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SUMMARY In this paper we study a recently proposed variant of the
facility location problem, called the r-gathering problem. Given an integer
r, a set C of customers, a set F of facilities, and a connecting cost co(c, f )
for each pair of c ∈ C and f ∈ F, an r-gathering of customers C to facilities
F is an assignment A of C to open facilities F′ ⊆ F such that at least r cus-
tomers are assigned to each open facility. We give an algorithm to find an
r-gathering with the minimum cost, where the cost is maxc∈C{co(c, A(c))},
when all C and F are on the real line.
key words: algorithm, facility location

1. Introduction

The facility location problem and many of its variants are
studied [5], [6]. In the basic facility location problem we are
given (1) a set C of customers, (2) a set F of facilities, (3)
an opening cost op( f ) for each f ∈ F, and (4) a connecting
cost co(c, f ) for each c ∈ C and f ∈ F, then we open a
subset F′ ⊆ F of facilities and find an assignment A of C to
F′ such that a designated cost is minimized.

In this paper we study a recently proposed variant of
the facility location problem, called the r-gathering prob-
lem [4], [9], [10]. An r-gathering of customers C to facili-
ties F is an assignment A of C to open facilities F′ ⊆ F such
that at least r customers are assigned to each open facility.
This means each open facility has enough number of cus-
tomers. We assume |C| ≥ r holds. Then we define the cost of
(the max version of) a gathering as maxc∈C{co(c, A(c))}. (We
assume op( f ) = 0 for each f ∈ F in the paper.) The min-
max version of the r-gathering problem finds an r-gathering
having the minimum cost. For the min-sum version see the
brief survey in [4].

Assume that F is a set of locations for emergency shel-
ters, and co(c, f ) is the time needed for a person c ∈ C to
reach a shelter f ∈ F. Then an r-gathering corresponds
to an evacuation assignment such that each opened shelter
serves at least r people, and the r-gathering problem finds
an evacuation plan minimizing the evacuation time span.

Armon [4] gave a simple 3-approximation algorithm
for the r-gathering problem and proves that with assump-
tion P � NP the problem cannot be approximated within a
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factor of less than 3 for any r ≥ 3. In this paper we give
an O((n + m) log(n + m)) time algorithm, where n = |C| and
m = |F|, to solve the r-gathering problem when all C and F
are on the real line.

The remainder of this paper is organized as follows.
Section 2 gives an algorithm to solve a decision version of
the r-gathering problem. Section 3 contains our main al-
gorithm for the r-gathering problem. Sections 4, 5 and 6
present more algorithms to solve three similar problems. Fi-
nally Sect. 7 is a conclusion.

2. (k, r)-Gathering on the Line

In this section we give a linear time algorithm to solve a
decision version of the r-gathering problem [3].

Given customers C = {c1, c2, . . . , cn} and facilities
F = { f1, f2, . . . , fm} on the real line (we assume they are
distinct coordinates and appear in those order from left to
right, respectively) and four numbers i, j, k and r, then
problem P( j, i) finds an assignment A of customers Ci =

{c1, c2, . . . , ci} to open facilities F′j ⊆ F j = { f1, f2, . . . , f j}
such that (1) at least r customers are assigned to each open
facility, (2) co(c, A(c)) ≤ k for each c ∈ Ci and (3) f j ∈ F′j.
Here co(c, f ) is the distance between c ∈ C and f ∈ F, (2)
implies each customer is assigned to a near facility, and (3)
implies the rightmost facility is forced to open. We first re-
move from F each f ∈ F having at most r − 1 customers in
interval [ f − k, f + k] (since such f never open), then check
if there is a customer c ∈ C having no f ∈ F within distance
k (since if there is then there is no r-gathering). We can do
these in O(n + m) time.

An assignment A of Ci to F j is called monotone if, for
any pair ci′ , ci of customers with i′ < i, A(ci′ ) ≤ A(ci) holds.
In a monotone assignment the interval induced by the as-
signed customers to a facility never intersects other interval
induced by the assigned customers to another facility. We
can observe that if P( j, i) has a solution then P( j, i) also has
a monotone solution. Also we can observe that if P( j, i) has
a solution and co(ci+1, f j) ≤ k then P( j, i + 1) also has a so-
lution. If P( j, i) has a solution for some i then let s( f j) be
the minimum i such that P( j, i) has a solution. Note that (3)
f j ∈ F′j implies cs( f j) is located in interval [ f j− k, f j+ k]. We
define P( j) to be the problem to find such s( f j) and a cor-
responding assignment. If P( j, i) has no solution for every i
then we say P( j) has no solution, otherwise we say P( j) has
a solution.

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers
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Lemma 1: For any pair f j′ and f j in F with (1) j′ < j and
(2) both P( j′) and P( j) have solutions, s( f j′ ) ≤ s( f j) holds.

Proof : Assume otherwise. Then s( f j′ ) > s( f j) holds.
Modify the assignment corresponding to s( f j) as follows.
Reassign the customers assigned to the facilities between f j′

and f j (including f j) to f j′ then close the facilities between
f j′ and f j. The resulting assignment also satisfy the condi-
tions co(c, A(c)) ≤ k for each c ∈ C and each open facility is
assigned at least r customers, so it is a solution of P( j′) and
now s( f j′ ) = s( f j). A contradiction. �

Assume that P( j) has a solution and c1 < f j − k. Then
the corresponding solution has one or more facilities except
for f j. Choose the solution of P( j) having the minimum
second rightmost open facility, say f j′ . We say f j′ is the
mate of f j and write mate( f j) = f j′ . Then note that P( j′) has
a solution. The mate f j′ of f j is one of the following three
types.
Type 1: f j′ + k < f j − k, the interval ( f j′ + k, f j − k) has
no customer and the interval [ f j − k, f j + k] has at least r
customers.
Type 2: f j′ + k ≥ f j − k, cs( f j′ ) ≥ f j − k and the interval
(cs( f j′ ), f j + k] has at least r customers.
Type 3: f j′ + k ≥ f j − k, cs( f j′ ) < f j − k and the interval
[ f j − k, f j + k] has at least r customers.

For each f j by checking the three conditions above for
every possible mate f j′ one can design O(n+m2) time algo-
rithm based on dynamic programming approach. However
we can omit the most part of the checks by the following
lemma.

Lemma 2: (a) Assume P( j) has a solution. If P( j+ 1) also
has a solution then mate( f j) ≤ mate( f j+1) holds. (b) For f j ∈
F, if there is f j′ such that (i) P( j′) has a solution, (ii) f j′+k ≥
f j − k and (iii) j′ < j then let fmin be f j′ with the minimum
j′. If P( j) has no solution with the second rightmost open
facility fmin, then (b1) any f j′′ satisfying fmin < f j′′ < f j

is not the mate of f j, and P( j) has no solution, and (b2)
fmin ≤ mate( f j+1) holds if mate( f j+1) exists.

Proof : (a) Assume otherwise. We have two cases. If
mate( f j+1) < f j − k holds then mate( f j+1) is also the mate
of f j, a contradiction. If mate( f j+1) ≥ f j − k holds then by
Lemma 1 mate( f j+1) is also the mate of f j, a contradiction.
(b1) Immediate from Lemma 1. (b2) Assume otherwise. If
mate( f j+1)+k < f j−k holds then mate( f j+1) is also the mate
of f j, a contradiction. If mate( f j+1) ≥ f j − k holds then fmin

is mate( f j+1) not mate( f j), a contradiction. �

Lemma 2 means after searching for the mate of f j upto
some f j′ the next search for the mate of f j+1 can start at the
f j′ . Based on the lemma above we can design algorithm find
(k, r)-gathering.

For the preprocessing we compute, for each f j ∈ F,
(1) the index of the first customer in interval ( f j + k,∞), (2)
the index of the first customer in interval [ f j − k,∞) and
(3) the index of the r-th customer in interval [ f j − k,∞).
Also we store the index s( f j) for each f j ∈ F. Those need

O(n + m) time. After the preprocessing the algorithm runs
in O(m) time since j′ ≤ j always holds the most inner part
to compute s( f j) executes at most 2m times.

We have the following lemma.

Lemma 3: One can solve the (k, r)-gathering problem in
O(n + m) time.

Algorithm 1 find (k, r)-gathering (C, F, k, r)
// Remove never open f //
remove from F each f ∈ F having at most r − 1 customers in its interval
[ f − k, f + k]
let F = { f1, f2, . . . , fm}
if there is no facility in F then

return NO
end if
// Check NO solution Case //
if there is a customer which has no facility within distance k then

return NO
end if
// One open facility Case //
j = 1
while interval [ f j − k, f j + k] has both c1 and cr do

set s( f j) to be the index of the r-th customer cr

j = j + 1
end while
// Two or more open facilities Case //
j′ = 1
while j ≤ m do

while j′ < j and (interval ( f j′ + k, f j − k) has at least one customer
or P( j′) has no solution) do

j′ = j′ + 1
end while
if j′ < j then
// interval ( f j′ + k, f j − k) has no customer and P( j′) has a solution
//

if f j′ + k < f j − k and interval ( f j′ + k, f j − k) has no customer and
interval [ f j − k, f j + k] has at least r customers then

set s( f j) to be the index of the r-th customer in the interval
[ f j − k, f j + k] { // Type 1 // }

else if f j′+k ≥ f j−k and cs( f j′ ) ≥ f j−k and interval (cs( f j′ ), f j+k]
has at least r customers then

set s( f j) to be the index of the r-th customer in the interval
(cs( f j′ ), f j + k] { // Type 2 // }

else if f j′ +k ≥ f j−k and cs( f j′ ) < f j−k and interval [ f j−k, f j+k]
has at least r customers then

set s( f j) to be the index of the r-th customer in the interval
[ f j − k, f j + k] { // Type 3 // }

end if
// Otherwise P( j) has no solution //

end if
j = j + 1

end while
if some f j with defined s( f j) has cn within distance k then

return YES
else

return NO
end if

3. r-Gathering on the Line

In this section we give an O((n + m) log(n + m)) time algo-
rithm to solve the r-gathering problem when all C and F are
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on the real line.
Our strategy is as follows. First we can observe that

the minimum cost k∗ of a solution of an r-gathering prob-
lem is co(c, f ) with some c ∈ C and some f ∈ F. Since
the number of distinct co(c, f ) is at most nm, sorting them
needs O(nm log(nm)) time. Then find the smallest k such
that the (k, r)-gathering problem has a solution by binary
search, using the linear-time algorithm in the preceding sec-
tion log(nm) times. Those part needs O((n + m) log(nm))
time. Thus the total running time is O(nm log(nm)).

However by using the sorted matrix searching
method [7] (See the good survey in [2]) we can improve the
running time to O((n + m) log(n + m)). Similar technique is
also used in [8], [11] for a fitting problem. Now we explain
the detail.

First let MC be the matrix in which each element is
mi, j = ci − f j. Then mi, j ≥ mi, j+1 and mi, j ≤ mi+1, j always
holds, so the elements in the rows and columns are sorted,
respectively. Similarly let MF be the matrix in which each
element is m′i, j = f j − ci. The minimum cost k∗ of an op-
timal solution of an r-gathering problem is some positive
element in those two matrices. We can find the smallest k in
MC for which the (k, r)-gathering problem has a solution, as
follows.

Let n′ be the smallest integer which is (1) a power of 2
and (2) larger than or equal to max{n,m}. Then we append
the largest element mn′,1 to MC as the elements in the lowest
rows and the leftmost columns so that the resulting matrix
has exactly n′ rows and n′ columns. Note that the elements
in the rows and columns are still sorted respectively. Let MC

be the resulting matrix. Our algorithm consists of stages
s = 1, 2, . . . , log n′, and maintains a set Ls of submatrices
of MC possibly containing k∗. Hypothetically first we set
L0 = {MC}. Assume we are now starting stage s.

For each submatrix M in Ls−1 we partite M into the
four submatrices with n′/2s rows and n′/2s columns and put
them into Ls.

Let kmin be the median of the upper-right corner ele-
ments of the submatrices in Ls. Then for k = kmin we solve
the (k, r)-gathering problem. We have the following two
cases.

If the (k, r)-gathering problem has a solution then we
remove from Ls each submatrix with the upper-right cor-
ner element (the smallest element) greater than kmin. Since
kmin ≤ k∗ holds each removed submatrix has no chance
to contain k∗. Also if Ls has several submatrices with the
upper-right corner element equal to kmin then we remove
them except one from Ls. Thus we can remove |Ls|/2 sub-
matrices from Ls.

Otherwise if the (k, r)-gathering problem has no so-
lution then we remove from Ls each submatrix with the
lower left corner element (the largest element) smaller than
kmin. Since kmin < k∗ holds each removed submatrix has no
chance to contain k∗. Now we can observe that, for each
“chain” of submatrices, which is the sequence of submatri-
ces in Ls with lower-left to upper-right diagonal on the same
line, the number of submatrices (1) having the upper right

corner element smaller than kmin (2) but remaining in Li is
at most one (since the elements on “the common diagonal
line” are sorted). Thus, if |Ls|/2 > Ds, where Ds = 2s+1 is
the number of chains plus one, then we can remove at least
|Ls|/2 − Ds submatrices from Ls.

Similarly let kmax be the median of the lower-left corner
elements of the submatrices in Ls, and for k = kmax we solve
the (k, r)-gathering problem and similarly remove some sub-
matrices from Ls. This ends stage s.

Now after stage log n′ each matrix in Llog n′ has just one
element, then we can find the k∗ using a binary search with
the linear-time decision algorithm.

We can prove that at the end of stage s the number of
submatrices in Ls is at most 2Ds, as follows.

First L0 has 1 submatrix, which is less than 2D0 = 4.
By induction assume that Ls−1 has 2Ds−1 = 2× 2s submatri-
ces.

At stage s we first partite each submatrix in Ls−1 into
four submatrices then put them into Ls. Now the number of
submatrices in Ls is 4 × 2Ds−1 = 4Ds. We have four cases.

If the (k, r)-gathering problem has a solution for k =
kmin then we can remove at least a half of the submatrices
from Ls, and so the number of the remaining submatrices in
Ls is at most 2Ds, as desired.

If the (k, r)-gathering problem has no solution for k =
kmax then we can remove at least a half of the submatrices
from Ls, and so the number of the remaining submatrices in
Ls is at most 2Ds, as desired.

Otherwise if |Ls|/2 ≤ Ds then the number of the sub-
matrices in Ls (even before the removal) is at most 2Ds, as
desired.

Otherwise (1) after the check k = kmin we can remove
at least |Ls|/2 − Ds submatrices (consisting of too small el-
ements) from Ls, and (2) after the check for k = kmax we
can remove at least |Ls|/2 − Ds submatrices (consisting of
too large elements) from Ls, so the number of the remaining
submatrices in Ls is at most |Ls| − 2(|Ls/2| − Ds) = 2Ds, as
desired.

Thus at the end of stage s the number of submatrices in
Ls is always at most 2Ds.

Now we consider the running time. We implicitly treat
each submatrix as the index of the upper right element in
MC and the number of lows. Except for the calls of the
linear-time decision algorithm for the (k, r)-gathering prob-
lem, we need O(|Ls−1|) = O(Ds−1) time for each stage
s = 1, 2, . . . , log n′, and D0 + D1 + · · · + Dlog n′−1 = 2 +
4 + · · · + 2log n′ < 2 × 2log n′ = 2n′ holds, so this part needs
O(n′) time in total. (Here we use the linear time algorithm
to find the median.)

Since each stage calls the linear-time decision algo-
rithm twice this part needs O(n′ log n′) time in total.

After stage s = log n′ each matrix has just one element,
then we can find the k∗ among the |Llog n′ | ≤ 2Dlog n′ = 4n′
elements using a binary search with the linear-time decision
algorithm at most log 4n′ times. This part needs O(n′ log n′)
time.

Then we similarly find the smallest k in MF for which
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the (k, r)-gathering problem has a solution. Finally we out-
put the smaller one among the two.

Thus the total running time is O((n + m) log(n + m)).

Theorem 1: One can solve the r-gathering problem in
O((n + m) log(n + m)) time when all C and F are on the
real line.

4. r-Gather Clustering

In this section we give an algorithm to solve a similar prob-
lem by modifying the algorithm in Sect. 3.

Given a set C of n points on the plane an r-gather-
clustering is a partition of the points into clusters such
that each cluster has at least r points. The r-gather-
clustering problem [1] finds an r-gather-clustering minimiz-
ing the maximum radius among the clusters, where the ra-
dius of a cluster is the minimum radius of the disk which
can cover the points in the cluster. A polynomial time 2-
approximation algorithm for the problem is known [1].

When all C are on the real line, in any solution of any
r-gather-clustering problem, we can assume that the center
of each disk is at the midpoint of some pair of points, and
the radius of an optimal r-gather-clustering is the half of the
distance between some pair of points in C.

Given C and two numbers k and r the decision ver-
sion of the r-gather-clustering problem find an r-gather-
clustering with maximum radius within k. We can assume
that in any solution of the problem the center of each disk is
at c − k for some c ∈ C. Thus, by introducing the set of all
such points as F, we can solve the decision version of the
r-gather-clustering problem as the (k, r)-gathering problem.
Using the algorithm in Sect. 2 we can solve the problem in
O(n) time.

Now we explain our algorithm to solve the r-gather-
clustering problem. First sort C in O(n log n) time. Let
c1, c2, . . . , cn be the resulting non-decreasing sequences and
let M be the matrix in which each element is mi, j = (ci −
c j)/2. Note that the optimal radius is in M and this time
M has n rows and n columns. Now mi, j ≥ mi, j+1 and
mi, j ≤ mi+1, j holds, so the elements in the rows and columns
are sorted, respectively. Then as in Sect. 3 we can find the
optimal radius by the sorted matrix searching method. The
algorithm calls the decision algorithm O(log n) times and
the decision algorithm runs in O(n) time, and in the stages
the algorithm needs O(n) time in total except for the calls.
Finally we needs O(n log n) time for the final binary search.
Thus the total running time is O(n log n).

Theorem 2: One can solve the r-gather-clustering problem
in O(n log n) time when all points C are on the real line.

5. Outlier

In this section we consider a generalization of the r-
gathering problem where at most h customers are allowed
to be not assigned.

An r-gathering with h-outliers of customers C to facil-
ities F is an assignment A of C\C′ to open facilities F′ ⊆ F
such that at least r customers are assigned to each open fa-
cility and |C′| ≤ h. The r-gathering with h-outliers prob-
lem finds an r-gathering with h-outliers having the minimum
cost.

Given customers C = {c1, c2, . . . , cn} and facilities
F = { f1, f2, . . . , fm} on the real line and six numbers i,
j, k, r, h and h′, problem P( j, i, h′) finds an r-gathering
with h-outliers of Ci = {c1, c2, . . . , ci}\C′ to F′j ⊆ F j =

{ f1, f2, . . . , f j} such that (1) at least r customers are assigned
to each open facility, (2) co(c, A(c)) ≤ k for each c ∈ C\C′,
(3) f j ∈ F′j and (4) |C′| = h′. For designated j and h′ if
P( j, i, h′) has a solution for some i then let s( f j, h′) be the
minimum i such that P( j, i, h′) has a solution. We define
P( j, h′) to be the problem to find such s( f j, h′) and a corre-
sponding assignment.

By dynamic programming approach one can compute
P( j, h′) for each j = 1, 2, . . . ,m and h′ = 1, 2, . . . , h in
O(n + h2m) time in total. Then one can decide whether an
r-gathering with h-outliers problem has a solution with cost
k.

Lemma 4: One can decide whether an r-gathering with h-
outliers problem has a solution with cost k in O(n + h2m)
time.

The minimum cost k∗ of a solution of an r-gathering
with h-outliers problem is again co(c, f ) for some c ∈ C and
some f ∈ F. By the sorted matrix searching method using
the O(n+ h2m) time decision algorithm above one can solve
the problem with outliers in O((n + h2m) log(n + m)) time.

Theorem 3: One can solve the r-gathering with h-outliers
problem in O((n + h2m) log(n + m)) time when all C and F
are on the real line.

6. New Branch Location

In this section we consider a generalization of the r-
gathering problem where some facilities Fo ⊆ F are already
forced to open and we wish to find an r-gathering of C to
F′ ⊇ Fo with the minimum cost. We call this problem the
new branch location problem. Note that if Fo = φ then this
is the r-gathering problem.

We solve this problem by dynamic programming, in
which we solve the following subproblems systematically.
Let Ci = {c1, c2, . . . , ci} ⊆ C, F j = { f1, f2, . . . , f j} ⊆ F and
Fo

j = F j ∩ Fo. Given C, F, and Fo and four numbers i, j,
k and r, then problem Po( j, i) finds an r-gathering A of Ci

to F′j such that (1) Fo
j ⊆ F′j ⊆ F j, (2) at least r customers

are assigned to each (open) facility, (3) co(c, A(c)) ≤ k for
each c ∈ Ci, (4) f j ∈ F′j. Similar to Sect. 2 we remove from
F each f ∈ F having at most r − 1 customers in interval
[ f − k, f + k], then check if there is a customer c ∈ C having
no f ∈ F within distance k. If some f ∈ Fo is removed then
there is no solution. We can check these in O(n + m) time.

We need some definitions. If Po( j, i) has a solution for
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some i then let so( f j) be the minimum i such that Po( j, i)
has a solution. We define Po( j) to be the problem to find
such so( f j) and a corresponding assignment. If Po( j, i) has
no solution for every i then we say Po( j) has no solution.

We show that following lemmas, similar to Lemma 1
and Lemma 2 for the ordinary r-gathering problem, are hold.

Lemma 5: For any pair f j′ , f j ∈ F with (1) j′ < j, and (2)
both Po( j′) and Po( j) have solutions, so( f j′ ) ≤ so( f j) holds.

Proof : We consider the following two cases.
Case 1: There is no facility f j′′ ∈ Fo with j′ < j′′ < j.

Assume for a contradiction that so( f j′ ) > so( f j) holds.
Modify the assignment corresponding to so( f j) as follows.
Reassign the customers assigned to the facilities between
f j′ and f j (including f j) to f j′ then close the facilities. The
resulting assignment is a solution of Po( j′) and now so( f j′ ) =
so( f j). A contradiction.
Case 2: Otherwise. (There is some f j′′ ∈ Fo with j′ < j′′ <
j.)

Assume for a contradiction that so( f j′ ) ≥ so( f j) holds.
By the hypothesis, there is some f j′′ ∈ Fo such that j′ <
j′′ < j.

Modify the assignment corresponding to so( f j) as fol-
lows. Reassign the customers assigned to the facilities be-
tween f j′ and f j (including f j) to f j′ , then close the facil-
ities. The resulting assignment is a solution of Po( j′) and
now so( f j′ ) = so( f j). A contradiction. �

Assume that Po( j) has a solution and c1 < f j − k. Then
the assignment corresponding to the solution of Po( j) has
one or more open facilities except for f j. Choose the solu-
tion of Po( j) having the minimum second rightmost open
facility, say f j′ . We say f j′ is the mate of f j, and write
mateo( f j) = f j′ . Then note that Po( j′) has a solution, and
interval ( f j′ , f j) has no facility in Fo. The mate f j′ of f j is
one of the following three types.
type 1: f j′ + k < f j − k, the interval ( f j′ + k, f j − k) has
no customer and the interval [ f j − k, f j + k] has at least r
customers.
type 2: f j′ + k ≥ f j − k, cso( f j′ ) ≥ f j − k and the interval
(cso( f j′ ), f j − k] has at least r customers.
type 3: f j′ + k ≥ f j − k, cso( f j′ ) < f j − k and the interval
[ f j − k, f j − k] has at least r customers.

Similar to the algorithm in Sect. 2 we have the follow-
ing lemma.

Lemma 6: (a) Assume Po( j) has a solution. If Po( j + 1)
also has a solution then mateo( f j) ≤ mateo( f j+1) holds. (b)
For f j ∈ F, if there is f j′ such that (i) Po( j′) has a solu-
tion, (ii) f j′ + k ≥ f j − k and (iii) j′ < j then let fmin be
f j′ with the minimum j′. If Po( j) has no solution with the
second rightmost open facility fmin, then (b1) any f j′′ satis-
fying fmin < f j′′ < f j is not the mate of f j, and Po( j) has
no solution, and (b2) fmin ≤ mateo( f j+1) holds if mateo( f j+1)
exists.

Proof : (a) Assume otherwise. We have two cases. If
mateo( f j+1) + k < f j − k holds then mateo( f j+1) is also the

Algorithm 2 find new-branch (C, F, Fo, k, r)
// Remove never open f //
remove from F each f ∈ F having at most r − 1 customers in its interval
[ f − k, f + k]
let F = { f1, f2, . . . , fm}
if there is no facility in F then

return NO
end if
// Check NO solution Case //
if some f ∈ Fo is removed then

return NO
else

let Fo = { f o
1 , f o

2 , . . . , f o
mo } ⊆ F

end if
if there is a customer which has no faclity within distance k then

return NO
end if0
// One open facility Case //
j = 1
while interval [ f j −k, f j +k] has both c1 and cr and interval (−∞, f j) has
no facility in Fo do

set so( f j) to be the index of the r-th customer cr

j = j + 1
end while
// Two or more open facilities Case //
j′ = 1
while j ≤ m do

while j′ < j and (interval ( f j′ + k, f j − k) has at least one customer
or Po( j′) has no solution or interval ( f j′ , f j) has at least one facility
in Fo) do

j′ = j′ + 1
end while
if j′ < j then
// interval ( f j′ +k, f j−k) has no customer and Po( j′) has a solution
and interval ( f j′ , f j) has no facility in Fo //

if f j′ + k < f j − k and interval ( f j′ + k, f j − k) has no customer and
interval [ f j − k, f j + k] has at least r customers then

set so( f j) to be the index of the r-th customer in the interval
[ f j − k, f j + k] { // Type 1 // }

else if f j′ +k ≥ f j−k and cso( f j′ ) ≥ f j−k and interval (cso( f j′ ), f j+

k] has at least r customers then
set so( f j) to be the index of the r-th customer in the interval
(cso( f j′ ), f j + k] { // Type 2 // }

else if f j′+k ≥ f j−k and cso( f j′ ) < f j−k and interval [ f j−k, f j+k]
has at least r customers then

set so( f j) to be the index of the r-th customer in the interval
[ f j − k, f j + k] { // Type 3 // }

end if
// Otherwise Po( j) has no solution //

end if
j = j + 1

end while
if some f j with defined so( f j) has cn within distance k then

return YES
else

return NO
end if

mate of f j, a contradiction. If mateo( f j+1)+ k ≥ f j − k holds
then by Lemma 5 mateo( f j+1) is also the mate of f j, a contra-
diction. (b1) Immediate from Lemma 5. (b2) Assume oth-
erwise. If mateo( f j+1) + k < f j − k holds then mateo( f j+1) is
also the mate of f j, a contradiction. If mateo( f j+1)+k ≥ f j−k
holds then fmin is mateo( f j+1) not mateo( f j), a contradiction.
�

Lemma 6 means after searching for the mate of f j upto
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some f j′ the next search for the mate of f j+1 can start at the
f j′ . Based on the lemma above we can design an algorithm.
See Appendix for interested readers. The main difference is
the condition of the second while, where “or interval ( f j′ , f j)
has at least one facility in Fo” is appended.

As a preprocessing we also compute, for f j ∈ F, the
index of the facility f j′′ ∈ Fo with maximum j′′ < j, if such
f j′′ exists. It needs O(m) time. Then we decide if interval
( f j′ , f j) has a facility in Fo or not. If the indexes computed
above for f j′ and f j are identical then interval ( f j′ , f j) has no
facility in Fo.

We have the following lemma.

Lemma 7: One can solve the new branch problem in O(n+
m) time.

The minimum cost k∗ of a solution of a new branch
problem is co(c, f ) with some c ∈ C and some f ∈ F. By
using the sorted matrix searching method in Sect. 3 we can
find such k∗ in at most O(log(n+m)) rounds, and each round
needs O(n + m) time to solve the decision version of the
problem.

We have the following theorem.

Theorem 4: One can solve the new branch problem in
O((n + m) log(n + m)) time when all C and F are on the
real line.

7. Conclusion

In this paper we have presented an algorithm to solve the r-
gathering problem when all C and F are on the real line. The
running time of the algorithm is O((n + m) log(n + m)). We
also presented three more algorithms to solve three similar
problems.

Open problem. Can we design a linear time algorithm
for the r-gathering problem when all C and F are on the real
line?

The preliminary version of the paper appeared in Proc.
of FAW 2015.
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