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An Exact Algorithm for Lowest Edge Dominating Set
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SUMMARY Given an undirected graph G, an edge dominating set is a
subset F of edges such that each edge not in F is adjacent to some edge in
F, and computing the minimum size of an edge dominating set is known to
be NP-hard. Since the size of any edge dominating set is at least half of the
maximum size μ(G) of a matching in G, we study the problem of testing
whether a given graph G has an edge dominating set of size �μ(G)/2� or
not. In this paper, we prove that the problem is NP-complete, whereas
we design an O∗(2.0801μ(G)/2)-time and polynomial-space algorithm to the
problem.
key words: graph theory, edge dominating set, algorithm, NP-
completeness, fixed parameter tractable

1. Introduction

In an undirected graph G = (V, E) with a set V of n vertices
and a set E of m edges, an independent set (resp., a match-
ing) is a subset of V (resp., E) that contains no two adja-
cent vertices (resp., edges). A vertex cover is defined to be
the complement of an independent set over V , and an edge
dominating set is a subset F of E whose end-points form a
vertex cover, or every edge in E \ F is adjacent to an edge
in F. These four notions are among the most fundamental
features of graph structures, and the optimization problems
of finding a minimum vertex cover and a minimum edge
dominating set are highlighted by Garey and Johnson [5] in
their work on NP-completeness. It is important to inves-
tigate not only the standard min-max formulas among them
but also the computational complexity to know when formu-
las tightly hold. It is known that the maximum size μ(G) of a
matching of G can be found in O(

√
nm) time [11], whereas

finding the minimum size τ(G) of a vertex cover of G is NP-
hard. Note that μ(G) is a lower bound on τ(G). Gavril [6]
showed whether G has a vertex cover of size μ(G) or not
can be decided in O(n + m) time. In this paper, we study
the complexity to know whether the size of an edge dom-
inating set in G is the lowest with respect to the matching
size μ(G). We first review the results on algorithms for edge
dominating sets.

The Minimum Edge Dominating Set problem requests
us to find a minimum edge dominating set of a given
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graph. Yanakakis and Gavril [16] indicated that the prob-
lem is NP-hard even for planar or bipartite graphs of max-
imum degree 3 and they also showed that the size of a
minimum edge dominating set can be efficiently approx-
imated within a factor of 2. Fujito and Nagamochi [4]
showed that the size of a minimum weight edge dominat-
ing set can be also approximated to within a factor of 2.
We use O∗ notation to suppress all polynomially bounded
factors. For Minimum Edge Dominating Set, Randerath
and Schiermeyer [9] designed an O∗(1.4423m)-time and
polynomial-space algorithm, and Raman et al. [8] improved
this to O∗(1.4423n). Using the treewidth of graphs, Fomin
et al. [3] obtained an O∗(1.4082n)-time and exponential-
space algorithm. Analyzing with the measure and con-
quer method, van Rooij and Bodlaender [10] designed an
O∗(1.3226n)-time and polynomial-space algorithm and later
Xiao and Nagamochi [14] presented an O∗(1.3160n)-time
and polynomial-space algorithm, which currently attains the
best time bound to Minimum Edge Dominating Set. For
graphs of maximum degree 3, an O∗(1.2721n)-time and
polynomial-space algorithm is designed by Xiao and Nag-
amochi [15].

The Parameterized Edge Dominating Set problem is
given a graph G = (V, E) with an integer k to decide
whether or not G has an edge dominating set of size at
most k, which is known to be FPT. For the problem,
Fernau [2] presented an O∗(2.6181k)-time and polynomial-
space algorithm. Using the bounded treewidth of the
graph, Fomin et al. [3] gave an O∗(2.4181k)-time and
exponential-space algorithm. Analyzing with the mea-
sure and conquer method, Binkele-Raible and Fernau [1]
designed an O∗(2.3819k)-time and polynomial-space algo-
rithm, and Xiao et al. [12] gave an O∗(2.3147k)-time and
polynomial-space algorithm. Recently, Iwaide and Nag-
amochi [7] presented an O∗(2.2351k)-time and polynomial-
space algorithm, which currently attains the best time bound
to Parameterized Edge Dominating Set. For graphs of max-
imum degree 3, an O∗(2.1479k)-time and polynomial-space
algorithm is designed by Xiao and Nagamochi [13].

We observe the size of edge dominating sets of a graph
G is bounded from below by �τ(G)/2� ≥ �μ(G)/2�, since
the set of endpoints of all edges in any edge dominating set
is a vertex cover. As in the relationship between the mini-
mum vertex cover and the maximum matching, we are in-
terested in the issue of whether an edge dominating set with
the lowest size in terms of μ(G) if one exists can be found
in polynomial time or faster than the current best algorithms
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for Minimum Edge Dominating Set and Parameterized Edge
Dominating Set. The problem we study in this paper is de-
scribed as follows.

Lowest Edge Dominating Set
Instance: An undirected graph G.
Question: Does G have an edge dominating set of size
�μ(G)/2�?

In this paper, we first prove that Lowest Edge Dominat-
ing Set is NP-complete and then design an O∗(2.0801μ(G)/2)-
time and polynomial-space algorithm to Lowest Edge Dom-
inating Set. The algorithm runs faster than the one with run
time O∗(2.2351k) to Parameterized Edge Dominating Set
where we can assume that k ≥ μ(G)/2, and the one with run
time O∗(1.3160n) = O∗(2.9993n/4) time to Minimum Edge
Dominating Set, where n/2 ≥ μ(G) always holds.

The paper is organized as follows. Section 2 introduces
basic notations on graphs and a property of tight edge dom-
inating sets. Section 3 proves that Lowest Edge Dominat-
ing Set is NP-complete. Section 4 presents our exact algo-
rithm for Lowest Edge Dominating Set by designing reduc-
tion and branching operations and analyzes the time bound.
Section 5 makes some concluding remarks.

2. Preliminaries

Let G stand for a simple undirected graph in this paper. The
sets of vertices and edges in G are denoted by V(G) and
E(G), respectively. For a vertex v ∈ V(G), denote by EG(v)
the set of edges incident to vertex v, and by dG(v) the degree
of vertex v, where dG(v) = |EG(v)|. For a vertex subset X, let
NG(X) denote the set of neighbors of X, vertices in V(G) \ X
adjacent to some vertex in X. When X = {v} for a vertex
v, we may denote NG(X) by NG(v). For a set S ⊆ V(G)
of vertices, we let G[S ] denote the subgraph of G induced
by S and let G − S denote the graph G[V(G) \ S ]. For a
set F ⊆ E(G), let V(F) denote the set of vertices incident
to at least one edge in F, and let G[F] denote the subgraph
(V(F), F) of G.

We let MG denote the union of all maximum matchings
of G; i.e., MG = {e ∈ E(G) | μ(G) − μ(G − V({e})) = 1}. We
let RG denote the union of V(G) \ V(M) over all maximum
matchings M of G; i.e., RG = {v ∈ V(G) | μ(G) = μ(G−{v})}.
Note that MG and RG can be obtained in polynomial time.

We say that a subset F ⊆ E(G) dominates (resp., 1-
dominates and 2-dominates) an edge uv if |{u, v} ∩V(F)| ≥ 1
(resp., |{u, v} ∩ V(F)| = 1 and 2), where possibly uv ∈ F
when |{u, v} ∩ V(F)| = 2. Then an edge subset F is an edge
dominating set of G if and only if F dominates all edges in
G. We call an edge dominating set F tight if |F| = �μ(G)/2�.
Given two disjoint subsets C,D ⊆ V(G), an edge dominating
set F of G is called a (C,D)-eds of G if C ⊆ V(F) ⊆ V(G) \
D.

The next lemma states some structural property of tight
edge dominating sets when the maximum matching size is
even.

Lemma 1: Let G be a graph such that the maximum
matching size μ(G) is even, and assume that G admits a tight
edge dominating set F. Then every edge in F 1-dominates
exactly two edges in any maximum matching of G, and F
is a matching of G with F ∩ MG = V(F) ∩ RG = ∅ and
1-dominates each edge in MG.

Proof. Let M be an arbitrary maximum matching of G. Note
that every edge in F dominates at most two edges in M.
Since μ(G) is even, it holds |F| = μ(G)/2 = |M|/2. Then
F can dominate all edges in M only when every edge in F
1-dominates exactly two edges in M. Hence F is a matching
of G, F ∩ M = ∅, and V(F) ⊆ V(M). For any other maxi-
mum matching M′ in G, F 1-dominates each edge in M′ and
satisfies V(F) ∩ (V(G) \ V(M′)) = ∅. This implies that F 1-
dominates every edge in MG and F ∩MG = V(F)∩ RG = ∅.

�

3. NP-Completeness

This section proves the NP-completess of Lowest Edge
Dominating Set in the following statement.

Theorem 2: Lowest Edge Dominating Set is NP-complete
even if a given graph is bipartite and admits a perfect match-
ing with even size.

Clearly, Lowest Edge Dominating Set is in the class
NP. Thereby we establish the NP-hardness by a polynomial-
time reduction from the NP-hard problem One-In-Three
3SAT [5].

One-In-Three 3SAT
Instance: A pair (X,C) of a set X of n variables
x1, x2, . . . , xn and a set C of m clauses c1, c2, . . . , cm on
X such that each clause c j consists of exactly three liter-
als �1j , �

2
j and �3j .

Question: Is there a truth assignment X →
{true, false} such that each clause c j has exactly one
true literal?

Given an instance I = (X,C) of One-In-Three 3SAT,
we will construct a bipartite graph GI that consists of
- n graphs, called variable gadgets Gv

1 , Gv
2 , . . . ,G

v
n ;

- m graphs, called clause gadgets Gc
1 ,G

c
2 , . . . ,G

c
m; and

- sets Ei, j of edges between Gv
i and Gc

j , 1 ≤ i ≤ n and
1 ≤ j ≤ m.
• For each variable xi ∈ X, define Gv

i to be a bipartite graph
with a set {x1

i , x
2
i , . . . , x

8
i } of eight labeled vertices and a set

Mv
i ∪ Tv

i ∪ Fv
i of eight edges such that

Mv
i =

{
xp

i xp+1
i | p = 1, 3, 5, 7

}
,

Tv
i =

{
x2

i x3
i , x

6
i x7

i

}
and Fv

i =
{
x2

i x5
i , x

4
i x7

i

}
,

as illustrated in Fig. 1.
• For each clause c j ∈ C, define Gc

j to be a bipartite graph

with a set {c1
j , c

2
j , . . . , c

16
j } of 16 labeled vertices and a set

Mc
j ∪
⋃

k=1,2,3

(
Tc

j,k ∪ Fc
j,k

)
of 17 edges such that
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Fig. 1 A variable gadget Gv
i , a clause gadget Gc

j , the two edges e0, e1 ∈
E2

i, j with �2j = xi and the two edges e′0, e
′
1 ∈ E2

i, j with �2j = ¬xi, where edges

in Tv
i or Tc

j,k in are depicted by thick black lines and edges in Fv
i or Fc

j,k
are depicted by thick gray lines.

Mc
j =
{
cp

j c
p+1
j | p = 1, 3, 5, 7, 9, 11, 13, 15

}
,

Tc
j,k =

{
c2

j c
4k−1
j , c4k+1

j c16
j

}
and

Fc
j,k =

{
c4k

j c4k+1
j

}
for k = 1, 2, 3,

as illustrated in Fig. 1.
• For each tuple (i, j, k) with 1 ≤ i ≤ n, 1 ≤ j ≤ m and
1 ≤ k ≤ 3, define a set Ek

i, j of edges between Gv
i and Gc

j to
be

Ek
i, j :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{x3

i c4k
j , x

4
i c4k−1

j } if �kj = xi;
{x5

i c4k
j , x

6
i c4k−1

j } if �kj = ¬xi;
∅ otherwise,

as illustrated in Fig. 1. We set Ei, j :=
⋃

k=1,2,3 Ek
i, j.

Let GI be an instance in Lowest Edge Dominating Set
constructed from a disjoint union of bipartite graphs Gv

i , i =
1, . . . , n and Gc

j , j = 1, . . . ,m by adding the edge sets Ei, j

with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Obviously GI can be
constructed in polynomial time.

We see that GI is a bipartite graph, since the indices k
and � of any type of edges xk

i x�i , ck
jc
�
j and xk

i c�j in GI have dif-
ferent parities. Each variable gadget Gv

i has a perfect match-
ing Mv

i of size 4, and each clause gadget Gc
j has a perfect

matching Mc
j of size 8. Therefore these matchings form a

perfect matching of GI with even size μ(GI) = 4n + 8m.
The remaining task is to prove the correctness of the

reduction.

Lemma 3: Instance I = (X,C) is satisfiable if and only if
GI has an edge dominating set L of size μ(GI)/2.

Proof. (I) Only if part: Given a satisfiable truth assignment
α : X → {true, false} to I = (X,C), we construct an edge
dominating set

L =
⋃

1≤i≤n

Lv
i ∪

⋃
1≤ j≤m

Lc
j

by choosing an edge set Lv
i from each Gv

i and an edge set
Lc

j from each Gc
j .

From each variable gadget Gv
i , choose a set of two edges:

Lv
i :=

{
Tv

i if α(xi) = true;
Fv

i if α(xi) = false.

For each clause gadget Gc
j , let h ∈ {1, 2, 3} be the unique

index such that literal �hj in clause c j satisfies α(�hj ) = true,
let {t, t′} = {1, 2, 3}\{h} be the remaining indices, and choose
a set of four edges:

Lc
j := Tc

j,h ∪ Fc
j,t ∪ Fc

j,t′ .

Clearly |L| = 2n + 4m = μ(GI)/2. We prove that L is
an edge dominating set in GI . For each variable xi, graph
Gv

i −V(Lv
i ) has no edge, and for each clause c j, graph Gc

j −
V(Lc

j ) has no edge. Therefore, to prove that L is an edge
dominating set of G, it suffices to show that each edge in
Ek

i, j � ∅ with k = 1, 2, 3, i = 1, . . . , n and j = 1, . . . ,m is
incident to a vertex in V(L).

Without loss of generality consider the case of k = 2,
as shown in Fig. 1, where E2

i, j = {e0 = x3
i c8

j , e1 = x4
i c7

j } or

{e′0 = x5
i c8

j , e
′
1 = x6

i c7
j }. Let A = {x3

i , x
4
i , x

5
i , x

6
i , c

7
j , c

8
j } be the

set of the endpoints of these edges, and examine V(L) ∩ A
below.

Case 1. �2j = xi: If α(�2j ) = α(xi) = true (resp.,

false), then Lv
i = Tv

i , Lc
j ⊇ Tc

j,2 and V(L)∩A = {x3
i , x

6
i , c

7
j }

(resp., Lv
i = Fv

i , Lc
j ⊇ Fc

j,2 and V(L) ∩ A = {x4
i , x

5
i , c

8
j }).

Case 2. �2j = ¬xi: If α(�2j ) = α(¬xi) = true (resp.,

false), then Lv
i = Fv

i , Lc
j ⊇ Tc

j,2 and V(L)∩A = {x4
i , x

5
i , c

7
j }

(resp., Lv
i = Tv

i , Lc
j ⊇ Fc

j,2 and V(L) ∩ A = {x3
i , x

6
i , c

8
j }).

In any case, each edge in E2
i, j is incident to a vertex in

V(L) ∩ A. Consequently L is an edge dominating set of GI

of size μ(GI)/2.
(II) If part: Let L be a tight edge dominating set in

GI . Note that GI has a perfect matching M =
⋃

1≤i≤n Mv
i ∪⋃

1≤ j≤m Mc
j . By Lemma 1, L is a matching of GI with L ∩

MGI = ∅ and each edge in L 1-dominates exactly two edges
in M ⊆ MGI . By the structure of gadgets, we see that such a
matching L of GI must satisfy the following conditions:

(a-1) For every variable gadget Gv
i , L∩E(Gv

i ) equals either
Tv

i or Fv
i ; and

(a-2) For every clause gadget Gc
j , there is an index h with

{h, t, t′} = {1, 2, 3} such that

L ∩ E(Gc
j ) = Tc

j,h ∪ Fc
j,t ∪ Fc

j,t′ .

Let α : X → {true, false} be a truth assignment ob-
tained from L as follows: for each variable xi ∈ X,

α(xi) :=

{
true if L ∩ E(Gv

i ) = Tv
i ;

false if L ∩ E(Gv
i ) = Fv

i .

We then ensure that this truth assignment is satisfiable to the
original instance I; that is, each clause c j ∈ C has exactly
one true literal. For this, it suffices to prove that, for the
indices h, t, t′ in (a-2), it holds

α(�kj) =

{
true if k = h;
false if k = t, t′.

Without loss of generality consider the case of k = 2, as
shown in Fig. 1, where E2

i, j = {e0 = x3
i c8

j , e1 = x4
i c7

j } or
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{e′0 = x5
i c8

j , e
′
1 = x6

i c7
j }.

Case 1. h = 2: Then c8
j � V(L), but F dominates

all edges incident to this vertex. Hence if �2j = xi (resp.,
�2j = ¬xi), then x3

i ∈ Tv
i ⊆ V(L) and true = α(xi) = α(�2j )

(resp., x5
i ∈ Fv

i ⊆ V(L) and false = α(xi) = α(¬�2j )), as
required.

Case 2. t or t′ = 2: Then c7
j � V(L), but F dominates

all edges incident to this vertex. Hence if �2j = xi (resp.,
�2j = ¬xi), then x4

i ∈ Fv
i ⊆ V(L) and false = α(xi) = α(�2j )

(resp., x6
i ∈ Tv

i ⊆ V(L) and true = α(xi) = α(¬�2j )), as
required.

Consequently, the truth assignment α is satisfiable to
I = (X,C). �

4. Exact Algorithm

This section designs an exact branching algorithm to Low-
est Edge Dominating Set after making some preparation.

4.1 Odd Size of Maximum Matchings

The next lemma tells that an instance with an odd size of
maximum matchings can be converted into several instances
with an even size of maximum matchings

Lemma 4: Let G = (V, E) be a graph with odd μ(G). Then
G has a tight edge dominating set if and only if for some
edge uv ∈ MG, the graph G′ = (V ∪ {x, y}, E ∪ {ux, vy})
augmented with new vertices x, y and edges ux and vy has a
tight edge dominating set, where always μ(G′) = μ(G) + 1
holds.

Proof. The if part and μ(G′) ≤ μ(G) + 1: Let F be a tight
edge dominating set of G′, where we can assume that F ∩
{ux, vy} = ∅ since if F∩{ux, vy} � ∅ then F′ = (F\{ux, vy})∪
{uv} is also an edge dominating set of G′ with |F′| ≤ |F|.
Since F ∩ {ux, vy} = ∅, F is also an edge dominating set
of G, where |F| = �μ(G′)/2� since F is tight in G′. Let M
be a maximum matching of G′, where we can assume that
{ux, vy} ⊆ M since M′ := (M \ (EG′ (u)∪EG′(v)))∪{ux, vy} is
also a matching of G′ with |M′| ≥ |M|. Since (M \ {ux, vy})∪
{uv} is a matching of G, we have μ(G) ≥ |M|−1 = μ(G′)−1.
Hence |F| = �μ(G′)/2� ≤ �(μ(G) + 1)/2� = �μ(G)/2� since
μ(G) is odd, implying that F is also tight in G.

The only if part and μ(G′) ≥ μ(G) + 1: We choose
a maximum matching M and a tight edge dominating set
F in G so that |V(M) ∩ V(F)| is maximized. Observe that
every edge in F 1-dominates at least two edges in M, since
if some edge e ∈ F 1-dominates no edge in M or only one
edge e′ ∈ M, then M ∪ {e} or M ∪ {e} \ {e′} would be a
maximum matching having more common endpoints with
F. Since μ(G) = |M| is odd and |F| > |M|/2, some edge
uv ∈ M is dominated by two edges aa′, bb′ ∈ F, where
a, b ∈ {u, v} and aa′ dominates another edge a′w ∈ M. We
see that a � b, because if a = b then F ∪ {a′w} \ {aa′}
would be a tight edge dominating set having more common

endpoints with M. Hence a � b, and F 2-dominates edge
uv ∈ M. Clearly M′ = (M \ {uv}) ∪ {ux, vy} is a matching of
G′ and μ(G′) ≥ μ(G)+ 1. Since u, v ∈ V(F) and F is tight in
G, we see that F is an edge dominating set of G′ such that
|F| = (μ(G) + 1)/2 ≤ μ(G′)/2, implying that F is also tight
in G′. �

If a graph G such that μ(G) is odd is given for Low-
est Edge Dominating Set, then based on Lemma 4, we can
construct |MG | = O(n2) graphs G′ for the problem such that
μ(G′) is even, in order to solve the original instance. In the
rest of this paper, we assume that μ(G) in a graph G is even.

4.2 Restricted Lowest Edge Dominating Set

To Lowest Edge Dominating Set, we design a branching al-
gorithm which branches into two cases: a vertex v is in the
set V(F) of a tight edge dominating set F or not. During this
process, a set C of some vertices decided to be covered by
V(F) and a set D of some vertices decided to be discarded
from V(F) for a tight edge dominating set F will be speci-
fied. In fact, we handle Lowest Edge Dominating Set with
the following restriction in our algorithm.

Restricted Lowest Edge Dominating Set
Instance: A tuple (G,C,D) of a graph G such that μ(G)
is even and two disjoint subsets C,D ⊆ V(G).
Question: Does G have a tight (C,D)-eds?

Notice that a tight (∅, ∅)-eds of G is a tight edge dom-
inating set of G. Given an instance (G,C,D), we always
denote by U the set V(G) \ (C ∪ D) of undecided vertices.
A connected component of a graph is called a clique com-
ponent if it is a complete graph. Van Rooij and Bodlaen-
der [10] found the following solvable case.

Lemma 5: [10] A minimum (C,D)-eds of an instance
(G,C,D) such that G[U] contains only clique components
can be found in polynomial time.

Let U1 denote the set of vertices of all clique components
in G[U], and let U2 = U \ U1. We call an instance
(G,C,D) such that U2 = ∅ a leaf instance, to which we can
test whether or not G has a tight (C,D)-eds in polynomial
time by checking if a minimum (C,D)-eds F obtained by
Lemma 5 meets |F| = μ(G)/2 or not.

Our algorithm, called RLEDS, consists of two proce-
dures, called Reduce and Branch.

Procedure Reduce applies some reduction rule to a
given instance (G,C,D), by which a new instance with a
smaller set U of undecided vertices is constructed or it turns
out that the given instance is infeasible, i.e., it admits no
tight (C,D)-eds. Procedure Reduce then returns a reduced
instance, an instance to which no reduction rule is applica-
ble or a message that the given instance is infeasible. Given
a reduced instance (G,C,D), procedure Branch applies a
branching rule by which two new instances (G,C′i ,D

′
i), i =

1, 2 are constructed, and tests whether G has a tight (C,D)-
eds or not by examining whether one of the two instances
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admits a tight (C′i ,D
′
i)-eds. Procedure Reduce is recursively

executed until the resulting instance becomes a leaf instance
(G,C′,D′), to which we test whether there is a tight (C′,D′)-
eds or not based on Lemma 5. Sections 4.3 and 4.4 describe
the reduction rules and branching rule in procedures Reduce
and Branch, respectively.

4.3 Reduction Rules

This section first introduces three reduction rules. We let
(G,C,D) be a given instance.

Reduction rule 1: Assume that U ∩ RG � ∅. Let ΔD =
U ∩ RG. Then a subset F ⊆ E(G) is a tight (C,D)-eds if
and only if it is a tight (C′,D′)-eds with D′ = D ∪ ΔD and
C′ = C ∪ NG[U](ΔD).

Correctness. By Lemma 1, every vertex in V(F) for any
tight (C,D)-eds F must be incident to an end-vertex of some
maximum matching M of G. Hence moving all the vertices
in ΔD = U ∩ RG to D will not lose any tight (C,D)-eds. In
this case, we also include NG[U](ΔD) into C, since the other
endpoint of any edge incident to a vertex in D needs to be in
C. �

Reduction rule 2: Assume that U ∩ NG[MG](C) � ∅. Let
ΔD = U ∩ NG[MG](C). Then a subset F ⊆ E(G) is a tight
(C,D)-eds if and only if it is a tight (C′,D′)-eds with D′ =
D ∪ ΔD and C′ = C ∪ NG[U](ΔD).

Correctness. For all edges of MG between C and U, their
end-vertices in C are required to be included in V(F) of any
tight (C,D)-eds F. By Lemma 1, moving all the vertices in
ΔD = U ∩ NG[MG](C) to D will not lose any tight (C,D)-
eds. In this case, we also include NG[U](ΔD) into C, as in
Reduction rule 1. �

Reduction rule 3: If there is an edge uv ∈ MG with {u, v} ⊆
C, then the instance (G,C,D) has no tight (C,D)-eds.

Correctness. Immediate from Lemma 1. �

We apply the above three rules as much as possible in
this order. Note that Reduction rule 1 is no longer applicable
once U ∩ RG = ∅ holds. Only Reduction rule 2 may be ap-
plied more than once. If none of the above three rules is ap-
plicable, then the algorithm switches to procedure Branch.
Formally, we describe procedure Reduce as follows.

Procedure Reduce(G,C,D)
Input: A graph G = (V, E) and two disjoint subsets
C,D ⊆ V .
Output: “infeasible” if Reduction Rule 3 is applied
during a process of reducing the input instance;
otherwise a reduced instance from (G,C,D)

/* Reduction Rule 1 */
ΔD := U ∩ RG; C := C ∪ NG[U](ΔD); D := D ∪ ΔD;
/* Reduction Rule 2 */
while U ∩ NG[MG](C) � ∅ do

ΔD := U ∩ NG[MG](C);
C := C ∪ NG[U](ΔD); D := D ∪ ΔD

end while;
/* Reduction Rule 3*/
if ∃uv ∈ MG with {u, v} ⊆ C then

return “infeasible”
else /* Now (G,C,D) is a reduced instance */

return (G,C,D)
end if

We observe the structure of reduced instances.

Lemma 6: Any reduced instance (G,C,D) satisfies all the
following three conditions:

(a) MG ∩ {uv ∈ E(G) | u ∈ C, v ∈ U} = ∅;
(b) U ⊆ V(MG); and
(c) For every connected component H in G[U2], the set

MG ∩E(H) contains a perfect matching of H and is the
union of all perfect matchings of H.

Proof. (a) There is no edge in MG between C and U, be-
cause otherwise Reduction rule 2 would be applicable.
(b) Any vertex v ∈ U is incident to an edge in MG; otherwise
v � V(MG) implies v ∈ RG and Reduction rule 1 would be
applicable.
(c) No edge in MG exists between C and U because of condi-
tion (a). Hence (i) any maximum matching of H is contained
in some maximum matching of G; and (ii) for any maximum
matching M of G, the set M ∩ E(H) is a maximum match-
ing of H, where M ∩ E(H) is a perfect matching of H since
otherwise V(H) \ V(M) � ∅ would imply U ∩ RG � ∅, con-
tradicting that Reduction rule 1 is not applicable. Therefore
MG ∩ E(H) is the union of all perfect matchings of H. �

4.4 Branching Rule

This section presents a branching rule in procedure Branch.
We let (G,C,D) denote an instance given to the procedure.
First we give a priority among the vertices in G[U2]: A ver-
tex v ∈ U2 is called optimal if it satisfies condition (c-i)
below with the minimum i over all vertices in G[U2]:

(c-1) dG[U2](v) ≥ 4;
(c-2) dG[U2](v) ≥ 2 and there is a neighbor u ∈ U2 of v such

that dG[U2](u) ≥ 2 and uv ∈ MG;
(c-3) dG[U2](v) ≥ 2 and there is a neighbor u ∈ U2 of v such

that dG[U2](u) = 2 and uv ∈ E(G) \ MG; and
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(c-4) v is of maximum degree in G[U2].

The algorithm applies the following branching rule on an
optimal vertex.

Branching rule 1: Let v be a vertex in G[U2]. Then G has
a tight (C,D)-eds if and only if G has a tight (C∪{v},D)-eds
or a tight (C ∪ NG[U](v),D ∪ {v})-eds.

Correctness. For a (C,D)-eds F of G, the vertex v ∈ U2 is
contained in V(F) or in V(G) \ V(F). In the first case, F is a
(C ∪ {v},D)-eds of G. In the second case, all the neighbors
of v in G must be contained in V(F) so that F dominates all
edges in EG(v). Therefore F is a (C ∪ NG(v),D ∪ {v})-eds of
G. �

Formally, we describe procedure Branch as follows.

Procedure Branch(G,C,D)
Input: A graph G = (V, E) and two disjoint subsets
C,D ⊆ V .
Output: true if G has a tight (C,D)-eds; otherwise
false.

if Reduce(G,C,D) returns “infeasible” then
return false

else
(G,C,D) := Reduce(G,C,D);
if (G,C,D) is a leaf instance then

Compute a minimum (C,D)-eds F of G
based on Lemma 5;
if |F| = μ(G)/2 then /* F is tight */

return true
else /* F is not tight */

return false
end if

else
Let v be an optimal vertex in G[U2];
return Branch(G,C ∪ {v},D)∨

Branch(G,C ∪ NG[U](v),D ∪ {v})
end if

end if

Then our algorithm is described as follows.

Procedure RLEDS
Input: A graph G = (V, E).
Output: true if G has a tight edge dominating set; oth-
erwise false.

return Branch(G,C := ∅,D := ∅)

4.5 Analysis

This section analyzes the time complexity of the algorithm
by establishing the following theorem.

Theorem 7: Algorithm RLEDS can test whether or not
a given graph G has a tight edge dominating set in

O∗(1.44225μ(G)) = O∗(2.0801μ(G)/2) time and polynomial
space.

We easily see that the space complexity is polynomial
in n. We evaluate the time complexity as an upper bound on
the size of the search tree of RLEDS, or the number of leaf
instances generated by RLEDS. For a tight edge dominating
set F of G, it holds |V(F)| ≤ 2|F| = μ(G). Then we define
the measure τ(I) of an instance I = (G,C,D) to be

μ(G) − |C| −
∑

clique components Q in G[U]

(|V(Q)|−1),

where τ(I) ≤ μ(G). Let T (τ) be the maximum number of
leaf instances that can be generated from an instance of mea-
sure τ by algorithm RLEDS. By solving some recurrences
on T (τ) in the following, we derive an upper bound on T (τ)
for an instance I = (G,C,D) with τ(I) = τ as an exponential
function O∗(βτ) of τ (≤ μ(G)).

Lemma 8: When algorithm RLEDS branches on a vertex
v satisfying condition (c-1) in G[U2], the measure change
meets the following recurrence:

T (τ) ≤ T (τ − 1) + T (τ − 4), (1)

which solves to T (τ) = O(1.3803k).

Proof. The first (resp., second) branch includes v (resp.,
NG[U](v)) into C, which decreases the measure by 1 (resp.,
|NG[U](v)| ≥ 4). Hence we have the recurrence (1). �

Lemma 9: When algorithm RLEDS branches on a vertex
v satisfying condition (c-2) in G[U2] with a neighbor u of v,
the measure change meets the following recurrence:

T (τ) ≤ 2T (τ − 2), (2)

which solves to T (τ) = O(1.4143k).

Proof. The first branch includes vertex v into C, and
then Reduction rule 2 is applied to vertex u, implying that
NG[U2](u) is included into C before the next branching. Since
dG[U2](u) ≥ 2, the measure decreases by at least |NG[U](u)| ≥
2. The second branch includes NG[U2](v) into C, implying
that the measure decreases by |NG[U](v)| ≥ 2. Hence we
have the recurrence (2). �

The next lemma is used to prove Lemma 11 and
Lemma 13.

Lemma 10: Let (G,C,D) be a reduced instance where
U2 � ∅ and no vertex in G[U2] satisfies condition (c-2).
Then G[U2] has a unique perfect matching M, it holds
M = MG ∩ E(G[U2]), and each edge in M joins a vertex
of degree 1 and a vertex of degree 2 or 3 in G[U2], while
each edge in E(G[U2]) \ M joins vertices of degree 2 or 3.

Proof. Each vertex in U2 of degree at most 3 in G[U2]
because no vertex satisfies in U2 condition (c-1). Since v
does not satisfy condition (c-2), it holds dG[U2](u) = 1 or
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Fig. 2 A connected component H with r ≥ 3 in G[U2] when none of con-
ditions (c-1), (c-2) and (c-3) is applicable to a reduced instance (G,C,D).

dG[U2](v) = 1 . At least one of u and v is of degree 2 or 3,
since otherwise G[U2] would contain a clique component of
size 2. Then G[U2] has a unique perfect matching M, which
must be equal to MG ∩ E(G[U2]) by Lemma 6(c). Clearly
any edge in G[U2] incident to a vertex of degree 1 must be
in the maximum matching M. �

Lemma 11: When algorithm RLEDS branches on a vertex
v satisfying condition (c-3) in G[U2] with a neighbor u of v,
the measure change meets the following recurrence:

T (τ) ≤ 2T (τ − 2), (3)

which solves to T (τ) = O(1.4143k).

Proof. Since v satisfies condition (c-3), it has a neighbor
u ∈ U2 with dG[U2](u) = 2, where uv � MG since v does
not satisfy condition (c-2). By Lemma 10, the other neigh-
bor w ∈ U2 of u in G[U2] is of degree 1. Therefore after
the first branch includes v into C, vertices u and w induce
a clique component of size 2 and will be included into U1.
This implies that the measure decreases in total by 2 after
the first branch. In the second branch, NG[U](v) is included
into C and the measure decreases by |NG[U](v)| ≥ 2. Hence
we have the recurrence (3). �

Lemma 12: Let (G,C,D) be a reduced instance where no
vertex in G[U2] satisfies any of conditions (c-1), (c-2) and
(c-3). Then any connected component H in G[U2] consists
of a cycle of length r ≥ 3 and r vertices of degree 1 adjacent
to each vertex in C, as illustrated in Fig. 2.

Proof. From Lemma 10, we see that any edge uv ∈ E(H) \
MG such that the degree of u or v is 2 satisfies that condition
(c-3). Hence now no such edge exists and each vertex in H
is of degree either 1 or 3. This determines the structure of H
to be a union of a perfect matching M on V(H) and a cycle
C of length |V(H)|/2 that visits exactly one of the endpoints
of each edge in M. Since |C| ≥ 3 in a simple graph, it holds
|V(H)| ≥ 6. �

Lemma 13: When algorithm RLEDS branches on a vertex
v satisfying condition (c-4) in G[U2], the measure change
meets the following recurrence:

T (τ) ≤ 3T (τ − 3), (4)

which solves to T (τ) = O(1.44225k).

Proof. By Lemma 12, the connected component H in G[U2]
containing the vertex v consists of a set {ui, vi | i = 1, . . . , r}

of 2r ≥ 6 vertices, where v = v1, and a set {uivi, vivi+1 | i =
1, . . . , r} of 2r edges, where vr+1 = v1.

After the first branch includes v = v1 into C decreasing
the measure by 1, vertex u1 will be moved to D by Reduction
rule 2. In the resulting graph G[U \ {v1, u1}], both vertices v2
and vr become of degree 2 in G[U \ {v1, u1}], which are adja-
cent to vertices u2 and ur of degree 1, respectively; therefore
each of v3 and vr−1 satisfies condition (c-3) in G[U \{v1, u1}].
Note that no vertex in V(H) satisfies condition (c-1) or (c-2)
in G[U \ {v1, u1}], since no vertex in V(H) is of degree at
least 4 in G[U \ {v1, u1}] and every edge e ∈ E(H) is adja-
cent to an endpoint of degree 1 in G[U \ {v1, u1}] or e � MG

by Lemma 12. Then the algorithm branches on a vertex
in G[U \ {v1, u1}] satisfying condition (c-3) with the recur-
rence (3).

The second branch includes NG[U](v1) into C decreas-
ing the measure by |NG[U](v1)| = 3.

Therefore we have the following recurrence:

T (τ) ≤ 2T (τ − 1 − 2) + T (τ − 3) = 3T (τ − 3),

which is the recurrence (4). �

Proof of Theorem 7. Among all the recurrences (1), (2),
(3) and (4), the maximum branch factor 1.44225 is at-
tained by recurrence (4). Note that the measure τ is at
most μ(G). Therefore the algorithm solves the problem in
O∗(1.44225τ) = O∗(1.44225μ(G)) = O∗(2.0801μ(G)/2) time.

�

5. Conclusions

In this paper, we have studied Lowest EdgeDominating Set,
which asks us to test whether a given graph G has an edge
dominating set whose size is equal to �μ(G)/2�, a lower
bound on the size of an edge dominating set of G. We proved
that the problem remains NP-complete and showed that it
admits an O∗(2.0801μ(G)/2)-time and polynomial-space al-
gorithm, whose time bound is better than the currently best
bound O∗(2.2351μ(G)/2) to Parameterized Edge Dominating
Set [7]. We see that the bottleneck of the time bound is at-
tained by the branching on a vertex in a component in G[U2]
mentioned in Lemma 12 with r = 3.

There arises a further question: for another parame-
ter Δ ≥ 0, the problem of testing whether a given graph G
has an edge dominating set of size at most �μ(G)/2� + Δ
or not can be solved in O∗(2.2351μ(G)/2 · 2.2351Δ) time by
setting k = �μ(G)/2� + Δ in the O∗(2.2351k)-time algo-
rithm to Parameterized Edge Dominating Set [7]. Does the
problem admit an algorithm with a better time bound, say
O∗(2.0801μ(G)/2 · 2.2351Δ)? Notice that for Δ = 0, we have
shown that it can be solved in O∗(2.0801μ(G)/2) time.
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