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Autoreducibility and Completeness for Partial Multivalued
Functions

Shuji ISOBE†a), Member and Eisuke KOIZUMI†b), Nonmember

SUMMARY In this paper, we investigate a relationship between many-
one-like autoreducibility and completeness for classes of functions com-
puted by polynomial-time nondeterministic Turing transducers. We prove
two results. One is that any many-one complete function for these classes
is metric many-one autoreducible. The other is that any strict metric many-
one complete function for these classes is strict metric many-one autore-
ducible.
key words: partial multivalued function, autoreduction, many-one-like re-
duction

1. Introduction

Many computational problems are formulated as functional
problems. This problem asks, for any given input x, to com-
pute a witness of the membership in some specified lan-
guage. Functional problems form a class of partial mul-
tivalued functions. In this paper, we focus on the classes
NPMV and NPMVg of functions computed by polynomial-
time non-deterministic Turing transducers. These classes
contain the witness functions for NP languages, the function
which maps each string x in an NP language L to strings
which witness the membership of x in L, and the inverse
functions of (possibly) one-way functions such as the inte-
ger factoring function and the discrete logarithm function.

It is well known in the complexity theory that there are
many cases in which functions can be reduced to some asso-
ciated languages. For example, the discrete logarithm func-
tion DL(p, g, y) over a prime field Fp can be reduced to an
NP language {(p, g, y, k) | DL(p, g, y) ≤ k} by a simple bi-
nary search method. Another example is the graph isomor-
phism problem: for given two isomorphic graphs, an iso-
morphism (permutations of vertices) can be found by using
the decisional oracle which recognizes whether or not any
given two graphs are isomorphic. Therefore, one may nat-
urally expect that the complexity properties of many func-
tions can be characterized by the complexity of those asso-
ciated languages.

On the other hand, there are also cases in which the
complexity of functions may not be characterized by the
“underlying” languages. Let us consider the #P-complete
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function #SAT: for any given boolean formula φ, #SAT(φ)
is the number of satisfying assignments of φ. If the function
#SAT reduces to the NP-complete language SAT, then the
polynomial-time hierarchy PH would collapse to the second
level by Toda’s theorem [10]. This observation suggests that
#P functions may not reduce to NP languages, and that com-
puting #P functions may be strictly harder than recognizing
the underlying languages.

The complexity-theoretic property we are interested in
is the autoreducibility. A language A is said to be autore-
ducible if, for any string x, the membership of x in A reduces
to the membership, in A, of several strings other than x.
Studying the autoreducibility of complete languages is quite
important since one can lead to characterizations and separa-
tions of complexity classes (e.g. [1], [5]). One can similarly
define the autoreducibility of functions, which has also been
used in the study on classes of counting functions [2], [8].

Glaßer et al. [5] proved that any complete language
for NP and PSPACE is many-one autoreducible. Then
Faliszewski and Ogihara [2] proved similar results for the
classes #P, SpanP and GapP of single-valued functions.
Our intention is to show that similar results still hold for
the classes NPMV and NPMVg of partial multivalued func-
tions. We first consider the many-one reduction (Defini-
tion 2.3), and show that any many-one complete function is
metric many-one autoreducible (Theorem 1). We next con-
sider a new reduction named the strict metric many-one re-
duction (Definition 2.4). This reduction is motivated by a
simple observation of relationships between SAT and other
languages in NP (see Sect. 2). We prove that any strict met-
ric many-one complete function is strict metric many-one
autoreducible (Theorem 2).

Faliszewski and Ogihara [2] pointed out that their re-
sults show that the notions of the length-decreasing self-
reducibility (see Definition 2.7 of [2]) and the autoreducibil-
ity are different both on complete languages for NP and
PSPACE and on complete functions for #P, SpanP and
GapP. Even though our result does not directly lead to sep-
arations of complexity classes, the results of ours and Huh et
al. [6] show that the same point as Faliszewski and Ogihara’s
one applies for the classes NPMV and NPMVg. More con-
cretely, the results imply that there exists a complete func-
tion for NPMV or NPMVg which is autoreducible but not
length-decreasing self-reducible unless P = NP.

This paper is organized as follows: Definitions and no-
tations are given in Sect. 2. We state our results, and give
their proofs in Sect. 3.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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2. Preliminaries

Let Σ = {0, 1}, and let Σ∗ be the set of all strings over Σ
of finite length. For a subset X ⊆ Σ∗, let #X denote the
cardinality of X. One can define the standard lexicographic
order � on Σ∗. For a string x, succ(x) denotes the successor
of x.

We first refer to the notions of functions and Turing
transducers stated in [4] and [6]. Let X and Y be subsets of
Σ∗. A (partial multivalued) function from X to Y is a map
from X to the power set of Y . Let f be a function from X to
Y . Then the set X is called the domain of f , and is denoted
by dom f . For each string x ∈ dom f , we set

graph f = {(x, y) ∈Σ∗ × Σ∗ | x ∈ dom f and y ∈ f (x)}.
A function f is said to be single-valued if f (x) is a singleton
set for each x ∈ dom f . When f is single-valued, we regard
f (x) as a string of Σ∗.

We use nondeterministic Turing transducers which
equip an input tape and an output tape in order to compute
functions. We assume that each Turing transducer has a spe-
cial tape symbol ⊥ which is not contained in Σ. We also
assume that, for any input string x, each Turing transducer
always outputs a string y or the symbol ⊥, and then halts.
For a Turing transducer M, we write M(x) 	→ y if there ex-
ists a computation path in M such that M outputs the string
y on the input string x. We now define a computation of
functions by Turing transducers.

Definition 2.1: A Turing transducer M computes a func-
tion f if for any pair (x, y) ∈ Σ∗ × Σ∗, M(x) 	→ y if and only
if y ∈ f (x).

Let M be a Turing transducer which computes a func-
tion f . It follows from this definition that there exists a com-
putation path in M such that M outputs a string y ∈ Σ∗ with
(x, y) ∈ graph f for any x ∈ dom f . This means that M non-
deterministically recognizes the language dom f . Note that
M may output ⊥ even if x ∈ dom f , although the special
tape symbol ⊥ is not contained in Σ. On the other hand, M
always outputs ⊥ whenever x � dom f .

We briefly refer to some complexity classes of func-
tions [3]. NPMV is the set of all functions which can be com-
puted by a nondeterministic polynomial-time Turing trans-
ducer. NPMVg is the set of functions f ∈ NPMV such that
graph f ∈ P. FP is the set of single-valued functions which
can be computed by a polynomial-time deterministic Turing
transducer.

We now recall two many-one-like reductions: the met-
ric many-one and the many-one reductions [6]. Intuitively,
one can make only one query to the oracle in these reduc-
tions.

Definition 2.2 ([6]): A function f is metric many-one
(≤p

met-) reducible to a function g, denoted by f ≤p
met g, if

there exist two functions ψ, ϕ ∈ FP such that the following
conditions hold for any x ∈ Σ∗:

(i) if x ∈ dom f , then ψ(x) ∈ dom g and ϕ(x, z) ∈ f (x)
follows for any z ∈ g(ψ(x)), and

(ii) if x � dom f , then (x, z) � domϕ holds for any z ∈
g(ψ(x)).

Definition 2.3 ([6]): A function f is many-one (≤p
m-) re-

ducible to a function g, denoted by f ≤p
m g, if there exist

two functions ψ, ϕ ∈ FP such that the following conditions
hold for any x ∈ Σ∗:

(i) if x ∈ dom f , then ψ(x) ∈ dom g and ϕ(z) ∈ f (x) fol-
lows for any z ∈ g(ψ(x)), and

(ii) if x � dom f , then z � domϕ holds for any z ∈ g(ψ(x)).

A function f is ≤p
met-complete for FC if f ∈ FC and

g ≤p
met f holds for any function g ∈ FC. The completeness

is also defined for the many-one reducibility.
In this paper, we define another many-one-like reduc-

tion, the strict metric many-one reduction.

Definition 2.4: A function f is strict metric many-one
(≤p

s-met-) reducible to a function g, denoted by f ≤p
s-met g,

if there exist two functions ψ, ϕ ∈ FP such that the follow-
ing conditions hold for any x ∈ Σ∗:

(i) x ∈ dom f if and only if ψ(x) ∈ dom g, and
(ii) if x ∈ dom f , then ϕ(x, z) ∈ f (x) follows for any z ∈

g(ψ(x)).

The notion of the strict metric many-one reduction is
motivated by a simple observation of relationships between
SAT and other languages in NP: We note that any function
in NPMVg can be expressed as a witness function witA of
some language A ∈ NP (Proposition 2.2 of [4]). Let sat
be a witness function of SAT, that is, for each φ ∈ SAT,
sat outputs a satisfying assignment of φ which witnesses
that φ ∈ SAT. For any language A ∈ NP, there exists a
reduction ψ from A to SAT such that, using the reduction ψ,
one can easily extract a string y witnessing the membership
x ∈ A from a satisfying assignment z of the Boolean formula
ψ(x) (the proof of Theorem 13 of [9]). Hence, sat is ≤p

s-met-
complete for NPMVg.

This fact also shows that A ≤p
m SAT implies witA ≤p

s-met
sat, that is, SAT has a “witness-preserving” property. Many
concrete NP-complete languages also have such a property,
and hence, their witness functions are ≤p

s-met-complete for
NPMVg. However, it is still open whether the witness-
preserving property holds for any language L in NP (see
also Remark in Sect. 3 of [6]).

We now consider a relationship between the metric
many-one and the strict metric many-one reductions. As-
sume that f ≤p

s-met g and that x � dom f . Then we have
ψ(x) � dom g, that is, g(ψ(x)) = ∅, and the condition (ii) of
Definition 2.2 trivially holds. So f ≤p

s-met g implies f ≤p
met g.

Let us consider whether the converse holds. We define two
functions f and g by

dom f = SAT, f (x) = {(1, y) | y ∈ sat(x)},
dom g = BF,
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g(x) =

⎧⎪⎪⎨⎪⎪⎩
{(1, y) | y ∈ sat(x)} if x ∈ SAT,

{0} if x ∈ BF \ SAT,

where BF be the set of all the Boolean formulas. We also
define two single-valued functions ψ and ϕ by

domψ = Σ∗, ψ(x) = x,

domϕ = Σ∗ × (Σ∗ \ {0}), ϕ(x, z) = z.

Then we see that f ≤p
met g via ψ and ϕ. On the other hand,

if f ≤p
s-met g, then SAT ≤p

m BF follows. This means that
P = NP holds. Hence, it is unlikely that f ≤p

met g implies
f ≤p

s-met g for any functions f and g.
Huh et al. [6] defined the notion of strong metric many-

one reduction: A function f is strong metric many-one re-
ducible to a function g if f ≤p

met g and the following equation
hold for any x ∈ dom f :

{ϕ(x, z) | z ∈ g(ψ(x))} = f (x).

This means that any string y ∈ f (x) can be obtained by
ϕ(x, z) for some string z ∈ g(ψ(x)). The strong metric many-
one reduction bears no immediate relationship to the strict
one.

In this paper, we consider the many-one-like autore-
ducibility and completeness for NPMV and NPMVg. The
informal definition of the autoreducibility is stated in Intro-
duction. One can naturally apply this definition to many-
one-like reductions. Here, we only state the definition of
metric many-one autoreducibility. The strict metric many-
one autoreducibility is similarly defined.

Definition 2.5: A function f is metric many-one (≤p
met-)

autoreducible if there exist two functions ψ, ϕ ∈ FP such
that the following conditions hold for any x ∈ Σ∗:

(i) ψ(x) � x,
(ii) if x ∈ dom f , then ψ(x) ∈ dom f and ϕ(x, z) ∈ f (x)

follows for any z ∈ f (ψ(x)), and
(iii) if x � dom f , then (x, z) � domϕ holds for any z ∈

f (ψ(x)).

3. Autoreducibility and Completeness for Functions

3.1 Statement of the Result

Let FC denote one of NPMV and NPMVg in this section.
We first consider the many-one reduction.

Theorem 1: Let f be ≤p
m-complete for FC with # dom f ≥

2. Then f is ≤p
met-autoreducible.

Corollary 4.6 of [2] implies that any ≤p
m-complete func-

tion for #P is ≤p
met-autoreducible. So Theorem 1 shows that

a similar result holds even when the class #P is replaced
with the class NPMV or NPMVg.

It is natural to ask whether a result similar to Theo-
rem 1 holds for ≤p

met-complete functions. We do not have a
complete answer to this question. Alternatively, as a partial

answer, we show a result for ≤p
s-met-complete functions. We

note that the set of ≤p
s-met-complete functions are contained

in that of ≤p
met-complete ones.

Theorem 2: Let f be ≤p
s-met-complete for FC with

# dom f ≥ 2. Then f is ≤p
s-met-autoreducible, and hence,

f is ≤p
met-autoreducible.

We prove the theorems in Sects. 3.2 and 3.3, respec-
tively.

We use a function version of the left set technique [7]
in order to prove these theorems: In brief, we define another
function fL ∈ NPMVg ⊆ NPMV for any complete function
f ∈ FC, and we show that f is autoreducible by using the
fact that fL reduces to f . We devote the rest of this subsec-
tion to constructing fL from f .

Let f be any function for FC, and let Mf be a nonde-
terministic polynomial-time Turing transducer which com-
putes f . Without loss of generality, we can assume that on
an input string x, all the (computation) paths of Mf are ex-
actly of length p(|x|) for some polynomial p, where |x| de-
notes the length of x. Namely, Mf halts with some output in
just p(|x|) steps. For an input string x, let Mf (x;w) denote
the output of Mf along the path w.

We define a function fL as follows:

dom fL = {(x, w) | |w| = p(|x|),
w � ∃w0 [Mf (x;w0) � ⊥]}

and

fL(x, w) = {(w0, y) | w � w0, Mf (x;w0) = y}.
Then the following lemma immediately holds from the def-
inition of the function fL:

Lemma 3.1: The function fL satisfies the following prop-
erties:

(L1) fL ∈ NPMVg,
(L2) x ∈ dom f if and only if (x, 0p(|x|)) ∈ dom fL,
(L3) if (w0, y) ∈ fL(x, w), then y ∈ f (x), and
(L4) if (x, w) ∈ dom fL and Mf (x;w) = ⊥, then

(x, succ(w)) ∈ dom fL.

Remark : The left set technique was used in order to clar-
ify a relationship between many-one-like completeness and
autoreducibility for the classes NP [5] and #P [2]. We note
that our results does not directly follow from their results
even though our ones look similar to their ones.

The construction of fL stated above is inspired by the
proof of Theorem 4.5 of [2]. However, our proof is not
a simple application of their proof since the function con-
structed in it is a single-valued function from Σ∗ to N, not a
partial multivalued function.

We next consider the following statements (see also
Sect. 3 of [6]):

(i) If a function f is ≤p
s-met-autoreducible, then dom f is

≤p
m-autoreducible.

(ii) If a language L is ≤p
m-complete for NP, then its witness
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(P0) Input a string x.
(P1) If x = x1, then set x0 = x2. Otherwise, set x0 = x1.
(P2) Compute x′ = ψ1(x, 0p(|x|)).
(P3) If x′ � x, then output x′, and halt.
(P4) Compute x′′ = ψ1(x, 1p(|x|)).
(P5) If x′′ = x, then

• if M f (x; 1p(|x|)) � ⊥, then output x0, and halt.
• otherwise, output ⊥, and halt.

(P6) Find a string w of length p(|x|) such that ψ1(x, w) = x and
ψ1(x, succ(w)) � x by the standard binary search.

(P7) If M f (x;w) � ⊥, then output x0, and halt. Otherwise, output
ψ1(x, succ(w)), and halt.

Fig. 1 Construction of Mψ

(Q0) Input a tuple (x, z).
(Q1) If z = ⊥, then output ⊥, and halt.
(Q2) Compute x′ = ψ1(x, 0p(|x|)).
(Q3) If x′ � x, then output ϕ2

1(z), and halt.
(Q4) Compute x′′ = ψ1(x, 1p(|x|)).
(Q5) If x′′ = x, then output M f (x; 1p(|x|)), and halt.
(Q6) Find a string w of length p(|x|) such that ψ1(x, w) = x and

ψ1(x, succ(w)) � x by the standard binary search.
(Q7) If M f (x;w) � ⊥, then output M f (x;w), and halt. Otherwise, output

ϕ2
1(z), and halt.

Fig. 2 Construction of Mϕ

function witL is ≤p
s-met-complete for NPMVg.

Theorem 2 follows from Theorem 3.1 of [5] if both the state-
ments hold. Conversely, their theorem follows from our one
if the converses of the statements (i) and (ii) hold. How-
ever, it is not known whether these statements (and their
converses) hold.

3.2 Proof of Theorem 1

Let f be ≤p
m-complete for FC with # dom f ≥ 2, and let

x1, x2 ∈ dom f be two distinct strings. Since fL ≤p
m f , there

exist two functions ϕ1, ψ1 ∈ FP such that the following two
conditions hold:

(C1) If (x, w) ∈ dom fL, then ψ1(x, w) ∈ dom f and ϕ1(z) =
(ϕ1

1(z), ϕ2
1(z)) ∈ fL(x, w) follows for any z ∈ f (ψ1(x, w)),

and
(C2) if (x, w) � dom fL, then z � domϕ1 holds for any z ∈

f (ψ1(x, w)).

In order to define two functions ψ and ϕ, we construct
Turing transducers Mψ and Mϕ. These transducers are de-
picted in Figs. 1 and 2, respectively.

Note that Steps (P6) and (Q6) are concretely executed
as follows:

(B1) Set w1 = 0p(|x|) and w2 = 1p(|x|).
(B2) While succ(w1) � w2, repeat the following procedure:

• Let w′ be the middle string between w1 and w2.
• If ψ1(x, w′) = x, then set w1 = w

′. Otherwise, set
w2 = w

′.

(B3) Set w = w1.

By the definition, we see that ψ, ϕ ∈ FP and that ψ(x) �
x for any x ∈ Σ∗.
Lemma 3.2: If x ∈ dom f , then ψ(x) ∈ dom f follows.

Proof. (I) Assume that Mψ halts in Step (P3). We have

x ∈ dom f

=⇒ (x, 0p(|x|)) ∈ dom fL (by (L2))

=⇒ ψ(x) = x′ = ψ1(x, 0p(|x|)) ∈ dom f . (by (C1))

(II) Assume that Mψ halts in Step (P5). We note that x =
x′ = x′′.

If Mf (x; 1p(|x|)) � ⊥, then x ∈ dom f immediately fol-
lows.

Assume that Mf (x; 1p(|x|)) = ⊥. Since (x, 1p(|x|)) �
dom fL, we have z � domϕ1 for any z ∈ f (x) =
f (ψ1(x, 1p(|x|))) = f (ψ1(x, 0p(|x|))) by the condition (C2).
We see (x, 0p(|x|)) � dom fL from the condition (C1), and
x � dom f follows. Consequently, in this case, we have

• if x ∈ dom f , then Mf (x; 1p(|x|)) � ⊥ and ψ(x) = x0 ∈
dom f hold, and
• if x � dom f , then Mf (x; 1p(|x|)) = ⊥ and ψ(x) = ⊥

hold.

(III) Assume that Mψ halts in Step (P7). If x ∈ dom f and
Mf (x;w) � ⊥, then ψ(x) = x0 ∈ dom f holds.

Assume that x ∈ dom f and that Mf (x;w) = ⊥. Then
ψ1(x, w) = ψ1(x, 0p(|x|)) = x ∈ dom f follows. Since
(x, 0p(|x|)) ∈ dom fL, we have z ∈ domϕ1 for any z ∈
f (ψ1(x, 0p(|x|))) = f (ψ1(x, w)) by the condition (C1). So,
(x, w) ∈ dom fL follows from the condition (C2). We have
(x, succ(w)) ∈ dom fL by the property (L4), and hence,
ψ(x) = ψ1(x, succ(w)) ∈ dom f follows. �

Lemma 3.3: If x ∈ dom f , then ϕ(x, z) ∈ f (x) follows for
any z ∈ f (ψ(x)).

Proof. (I) Assume that Mϕ halts in Step (Q3). Then we
have ψ(x) = x′ = ψ1(x, 0p(|x|)). If x ∈ dom f , since
(x, 0p(|x|)) ∈ dom fL, we have ϕ1(z) ∈ fL(x, 0p(|x|)) for any
z ∈ f (ψ1(x, 0p(|x|))) = f (ψ(x)). This implies that ϕ(x, z) =
ϕ2

1(z) ∈ f (x).
(II) Assume that Mϕ halts in Step (Q5). In this case,
Mf (x; 1p(|x|)) � ⊥ holds if x ∈ dom f by the argument
(II) of the proof of Lemma 3.2. So we have ϕ(x, z) =
Mf (x; 1p(|x|)) ∈ f (x).
(III) Assume that Mϕ halts in Step (Q7). If x ∈ dom f and
Mf (x;w) � ⊥, then we have ϕ(x, z) = Mf (x;w) ∈ f (x).

Assume that x ∈ dom f and that Mf (x;w) = ⊥.
By the argument (III) of the proof of Lemma 3.2, we
have (x, succ(w)) ∈ dom fL and ψ(x) = ψ1(x, succ(w)) ∈
dom f . Then ϕ1(z) ∈ fL(x, succ(w)) follows for any z ∈
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f (ψ1(x, succ(w))) = f (ψ(x)). This implies that ϕ(x, z) =
ϕ2

1(z) ∈ f (x). �

Lemma 3.4: If x � dom f , then (x, z) � domϕ holds for
any z ∈ f (ψ(x)).

Proof. We first note that (x, w) � dom fL holds for any string
w of the length p(|x|) if x � dom f .
(I) Assume that Mψ halts in Step (P3). Since (x, 0p(|x|)) �
dom fL, we have z � domϕ1 for any z ∈ f (ψ1(x, 0p(|x|))) =
f (ψ(x)). This shows that ϕ(x, z) = ϕ2

1(z) = ⊥.
(II) Assume that Mψ halts in Step (P5). Since x � dom f ,
ψ(x) = ⊥ follows from the argument (II) of the proof of
Lemma 3.2.
(III) Assume that Mψ halts in Step (P7). Since Mf (x;w) =
⊥, ψ(x) = ψ1(x, succ(w)) follows. By the same argument as
(I), we see that z � domϕ1 for any z ∈ f (ψ1(x, succ(w))) =
f (ψ(x)), and hence, ϕ(x, z) = ϕ2

1(z) = ⊥ follows. �

This completes the proof of Theorem 1.

Remark : On an input tuple (x, z), the Turing transducer
Mϕ first computes the string ψ(x), and then outputs an ap-
propriate string. We can show that f is ≤p

m-autoreducible if
one can efficiently compute the appropriate string only from
z, without knowing x. In general, it is not known whether
computing x from z ∈ f (ψ(x)) is easy. If ψ(x) = ψ1(x, 0p(|x|))
or ψ1(x, succ(w)), then ϕ2

1(z) ∈ f (x) follows for any z ∈
f (ψ(x)). However, when ψ(x) = x0, ϕ2

1(z) ∈ f (x) does not
necessarily hold for any z ∈ f (x0). Hence, it seems hard to
show that f is ≤p

m-autoreducible.

3.3 Proof of Theorem 2

Let f be any ≤p
s-met-complete function for FC with

# dom f ≥ 2, and let x1, x2 ∈ dom f be two distinct strings.
Since fL ≤p

s-met f follows, there exist two functions ϕ2, ψ2 ∈
FP such that the following two conditions hold:

(C3) (x, w) ∈ dom fL if and only if ψ2(x, w) ∈ dom f , and
(C4) if (x, w) ∈ dom fL, then

ϕ2((x, w), z) = (ϕ1
2((x, w), z), ϕ2

2((x, w), z))

∈ fL(x, w)

follows for any z ∈ f (ψ2(x, w)).

We construct Turing transducers Mψ̃ and Mϕ̃, depicted

in Figs. 3 and 4, which compute ψ̃ and ϕ̃, respectively.
In Steps (P̃6) and (Q̃6), the transducers execute the pro-

cedure similar to that stated in the previous subsection.
By the definition, we see that ψ̃, ϕ̃ ∈ FP and that ψ̃(x) �

x for any x ∈ Σ∗.
Lemma 3.5: x ∈ dom f if and only if ψ̃(x) ∈ dom f .

Proof. (I) Assume that Mψ̃ halts in Step (P̃3). Then we have

x ∈ dom f

⇐⇒ (x, 0p(|x|)) ∈ dom fL (by (L1))

(P̃0) Input a string x.
(P̃1) If x = x1, then set x0 = x2. Otherwise, set x0 = x1.
(P̃2) Compute x′ = ψ2(x, 0p(|x|)).
(P̃3) If x′ � x, then output x′, and halt.
(P̃4) Compute x′′ = ψ2(x, 1p(|x|)).
(P̃5) If x′′ = x, then

• if M f (x; 1p(|x|)) � ⊥, then output x0, and halt.
• otherwise, output ⊥, and halt.

(P̃6) Find a string w of length p(|x|) such that ψ2(x, w) = x and
ψ2(x, succ(w)) � x by the standard binary search.

(P̃7) If M f (x;w) � ⊥, then output x0, and halt. Otherwise, output
ψ2(x, succ(w)), and halt.

Fig. 3 Construction of Mψ̃

(Q̃0) Input a tuple (x, z).
(Q̃1) If z = ⊥, then output ⊥, and halt.
(Q̃2) Compute x′ = ψ2(x, 0p(|x|)).
(Q̃3) If x′ � x, then output ϕ2

2((x, 0p(|x|)), z), and halt.
(Q̃4) Compute x′′ = ψ2(x, 1p(|x|)).
(Q̃5) If x′′ = x, then output M f (x; 1p(|x|)), and halt.
(Q̃6) Find a string w of length p(|x|) such that ψ2(x, w) = x and

ψ2(x, succ(w)) � x by the standard binary search.
(Q̃7) If M f (x;w) � ⊥, then output M f (x;w), and halt. Otherwise, output

ϕ2
2((x, succ(w)), z), and halt.

Fig. 4 Construction of Mϕ̃

⇐⇒ ψ̃(x) = x′ = ψ2(x, 0p(|x|)) ∈ dom f . (by (C3))

(II) Assume that Mψ̃ halts in Step (P̃5). We have

Mf (x; 1p(|x|)) � ⊥
⇐⇒ (x, 1p(|x|)) ∈ dom fL

⇐⇒ x = ψ2(x, 1p(|x|)) ∈ dom f . (by (C3))

Hence, if x ∈ dom f , then ψ̃(x) = x0 ∈ dom f follows. On
the other hand, we have ψ̃(x) = ⊥ when x � dom f .
(III) Assume that Mψ̃ halts in Step (P̃7). If x � dom f , then
Mf (x;w) = ⊥ and (x, succ(w)) � dom fL hold. So we have
ψ̃(x) = ψ2(x, succ(w)) � dom f by the condition (C3).

If x ∈ dom f and M(x;w) � ⊥, then we have ψ̃(x) =
x0 ∈ dom f . Assume that x ∈ dom f and that Mf (x;w) = ⊥.
Since ψ2(x, w) = x ∈ dom f , we have (x, w) ∈ dom fL.
Hence, (x, succ(w)) ∈ dom fL follows from the property
(L4), and we see that ψ̃(x) = ψ2(x, succ(w)) ∈ dom f . �

By arguments similar to the proof of Lemma 3.3, we
have the following lemma:

Lemma 3.6: If x ∈ dom f , then ϕ̃(x, z) ∈ f (x) follows for
any z ∈ f (ψ̃(x)).

This completes the proof of Theorem 2.

Remark : Assume that f is ≤p
met-complete and that Mψ̃
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halts in Step (P̃5). If one can show that x ∈ dom f im-
plies that Mf (x; 1p(|x|)) � ⊥, then we can prove that f is
≤p

met-autoreducible by the argument similar to the proof of
Theorem 1. Let us assume that Mf (x; 1p(|x|)) = ⊥. Since
(x, 1p(|x|)) � dom fL, we have ((x, 1p(|x|)), z) � domϕ2 for any
z ∈ f (ψ2(x, 1p(|x|))) = f (x) = f (ψ2(x, 0p(|x|))). In order to
prove x � dom f , we try to show either of the following two
statements only from x:

(i) (x, 0p(|x|)) � dom fL,
(ii) ((x, 0p(|x|)), z) � domϕ2 for some z ∈ f (x).

In general, we need to compute Mf (x;w) for all w, and it
seems hard to efficiently do this.

We finally note that one can avoid this difficulty in the
proof of Theorem 1: Since fL ≤p

m f , z � domϕ1 holds for
any z ∈ f (ψ1(x, 1p(|x|))) = f (ψ1(x, 0p(|x|))) = f (x) by the
condition (C1). We therefore have (x, 0p(|x|)) � dom fL.
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