F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
GSA 14.8 15.4 10.4 10.7 10.6 8.5 12.2 11.0 5.0 15.4 8.0 8.6 12.8 13.6 13.8 8.5
CGSA-1 8.8 8.2 8.7 6.5 9.2 8.5 8.5 8.6 8.6 8.0 9.0 9.1 8.3 6.9 9.1 8.5
CGSA-2 6.8 8.0 8.1 10.0 9.1 8.5 7.6 9.2 8.0 7.7 7.6 8.2 8.5 7.1 8.4 8.5
CGSA-3 7.7 8.7 9.2 9.6 10.9 8.5 7.2 7.3 9.2 8.2 7.1 8.5 8.8 10.4 7.8 8.5
CGSA-4 8.1 8.8 9.0 8.3 9.0 8.5 9.8 8.0 10.6 9.0 8.8 8.9 8.6 8.3 8.2 8.5
CGSA-5 9.8 7.4 7.4 9.7 9.3 8.5 8.2 9.6 9.0 7.8 8.2 8.7 7.7 8.1 10.2 8.5
CGSA-6 7.7 8.5 8.2 8.4 9.4 8.5 9.2 8.5 9.3 8.0 9.9 7.9 7.9 7.8 8.0 8.5
CGSA-7 7.7 7.1 8.4 8.2 8.4 8.5 8.6 7.0 10.2 8.0 7.7 8.6 8.7 8.8 8.4 8.5
CGSA-8 8.4 7.8 6.5 9.0 10.3 8.5 7.7 11.1 10.5 7.7 9.1 8.6 9.3 8.7 7.3 8.5
CGSA-9 8.4 7.9 8.2 8.9 8.5 8.5 7.5 9.9 9.8 8.5 8.7 8.3 8.4 8.7 8.4 8.5
CGSA-10 6.8 7.6 9.2 7.7 10.0 8.5 7.9 8.1 9.0 8.1 8.5 8.8 8.0 9.3 8.8 8.5
CGSA-11 9.3 8.8 9.7 7.6 10.0 8.5 8.5 8.6 9.5 7.0 9.5 9.3 7.7 8.9 7.7 8.5
CGSA-12 8.1 8.0 8.0 7.3 9.9 8.5 8.3 10.2 9.0 9.9 9.0 7.8 7.5 7.9 6.5 8.5
CGSA-R 8.8 8.6 7.6 8.1 4.0 8.5 8.2 7.1 3.7 8.4 7.8 9.0 8.0 7.6 8.4 8.5
CGSA-P 5.7 8.4 8.1 8.2 3.1 8.5 8.9 6.7 4.6 7.5 9.2 7.4 8.3 6.7 8.4 8.5
CGSA-M 9.1 7.0 9.2 7.9 3.8 8.5 7.7 5.0 10.1 6.7 8.0 8.3 7.5 7.4 6.7 8.5

Table 10 Rankings of 16 variants of GSAs based on Friedman test for benchmark optimization
function F17–F32.

Algorithm F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32
GSA 8.4 8.5 8.5 6.8 8.8 7.5 8.0 8.8 8.9 8.2 12.7 9.3 9.1 14.5 9.8 5.8
CGSA-1 8.4 8.5 8.5 9.5 8.8 8.1 8.5 8.1 7.9 8.7 7.9 9.5 8.2 9.2 8.4 9.7
CGSA-2 8.4 8.5 8.5 9.2 9.0 9.1 8.8 10.4 7.2 9.0 9.0 9.2 8.8 10.3 7.4 10.2
CGSA-3 8.4 8.5 8.5 8.1 8.4 8.9 8.8 7.1 7.6 9.3 6.5 8.7 7.8 8.0 7.2 9.1
CGSA-4 8.4 8.5 8.5 9.2 7.5 8.6 8.0 9.5 8.2 8.4 9.0 6.9 8.3 9.6 8.1 7.9
CGSA-5 8.4 8.5 8.5 9.7 8.6 9.2 9.0 7.5 8.4 7.5 7.0 9.0 8.8 9.9 7.6 9.4
CGSA-6 8.4 8.5 8.5 8.4 9.4 8.8 8.5 7.8 7.9 9.2 8.0 9.3 8.9 7.9 8.0 9.0
CGSA-7 8.4 8.5 8.5 7.9 8.2 9.1 9.1 9.3 9.3 8.8 8.0 9.2 8.8 8.0 9.8 8.3
CGSA-8 8.4 8.5 8.5 9.5 9.3 8.8 8.5 8.3 8.6 8.8 9.1 7.6 8.3 9.5 9.3 9.4
CGSA-9 8.7 8.5 8.5 8.1 8.3 8.6 8.8 9.7 9.3 8.1 8.1 8.1 9.4 9.0 9.8 10.4
CGSA-10 8.7 8.5 8.5 8.1 7.0 8.6 8.8 8.7 10.4 7.8 6.4 8.5 8.7 8.1 8.3 10.2
CGSA-11 8.4 8.5 8.5 10.8 8.7 8.8 8.5 9.9 8.6 9.2 9.6 8.6 9.4 9.7 7.9 8.5
CGSA-12 8.7 8.5 8.5 8.1 9.3 8.1 8.8 8.6 8.2 9.1 8.1 7.7 9.1 9.9 7.7 8.4
CGSA-R 8.4 8.5 8.5 6.9 7.8 7.5 8.0 7.0 8.3 7.8 9.7 7.9 7.9 4.9 8.7 4.4
CGSA-P 8.4 8.5 8.5 6.9 8.6 8.3 8.0 7.4 8.9 7.7 8.6 8.9 7.5 1.0 10.6 4.2
CGSA-M 9.2 8.5 8.5 9.2 8.5 8.3 8.0 8.1 8.1 8.3 8.1 7.6 7.0 6.6 7.5 11.1

record the average ranking of 48 functions for all com-
pared 16 algorithms. CGSA-P gets the smallest value of
7.47, which means that it averagely performs the best for
all functions. The second smallest value 7.58 is acquired
by CGSA-R, while CGSA-M gets the third one. It is worth

Fig. 3 Search performance of the algorithms for comparison on F30.

pointing out that GSA gets the largest ranking value, indi-
cating that all chaotic GSAs performs better than GSA. In
addition, it is mostly desired that a general well-performing
algorithm should be designed. From this practical problem-
solving perspective, we can conclude that the proposed mul-
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Table 11 Rankings of 16 variants of GSAs based on Friedman test for benchmark optimization
function F33–F48.

Algorithm F33 F34 F35 F36 F37 F38 F39 F40 F41 F42 F43 F44 F45 F46 F47 F48 Total Average
GSA 3.9 5.4 10.7 11.6 15.0 9.2 7.3 8.9 6.8 6.7 7.2 7.1 3.6 8.1 6.5 2.2 9.23
CGSA-1 7.5 9.3 6.8 8.4 9.1 8.3 9.6 8.0 8.9 8.4 8.5 8.5 9.3 8.4 8.9 10.3 8.55
CGSA-2 10.5 9.0 9.3 7.9 8.3 8.8 8.3 9.0 8.6 9.0 8.2 7.7 9.4 8.3 10.8 9.0 8.68
CGSA-3 9.5 10.2 8.1 7.2 8.3 9.6 10.6 10.1 9.1 8.9 9.3 8.6 9.6 9.8 8.6 7.7 8.62
CGSA-4 9.1 9.9 7.6 8.6 8.1 8.7 9.0 6.7 8.2 8.3 8.8 8.5 8.6 9.9 7.6 7.7 8.55
CGSA-5 9.7 9.7 8.9 9.0 9.4 9.4 9.1 8.0 8.6 7.2 8.2 8.5 8.1 8.5 9.2 8.5 8.65
CGSA-6 11.2 8.7 8.2 8.1 6.6 10.3 9.9 8.2 7.8 8.6 8.8 8.9 7.8 8.1 8.7 10.2 8.59
CGSA-7 9.1 8.8 9.3 8.4 7.7 8.7 7.7 7.6 10.0 8.9 8.2 9.4 10.3 8.4 8.2 9.6 8.59
CGSA-8 9.5 10.0 8.3 9.8 7.7 7.1 7.1 8.8 9.0 8.2 6.9 8.8 8.5 8.2 9.0 9.6 8.66
CGSA-9 10.0 9.0 8.4 9.0 8.3 8.8 6.9 7.7 9.1 9.2 8.6 8.2 7.3 8.8 7.6 9.7 8.65
CGSA-10 9.0 8.5 9.6 8.1 7.5 6.6 7.4 8.5 8.9 7.7 7.0 10.3 8.2 8.8 8.1 9.5 8.41
CGSA-11 8.4 9.8 9.0 8.6 8.9 8.5 7.3 7.9 8.2 10.3 10.4 7.1 9.7 7.9 9.3 9.9 8.83
CGSA-12 10.5 8.4 7.8 7.8 8.2 8.0 8.2 9.7 8.0 9.5 9.4 9.1 9.7 8.7 9.2 9.5 8.60
CGSA-R 4.0 4.5 7.4 7.1 8.0 8.5 9.6 7.8 8.7 9.3 7.0 8.9 11.4 7.4 8.5 1.1 7.58
CGSA-P 3.6 5.5 9.1 7.4 8.2 5.5 9.0 10.1 6.4 6.3 9.5 7.0 3.3 8.6 6.5 12.4 7.47
CGSA-M 10.6 9.3 7.5 8.9 6.9 10.0 9.0 8.9 10.0 9.7 10.1 9.4 11.0 8.1 9.3 9.1 8.37

tiple chaos incorporation scheme is effective for improving
the performance of GSA.

6. Discussions

As discussed in detail in Sect. 5, our proposed multiple
chaotic embedded CGSA (MCGSA) can perform better than
traditional GSA and 12 single chaos embedded CGSAs un-
der the condition of the same maximum number of itera-
tions. That is to say, under this condition MCGSA outper-
forms its competitive algorithms in terms of solution ac-
curacy and the capacity of jumping out of local optima.
However, as the computational cost in each iteration for the
compared algorithms is different, it is necessary to compare
these algorithms under the same computational cost. To re-
alize this, we set the termination criteria to be the maximum
number of function evaluations (i.e., D*10000) for all algo-
rithms.

On the other hand, to further verify the effect of the us-
age of chaos, we perform a contrast analysis to answer the
following question: why the chaos is effective for perturba-
tion force of the local search. We conduct two variants of
CGSA by replacing the z(t) in Eq. (23) to be random num-
bers with a uniform distribution in [0, 1] or a standard nor-
mal distribution with mean 0 and variance 1. We designate
the newly conducted algorithms to be GSA-UD (i.e., the
GSA using a uniform distribution random sequence embed-
ded local search) and GSA-ND (i.e., the GSA using a nor-
mal distribution random sequence embedded local search),
respectively.

Table 12 summarizes the results for GSA, CGSA-R,
CGSA-P, CGSA-M, GSA-UD, and GSA-ND for the all
benchmark functions over 30 independent runs. Figures 4
and 5 depict the convergence graphs (average best-so-far
versus number of function evaluation) for two typical func-
tions: F5 and F30. For F13, CGSA-P and CGSA-R per-
form significantly better than the others. For F19, F30 and
F31, although almost the same average values are obtained
by CGSA-P and GSA-UD, CGSA-P possesses a smaller
deviation, which suggests that CGSA-P is more robust to
generate promising solutions. Similar observation can be
found for F18, F20 and F47, which indicates that CGSA-R

Fig. 4 Convergence graph of F5: solution along with the number of
function evaluation.

Fig. 5 Convergence graph of F30: solution along with the number of
function evaluation.

is the most promising, and for F22 and F38, which shows
CGSA-M is the most competitive. Exceptions can be found
for F28 and F43, which shows MCGSA performs slightly
worse than GSA-UD or GSA-ND. It can be concluded that
MCGSA generally outperforms the compared algorithms in
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Table 12 Experimental results of benchmark functions using traditional GSA, CGSA-R, CGSA-P,
CGSA-M, GSA-UD and GSA-ND under the same maximum number of function evaluations.

Algorithm F1 F2 F3 F4 F5 F6
GSA 1.30E−17 ± 4.33E−18 2.32E−08 ± 3.07E−09 2.70E+02 ± 9.52E+01 3.45E−09 ± 6.91E−10 2.83E+01 ± 1.14E+01 0.00E+00 ± 0.00E+00
CGSA-R 1.92E−18 ± 4.68E−19 2.30E−08 ± 4.62E−09 2.19E+02 ± 8.92E+01 1.21E−01 ± 4.80E−01 9.59E+00 ± 1.15E+01 0.00E+00 ± 0.00E+00
CGSA-P 2.31E−18 ± 8.88E−19 2.40E−08 ± 4.20E−09 2.29E+02 ± 8.30E+01 3.30E−09 ± 6.37E−10 5.42E+00 ± 2.15E+01 0.00E+00 ± 0.00E+00
CGSA-M 1.97E−18 ± 5.70E−19 2.34E−08 ± 3.51E−09 2.40E+02 ± 8.47E+01 2.56E−03 ± 1.40E−02 1.55E+01 ± 1.78E+01 0.00E+00 ± 0.00E+00
GSA-UD 6.84E−18 ± 2.05E−18 2.35E−08 ± 3.22E−09 2.55E+02 ± 7.11E+01 5.01E−02 ± 2.75E−01 2.45E+01 ± 4.29E+01 0.00E+00 ± 0.00E+00
GSA-ND 5.87E−18 ± 2.34E−18 2.32E−08 ± 3.31E−09 2.55E+02 ± 9.08E+01 7.03E−03 ± 3.03E−02 2.75E+01 ± 4.08E+01 0.00E+00 ± 0.00E+00
Algorithm F7 F8 F9 F10 F11 F12
GSA 2.18E−02 ± 1.04E−02 −2.89E+03 ± 4.49E+02 1.60E+01 ± 3.84E+00 2.36E−09 ± 2.35E−10 4.46E+00 ± 2.07E+00 4.58E−02 ± 1.17E−01
CGSA-R 1.08E−02 ± 4.95E−03 −3.23E+03 ± 5.73E+02 1.49E+01 ± 3.36E+00 1.08E−09 ± 1.36E−10 3.67E+00 ± 1.44E+00 4.65E−02 ± 1.14E−01
CGSA-P 1.05E−02 ± 4.81E−03 −2.93E+03 ± 4.65E+02 1.52E+01 ± 3.56E+00 1.91E−09 ± 2.93E−10 4.05E+00 ± 1.75E+00 3.13E−02 ± 6.20E−02
CGSA-M 1.18E−02 ± 4.64E−03 −2.90E+03 ± 4.97E+02 1.52E+01 ± 3.99E+00 1.95E−09 ± 4.05E−10 2.77E+00 ± 8.92E−01 6.04E−02 ± 9.90E−02
GSA-UD 1.35E−02 ± 5.93E−03 −2.95E+03 ± 4.47E+02 1.66E+01 ± 3.82E+00 1.98E−09 ± 3.15E−10 3.91E+00 ± 1.79E+00 4.84E−02 ± 8.49E−02
GSA-ND 1.22E−02 ± 5.01E−03 −3.11E+03 ± 5.54E+02 1.65E+01 ± 3.52E+00 1.94E−09 ± 3.12E−10 4.08E+00 ± 1.63E+00 6.87E−02 ± 1.09E−01
Algorithm F13 F14 F15 F16 F17 F18
GSA 3.66E−04 ± 2.01E−03 6.32E+00 ± 3.10E+00 6.96E−03 ± 4.75E−03 −1.03E+00 ± 4.97E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 5.89E−15
CGSA-R 6.75E−19 ± 1.86E−19 4.80E+00 ± 3.24E+00 4.09E−03 ± 2.47E−03 −1.03E+00 ± 4.70E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 3.39E−15
CGSA-P 6.39E−19 ± 2.53E−19 5.35E+00 ± 3.74E+00 5.11E−03 ± 3.32E−03 −1.03E+00 ± 4.79E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 4.07E−15
CGSA-M 6.90E−04 ± 2.63E−03 4.40E+00 ± 3.30E+00 4.63E−03 ± 2.62E−03 −1.03E+00 ± 4.70E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 3.59E−15
GSA-UD 3.66E−04 ± 2.01E−03 5.00E+00 ± 3.45E+00 5.42E−03 ± 2.72E−03 −1.03E+00 ± 4.70E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 4.06E−15
GSA-ND 3.66E−04 ± 2.01E−03 4.42E+00 ± 3.70E+00 4.76E−03 ± 3.27E−03 −1.03E+00 ± 4.79E−16 3.98E−01 ± 0.00E+00 3.00E+00 ± 4.29E−15
Algorithm F19 F20 F21 F22 F23 F24
GSA −3.86E+00 ± 3.17E−03 −3.32E+00 ± 1.49E−15 −6.42E+00 ± 3.80E+00 −1.01E+01 ± 1.14E−15 −1.05E+01 ± 2.68E−15 1.69E+03 ± 8.03E+02
CGSA-R −3.86E+00 ± 2.47E−03 −3.32E+00 ± 1.49E−15 −6.03E+00 ± 3.71E+00 −1.01E+01 ± 1.39E+00 −1.06E+01 ± 1.32E+00 1.10E+03 ± 6.69E+02
CGSA-P −3.86E+00 ± 1.03E−03 −3.32E+00 ± 1.54E−15 −6.75E+00 ± 3.72E+00 −1.02E+01 ± 1.22E+00 −1.00E+01 ± 1.61E+00 1.30E+03 ± 8.96E+02
CGSA-M −3.86E+00 ± 3.24E−03 −3.32E+00 ± 2.57E−02 −7.93E+00 ± 3.46E+00 −1.02E+01 ± 7.49E−01 −9.87E+00 ± 2.05E+00 1.67E+03 ± 9.01E+02
GSA-UD −3.86E+00 ± 2.30E−03 −3.32E+00 ± 1.57E−15 −7.30E+00 ± 3.58E+00 −1.02E+01 ± 7.71E−01 −1.03E+01 ± 1.48E+00 1.26E+03 ± 7.12E+02
GSA-ND −3.86E+00 ± 2.59E−03 −3.32E+00 ± 1.57E−15 −7.01E+00 ± 2.96E+00 −1.02E+01 ± 7.92E−01 −1.00E+01 ± 1.67E+00 1.43E+03 ± 6.54E+02
Algorithm F25 F26 F27 F28 F29 F30
GSA 2.02E+04 ± 2.14E+03 4.54E+07 ± 5.13E+07 6.60E+04 ± 1.39E+04 2.29E+04 ± 2.80E+03 1.13E+08 ± 5.02E+07 1.21E+04 ± 2.51E+02
CGSA-R 1.99E+04 ± 2.19E+03 3.09E+07 ± 2.72E+07 6.29E+04 ± 9.66E+03 2.25E+04 ± 2.40E+03 1.11E+08 ± 6.50E+07 4.93E+03 ± 9.86E+01
CGSA-P 1.97E+04 ± 2.05E+03 4.63E+07 ± 4.96E+07 6.22E+04 ± 1.20E+04 2.28E+04 ± 2.46E+03 1.08E+08 ± 5.79E+07 4.86E+03 ± 1.17E+01
CGSA-M 2.04E+04 ± 2.16E+03 2.92E+07 ± 2.08E+07 6.29E+04 ± 1.09E+04 2.24E+04 ± 2.16E+03 1.36E+08 ± 6.82E+07 4.88E+03 ± 5.36E+01
GSA-UD 2.03E+04 ± 2.48E+03 4.84E+07 ± 4.60E+07 6.56E+04 ± 1.19E+04 2.23E+04 ± 2.11E+03 1.13E+08 ± 5.00E+07 4.86E+03 ± 2.84E+01
GSA-ND 2.01E+04 ± 1.78E+03 3.49E+07 ± 2.26E+07 7.02E+04 ± 1.42E+04 2.35E+04 ± 2.12E+03 1.25E+08 ± 7.60E+07 4.86E+03 ± 5.81E+01
Algorithm F31 F32 F33 F34 F35 F36
GSA 2.03E+01 ± 9.36E−02 3.92E+01 ± 6.07E+00 3.53E+01 ± 7.74E+00 1.86E+00 ± 1.38E+00 3.01E+03 ± 3.94E+03 5.55E+00 ± 1.23E+00
CGSA-R 2.03E+01 ± 1.06E−01 4.15E+01 ± 8.41E+00 3.26E+01 ± 7.98E+00 1.30E+00 ± 1.22E+00 2.46E+03 ± 2.62E+03 5.39E+00 ± 1.40E+00
CGSA-P 2.03E+01 ± 7.79E−02 4.05E+01 ± 8.96E+00 3.56E+01 ± 5.81E+00 1.86E+00 ± 1.17E+00 5.15E+03 ± 6.84E+03 5.75E+00 ± 1.30E+00
CGSA-M 2.03E+01 ± 9.36E−02 4.25E+01 ± 7.67E+00 3.57E+01 ± 5.67E+00 1.22E+00 ± 1.31E+00 2.04E+03 ± 3.00E+03 5.28E+00 ± 1.58E+00
GSA-UD 2.03E+01 ± 9.15E−02 4.14E+01 ± 6.20E+00 3.39E+01 ± 6.42E+00 1.58E+00 ± 1.40E+00 2.48E+03 ± 3.36E+03 6.14E+00 ± 1.34E+00
GSA-ND 2.03E+01 ± 8.02E−02 4.10E+01 ± 6.62E+00 3.33E+01 ± 6.13E+00 2.38E+00 ± 1.14E+00 5.31E+03 ± 8.08E+03 5.61E+00 ± 1.32E+00
Algorithm F37 F38 F39 F40 F41 F42
GSA 1.42E+01 ± 1.29E−01 3.09E+02 ± 3.74E+01 2.94E+02 ± 2.12E+02 3.35E+02 ± 2.58E+02 9.68E+02 ± 6.15E+01 9.59E+02 ± 4.44E+01
CGSA-R 1.41E+01 ± 1.59E−01 3.08E+02 ± 2.57E+01 2.31E+02 ± 2.08E+02 2.58E+02 ± 2.06E+02 9.61E+02 ± 4.55E+01 9.58E+02 ± 4.58E+01
CGSA-P 1.41E+01 ± 1.99E−01 3.07E+02 ± 2.54E+01 2.65E+02 ± 2.12E+02 2.08E+02 ± 1.75E+02 9.63E+02 ± 5.68E+01 9.59E+02 ± 1.42E+07
CGSA-M 1.40E+01 ± 2.71E−01 3.04E+02 ± 1.83E+01 1.76E+02 ± 2.16E+02 2.21E+02 ± 1.62E+02 9.52E+02 ± 6.22E+01 9.61E+02 ± 4.65E+01
GSA-UD 1.41E+01 ± 2.26E−01 3.04E+02 ± 1.83E+01 2.69E+02 ± 1.86E+02 2.38E+02 ± 1.95E+02 9.59E+02 ± 6.89E+01 9.62E+02 ± 4.32E+01
GSA-ND 1.41E+01 ± 2.19E−01 3.09E+02 ± 3.76E+01 2.95E+02 ± 2.17E+02 2.42E+02 ± 1.87E+02 9.78E+02 ± 1.65E+01 9.67E+02 ± 1.71E+01
Algorithm F43 F44 F45 F46 F47 F48
GSA 9.67E+02 ± 3.48E+01 8.24E+02 ± 3.29E+02 9.32E+02 ± 2.21E+01 8.38E+02 ± 3.09E+02 2.00E+02 ± 7.96E−13 1.68E+03 ± 8.44E+00
CGSA-R 9.65E+02 ± 3.60E+01 7.17E+02 ± 3.12E+02 9.29E+02 ± 1.91E+01 8.61E+02 ± 2.96E+02 2.00E+02 ± 1.16E+00 1.68E+03 ± 1.10E+01
CGSA-P 9.66E+02 ± 3.35E+01 6.74E+02 ± 2.94E+02 9.36E+02 ± 1.88E+01 8.56E+02 ± 2.95E+02 3.09E+02 ± 2.85E+02 1.67E+03 ± 9.35E+00
CGSA-M 9.61E+02 ± 5.61E+01 7.38E+02 ± 3.18E+02 9.31E+02 ± 1.95E+01 6.97E+02 ± 2.70E+02 2.56E+02 ± 2.13E+02 1.68E+03 ± 8.30E+00
GSA-UD 9.55E+02 ± 5.41E+01 7.17E+02 ± 3.12E+02 9.29E+02 ± 1.41E+01 8.00E+02 ± 2.93E+02 2.00E+02 ± 5.73E−13 1.68E+03 ± 6.75E+00
GSA-ND 9.51E+02 ± 5.24E+01 8.05E+02 ± 3.25E+02 9.29E+02 ± 1.90E+01 7.94E+02 ± 2.94E+02 2.63E+02 ± 2.40E+02 1.68E+03 ± 1.12E+01

terms of solution accuracy under almost the same computa-
tional burden for most tested benchmark functions (46 out of
48 functions). In addition, it should be pointed out that the
solutions in Table 12 are generally better than those in Ta-
bles 1–8 because more iteration numbers are implemented
in this complementary experiment (e.g. 6000 iterations are
carried out for GSA). All in all, we can conclude that: (1) the
local search induced by chaos is more efficient than that by
random or normal distribution numbers; (2) multiple chaos
embedded local search generally performs better than sin-
gle chaos embedded one; and (3) the parallelly embedding
strategy is the most effective for improving the performance
of GSA.

7. Conclusions

In this paper, taking into account the abundant search-
ing dynamics of different chaos we innovatively propose
a multiple chaos embedded gravitational search algorithm
(MCGSA). To further improve the searching performance of
GSA, three kinds of incorporation schemes are investigated.
Multiple chaotic maps are randomly, parallelly, or memory-
selectively incorporated into GSA, respectively. Experimen-
tal results based on a set of 48 benchmark optimization func-
tions verify the effectiveness and robustness of the proposed
MCGSA. Especially, the parallelly embedding scheme for
GSA is demonstrated to be the most effective based on the
Friedman test. This study opens the door to the following
future researches:
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1. MCGSA should be verified on other practical prob-
lems, especially engineering optimization problems.

2. The effectiveness of the proposed multiple chaos in-
corporation scheme should be applied on other meta-
heuristics to further reveal its effects.

3. Through our experimental results, we find that a certain
chaotic map is effective for some specific optimization
functions. The influence of the distinct chaotic search
dynamics on the algorithm should be further studied.

4. As each chaotic map has an inherent Lyapunov ex-
ponent which reflects its chaotic degree, a Lyapunov
exponent based adaptive multiple chaos incorporation
scheme should also be designed.
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