
1200
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

PAPER Special Section on Formal Approach

Synthesizing Pareto Efficient Intelligible State Machines from
Communication Diagram∗

Toshiyuki MIYAMOTO†a), Senior Member

SUMMARY For a service-oriented architecture based system, the prob-
lem of synthesizing a concrete model, i.e., behavioral model, for each ser-
vice configuring the system from an abstract specification, which is referred
to as choreography, is known as the choreography realization problem. In
this paper, we assume that choreography is given by an acyclic relation. We
have already shown that the condition for the behavioral model is given by
lower and upper bounds of acyclic relations. Thus, the degree of freedom
for behavioral models increases; developing algorithms of synthesizing an
intelligible model for users becomes possible. In this paper, we introduce
several metrics for intelligibility of state machines, and study the algorithm
of synthesizing Pareto efficient state machines.
key words: unified modeling language, choreography realization problem,
Petri nets, automatic synthesis, service-oriented architecture

1. Introduction

The internationalization of business activities and informa-
tion and communication technology have intensified com-
petition among companies. Companies are under pressure
to quickly respond to business needs, and the time frame
for making changes to existing business and launching new
businesses has been shortened. Therefore, the need to
quickly change or build information systems has been in-
creasing. Under such circumstances, service-oriented archi-
tecture (SOA) [1] has been attracting attention as the archi-
tecture of information systems. In SOA, an information sys-
tem is built by composing independent software units called
peers.

In this paper, we consider the problem of synthesizing
a concrete model from an abstract specification. We assume
that a concrete model describes the behavior of peers and
an abstract specification describes how peers interact with
each other. In SOA, the problem of synthesizing a concrete
model from an abstract specification is known as the chore-
ography realization problem (CRP) [2], [3]. The abstract
specification, called choreography, is defined as a set of in-
teractions among peers, which are given by a dependency
relation among messages; the concrete model is called ser-
vice implementation, which defines the behavior of the peer.
This paper uses the communication diagram and the state

Manuscript received August 16, 2016.
Manuscript revised December 26, 2016.
Manuscript publicized March 7, 2017.
†The author is with the Division of Electrical, Electronic and

Information Engineering, Graduate School of Engineering, Osaka
University, Suita-shi, 565–0871 Japan.

∗This work was supported by JSPS KAKENHI Grant Number
JP26330083.

a) E-mail: miyamoto@eei.eng.osaka-u.ac.jp
DOI: 10.1587/transinf.2016FOP0002

machine of Unified Modeling Language (UML) 2.x [4] to
describe the choreography and service implementation, re-
spectively. In this paper, it is assumed that the dependency
relation is acyclic. Thus, only choreography with no itera-
tion can be accepted.

Bultan and Fu formally studied the CRP [2]. They used
collaboration diagrams of UML 1.x and showed that the
conditions for the given choreography are realizable. In ad-
dition, they showed a method for synthesizing a set of fi-
nite state machines with projection mapping. However, the
synthesized state machines are not intelligible because the
number of states increases exponentially as the number of
messages increases.

Intelligibility, however, is highly subjective and it is
difficult to discuss this concept quantitatively. Cruz-Lemus
et al. experimentally evaluated the relationship between
some metrics of state machines and the time taken to un-
derstand them [5]. According to the results, state machines
are more easily understood as values of the following met-
rics become small: the number of simple states (NSS), the
number of transitions (NT), the number of guards (NG), and
the number of do-activities (NA). We use these metrics for
intelligibility evaluation. Because we have plural metrics,
there may exist a set of state machines, called Pareto effi-
cient state machines, each of which is superior to others in
terms of at least one of the metrics.

Miyamoto et al. proposed the Construct State-machine
Cutting Bridges (CSCB) method, a method for synthesiz-
ing hierarchical state machines from a communication di-
agram [6]. In the method, dependency relations among
sent and received message events are represented by Petri
nets [7]; state machines are then synthesized. Recently, a
new notion called re-constructible decomposition of acyclic
relations was introduced; a necessary and sufficient condi-
tion for a decomposed relation to be re-constructible was
shown [8]. In this paper, we extend the CSCB method for
synthesizing Pareto efficient state machines using the de-
composition scheme.

2. Preliminaries

2.1 Relations

Let Σ be a finite set and R be a relation on Σ. The transi-
tive closure and reduction of R is denoted by R+ and R−,
respectively. A relation R is called cyclic if e1 and e2 ∈ Σ
exist such that (e1, e2) ∈ R and (e2, e1) ∈ R+; otherwise it is

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

MIYAMOTO: SYNTHESIZING PARETO EFFICIENT INTELLIGIBLE STATE MACHINES FROM COMMUNICATION DIAGRAM
1201

called acyclic. The set of all topological sorts of an acyclic
directed graph (Σ,R) is denoted by L(R). A topological sort
is called a word and the set is called a language.

Let C be a set and {Σc} be a partition of Σwrt c ∈ C. Let
Rc be a relation on Σc and their set be {Rc} = {Rc ⊆ Σ2

c | Σc ∈
{Σc}}. A relation Rcom ⊆ R \ (

⋃
c Σ

2
c) is called a communal

relation of R.

Definition 1 (Re-constructible Decomposition): Given a
set {Rc} of relations and a communal relation Rcom, the re-
lations {Rc} are re-constructible to R if L(Rcom ∪⋃c Rc) =
L(R).

Relations Rmax
c , Rmin

c , and Rmin are defined as follows:

Rmin
c = Σ2

c ∩ R−, (1)

Rmax
c = Σ2

c ∩ R+, and (2)

Rmin = Rcom ∪ (
⋃

c Rmin
c), (3)

whereRmax
c , Rmin

c , andRmin are acyclic because they are sub-
relations of R.

We put the following assumption on relation R and its
communal relation Rcom.

Assumption 1: L(R) = L(Rmin).

This assumption relates to realizability of choreography;
please refer to [8] for details.

On realizing choreography, we want to find a re-
constructible relations {Rc}. The following theorem [8]
gives upper and lower bounds for {Rc}.
Theorem 1: Under Assumption 1, {Rc} is re-constructible
iff ∀c : Rmin

c ⊆ Rc ⊆ Rmax
c .

2.2 cbUML

A subset of UML, which is called cbUML, was introduced
by Miyamoto et al. in [6].

Definition 2 (cbUML): A cbUML model is a tuple (C,M,
A,CD,SM), where C is the set of classes,M is the set of
messages, A is the set of attributes, CD is the set of com-
munication diagrams, and SM is the set of state machines.

One class exists for each peer, and a state machine de-
fines its behavior. A communication diagram describes a
scenario, which is an interaction of peers.

2.2.1 Messages

The set M of messages is partitioned by the type of mes-
sages: M = Msop ∪ Maop ∪ Mrep, where Msop is the set
of synchronous messages generated by synchronous calls,
Maop is the set of asynchronous messages generated by
asynchronous calls, and Mrep is the set of reply messages
to synchronous messages. Let Ms = Msop and Ma =

Maop ∪ Mrep. Correspondence between the synchronous
call and its reply is given by the function re f : M →
M ∪ {nil}, such that ∀m ∈ Msop : re f (m) ∈ Mrep,

∀m ∈ Mrep : re f (m) ∈ Msop, ∀m ∈ Maop : re f (m) = nil,
and ∀m ∈ Msop ∪Mrep : re f (re f (m)) = m.

In UML, each message has two events: a send event
and a receive event. For a synchronous message, the receive
event occurs immediately after the send event. However, for
a discussion that occurs subsequently, we need two events
that occur sequentially. Therefore, we defined that each syn-
chronous message has two events: a preparation event for
message sending and a send-receive event where the prepa-
ration event is a caller’s event and the send-receive event is
a callee’s event. The preparation event and the send-receive
event of a synchronous message m ∈ Ms are denoted by $m
and !m, respectively. For an asynchronous or a reply mes-
sage m ∈ Ma, the send and receive events are denoted by !m
and ?m, respectively. Hereafter, an active event is the send-
receive event of a synchronous message or the send event of
an asynchronous or a reply message. The set Σ of message
events and set Δ of active events are defined as follows:

Σ = {$m, !m | m ∈ Ms} ∪ {!m, ?m | m ∈ Ma}, and (4)

Δ = {!m | m ∈ M}. (5)

The acyclic relation ⇒M on the order of the caller’s and
callee’s events for each message is defined as follows:

⇒M= {($m, !m) | m ∈ Ms} ∪ {(!m, ?m) | m ∈ Ma}. (6)

2.2.2 Communication Diagrams

Definition 3 (Communication Diagram): A communication
diagram cd ∈ CD is a tuple cd = (Ccd,Mcd,Conncd,
linecd,Dcd), where Ccd ⊆ C is the set of classes, which
are called lifelines and correspond to peers; Mcd ⊆ M
is the set of messages; Conncd ⊆ Ccd × Ccd is the set of
connectors, which is given as a symmetric relation on Ccd;
linecd : Mcd → Conncd assigns a connector for each mes-
sage; and Dcd ⊆ Δ × Δ indicates a dependency relation
among active events, where Dcd must be acyclic.

Superscripts may be omitted if the context is clear.
A conversation is a sequence of messages exchanged

among peers [2]. The set of conversations defined by a com-
munication diagram cd is denoted by C(cd) ⊆ M∗, where
M∗ is the set of all sequences of distinct messages.

Definition 4: A conversation σ = m1m2 · · ·mn is in C(cd)
if and only if σ ∈ M∗ and the corresponding sequence
γ =!m1!m2 · · ·!mn of active events satisfy ∀i, j ∈ [1..n] :
(!mi, !mj) ∈ D⇒ i < j.

If there exists a communication diagram cd ∈ CD such
that σ ∈ C(cd), then σ ∈ C(CD).

2.2.3 State Machines

Definition 5 (State Machine): A state machine is a tuple
sm = (V,R, rt,Θ,Φ, E,C, B), where V is the set of vertices,
R is the set of regions, rt ∈ R is the top region, Θ is an own-
ership relation between vertices and regions, Φ is the set of

1202
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

transitions, E is the set of events, C is the set of constraints,
and B is the set of behaviors.

In UML state machines, although there are various
kinds of states and pseudo-states, only simple states, com-
posite states, final states, and initial pseudo-states are used
in this paper because is it enough for the discussion. There-
fore, the set V of vertices is partitioned into the following
types of subsets:V = S S ∪ CS ∪ FS ∪ IS , where S S is the
set of simple states, CS is the set of composite states, FS
is the set of final states, and IS is the set of initial pseudo-
states.

A region, except for the top region, is owned by a
composite state and a composite state is owned by a re-
gion. The ownership relation Θ is defined as a function
from (V ∪ R) \ {rt} to (CS ∪ R), and Θ(x1) = x2 means
that x1 is owned by x2. For x ∈ V ∪ R, let des(x) = {x′ |
∃i > 0 : Θi(x′) = x} be the set of descendants of x, where
Θ1(·) = Θ(·) and Θi(·) = Θ(Θi−1(·)) (i > 1). The top region
rt exists in the root of each state machine; this region is not
owned by any composite state, and every state and region in
any composite state are descendants of the top region.

Definition 6 (Orthogonal State): Two vertices v1 and v2 ∈
V are called orthogonal and are denoted by v1 ⊥ v2 if there
exist different regions r1 and r2 ∈ R such that r1 � r2,
Θ(r1) = Θ(r2), v1 ∈ des(r1), and v2 ∈ des(r2).

Definition 7 (Consistent State): A set V̂ ⊂ V of vertices is
called consistent if and only if for each v1, v2 ∈ V̂; if v1 � v2
then v1 ⊥ v2, v1 ∈ des(v2), or v2 ∈ des(v1).

The set E of events is given as E = Σ ∪ {τ}, where Σ
is the set of message events in the state machine and τ is
the completion event that occurs when a transition with no
trigger event fires.

A transition tr ∈ Φ is a tuple tr = (src, tri, grd, eff , tgt),
where src ∈ V is the originating vertex of the transition, trig-
ger tri ∈ E is the event that makes the transition fire, guard
grd ∈ C is a condition to fire, effect eff ∈ B is an optional be-
havior to be performed when the transition fires, and tgt ∈ V
is the target vertex. The set {src, tgt} must not be consistent.
A caller’s event becomes an effect and a callee’s event be-
comes a trigger; therefore, Σ ⊆ B. The set B of behaviors
may contain an effect that manipulates the attributes of the
corresponding class. A guard condition must be a Boolean
expression and the attributes of the corresponding class may
be used.

A word w ∈ Σ∗ is accepted by the set SM of state ma-
chines if every state machine is in the final state in the top
region after occurring all events in w, where an intuitive de-
scription on the operational semantics is given in Appendix
A. A conversation is obtained from an accepted word by
removing all non-active events and replacing every active
event by its message. The set of all conversations for SM is
denoted by C(SM).

2.2.4 Intelligibility Metrics

Intelligibility is highly subjective and it is difficult to dis-
cuss this concept quantitatively. Cruz-Lemus et al. exper-
imentally evaluated the relationship between some metrics
of state machines and the time taken to understand them [5].
According to the results, state machines are more easily un-
derstood as values of following metrics become small: the
number of simple states (NSS), number of transitions (NT),
number of guards (NG), and number of do-activities (NA).
This paper uses the first three metrics (NSS, NT, and NG)
for intelligibility because we do not use do-activities.

The study by Cruz-Lemus et al. did not evaluate the
effect of the number of depth of hierarchical state machines.
However, it is easily expected that as the number of depth
increases, the state machine becomes harder to understand.
Thus, we add the metric: number of depth (ND).

In our study, a state machine transitions by communi-
cating other state machines. When it communicates with
plural state machines concurrently, regions in a composite
state may be generated. In such a case, the number of com-
munication partners in a region should be smaller, thus, we
add another metric: sum of number of partners for all re-
gions (NP).

Definition 8: State machine sm1 is more intelligible than
state machine sm2, denoted by sm1 ≺ sm2, iff the value of
sm1 is smaller than or equal to the value of sm2 for all met-
rics and smaller at least one metric.

The intelligibility relation is a partial order and thus, min-
imal elements exist. The set of minimal elements is called
Pareto frontier.

3. Choreography Realization

3.1 Choreography Realization Problem

A single communication diagram describes a scenario,
which is an interaction of peers in the system. All the behav-
iors of the system are indicated by a set of communication
diagrams; this is referred to as choreography.

Problem 1 (CRP): For a given set CD of communication
diagrams, is it possible to synthesize the set SM of state
machines that satisfy C(CD) = C(SM)? If possible, obtain
the set of state machines.

If not possible, it is preferred that state machines that
mimic the choreography as closely as possible are synthe-
sized. A set of state machines that satisfy C(CD) ⊇ C(SM)
is called a weak realization of the given choreography. How-
ever, the set of empty state machines such that C(SM) = ∅
is a weak realization for any choreography; such a realiza-
tion is called trivial. Hereinafter, choreography is called un-
realizable if non-trivial realization does not exist.

In this paper, we assume that the set of communication

MIYAMOTO: SYNTHESIZING PARETO EFFICIENT INTELLIGIBLE STATE MACHINES FROM COMMUNICATION DIAGRAM
1203

diagrams is singleton, CD = {cd}, and we study an algo-
rithm to synthesize Pareto efficient state machines from cd.

Let ⇒ be the acyclic relation on the set of events de-
fined by cd, Rc be the acyclic relation for peer c, and SM
be the set of state machines synthesized from {Rc}. Under
the assumption that the state machine that behaves equiva-
lently to Rc can be synthesized, we showed the following
theorem [8].

Theorem 2: If {Rc} is re-constructible to⇒, then SM is a
strong realization of cd.

Corollary 3: If⇒min
c ⊆ Rc for all c ∈ C, then SM is a weak

realization of cd.

3.2 Extended CSCB Method

We extend the CSCB method [6] to find a set of Pareto ef-
ficient state machines in terms of intelligibility. Some re-
lations are introduced in 3.2.1 and the main algorithm is
shown in 3.2.2.

3.2.1 Relations

Because the acyclic relation D is a relation on active events,
we have to extend it to the relation on active and non-active
events. The acyclic relation ⇒⊆ Σ2 on the set of events is
obtained by augmenting D, as follows:

⇒ = D ∪ {(?m1, !m2) | m1 ∈ Ma,m2 ∈ Ma,Ω(?m1, !m2)}
∪ {(?m1, $m2) | m1 ∈ Ma,m2 ∈ Ms,Ω(?m1, $m2)}
∪ {(!m1, $m2) | m1 ∈ Ms,m2 ∈ Ms,Ω(!m1, $m2)}
∪ ⇒M ∪{(!m, e) | m ∈ Ms,Ω($m, e)}, (7)

where Ω(e1, e2) is true when both events e1 and e2 occur
in the same peer and (!e1, !e2) ∈ D, where !e1 and !e2 are
the corresponding active events for events e1 and e2, respec-
tively.

The communal relation for decomposition is given as
follows:

⇒com = ⇒M ∪ {(!m, e) | m ∈ Ms,Ω($m, e)}, (8)

where⇒M is a natural ordering where the callee’s event of
a message follows the caller’s event of the same message;
{(!m, e) | m ∈ Ms,Ω($m, e)} implies that an event e that fol-
lows a preparation event $m of a synchronous message and
occurs in the same peer follows the send-receive event !m
of the message. As stated before, a caller of a synchronous
message waits for the occurrence of callee’s receive event.
Therefore, !m precedes e. In the case of state machines of
cbUML, any event following a preparation event follows the
send-receive event, as described in the execution semantics
of state machines. Therefore, the order given by ⇒com is
kept when multiple state machines are executed in parallel.

Let us define Ymax
c and Ymin

c as follows:

Ymax
c =

(⇒max
c ∪{(?re f (m), e) |

Algorithm 1: Extended CSCB method
1 Construct an acyclic relation⇒ on the set of events.
2 foreach peer c do
3 Derive Ymax

c and Ymin
c from⇒.

4 foreach acyclic relation⇒c in Ac do
5 Construct MMG N from⇒c.
6 Construct set N of CMMGs from N.
7 foreach N′ ∈ N do
8 Construct a state machine from N′.
9 Evaluate the state machine, and update Pareto

frontier.

10 Output Pareto efficient state machines.

Algorithm 2: Constructing an MMG [6]
Input: ⇒c

Output: MMG N = (P,T, F,G, A)
1 begin
2 P← {p(e1 ,e2) | (e1, e2) ∈⇒c} ∪ {ps, pe} ;
3 T ← {te | e ∈ Σc} ∪ {tinit, tend} ;
4 F ← {(te1 , p(e1 ,e2)), (p(e1 ,e2), te2) | (e1, e2) ∈⇒c}
5 ∪{(ps, tinit), (tend, pe)} ;
6 ∀t ∈ T : G(t)← ∅ ;
7 ∀e ∈ Σc : A(te)← e; A(tinit) = A(tend) = ε ;

m ∈ Ms, e �?re f (m), ($m, e) ∈⇒max
c })− (9)

Ymin
c =

(⇒min
c ∪{(?re f (m), e) |

m ∈ Ms, e �?re f (m), ($m, e) ∈⇒max
c })− (10)

The first set is the projected relation of the transitive closure
(reduction) of⇒ on the set of events of peer c. The second
set adds the additional constraints so that only the receive
event ?re f (m) of the reply message of a synchronous mes-
sage m is the direct successor of the preparation event $m.
From Theorem 2, we can find⇒c between Ymax

c and Ymin
c to

synthesize state machines those are strong realization.

3.2.2 Algorithm

The pseudo-code of the extended CSCB method is shown in
Algorithm 1. We use Petri nets in the algorithm; please see
Appendix B for Message Petri Net (MMG) and so on. The
algorithm synthesizes Pareto efficient state machines. Our
objective is synthesizing Pareto efficient state machines and
is not choosing the best one. The best one should be chosen
among them by a designer.

At line 1, the acyclic relation⇒ is constructed by (7).
At line 3, two acyclic relations Ymax

c and Ymin
c are derived

from⇒ by (9) and (10), respectively.
At line 4, we enumerate all relations between Ymin

c and
Ymax

c . Let denote the power set of a set A by P(A). The
candidate set Ac of⇒c is given as follows:

Ac = {⇒min
c ∪r | r ∈ P(Ymax

c \ Ymin
c)} (11)

At line 5, for each acyclic relation ⇒c∈ Ac, an MMG
is constructed by using Algorithm 2.

1204
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Algorithm 3: Constructing CMMGs
Input: MMG N
Output: Set N of CMMGs

1 begin
2 Calculate set U of bridges in N.
3 N ← ∅;
4 cutBridges(N, U, N);

5 cutBridges(N, U, N)
6 if U = ∅ then
7 Separate fork and join transitions.
8 Find one-to-one correspondence.
9 Insert dummies after receiving reply.

10 N ← N ∪ {N};
11 foreach bridge u ∈ U do
12 Cut bridge u in N (let N′ be the new one).
13 Calculate set U′ of bridges in N′.
14 cutBridges(N′, U′, N);

Fig. 1 (a) Separating a fork and join transition, (b) finding one-to-one
correspondence, and (c) inserting dummy transition after receiving reply.

Algorithm 4: Cutting a bridge
Input: MMG (P,T, F,G, A)
Input: bridge b = (n1, n2, . . . , nr−1, nr)

1 F ← F \ {(n1, n2), (nr−1, nr)};
2 G(n3)← G(n3) ∪ {n1};
3 if r = 3 then
4 P← P \ {n2};
5 else
6 G(nr)← G(nr) ∪ {nr−2};
7 F ← F ∪ {(tinit, n2), (nr−1, tend)};

At line 6, a set of CMMGs is constructed by using Al-
gorithm 3. In the algorithm, U represents the set of bridges
in the MMG. The procedure cutBridges is called recur-
sively. The cutBridges takes three parameters: an MMG
N, the set U of bridges in N, and the set N of CMMGs.

Algorithm 5: Converting CMMG to a state ma-
chine [6]

Input: CMMG (P,T, F,G, A)
Output: State machine (V,R, rt,Θ,Φ, E,C, B), AttributeA

1 begin
2 T ← T\{t | Empty(t), | • t| = |t • | = 1};
3 A ← { f iredt | t ∈ ⋃t′∈T G(t′)};
4 E ← {Event(t) | t ∈ T };
5 C ← {Constraint(t) | t ∈ T };
6 B← {Behavior(t) | t ∈ T };
7 V ← ∅; R← ∅; rt ← new Region();
8 RNG(ps, rt, pe);

9 RNG(ps, r, pe)
10 t← ps•; te ← •pe;
11 while Empty(te) ∧ | • te | = 1 do
12 te = • • te;

13 while Empty(t) ∧ |t • | = 1 do
14 t = t • •;
15 ip← new InitialPseudoState(); Θ(ip)← r;
16 if Event(t) = Constraint(t) = ε then
17 s← ip;
18 else
19 s← new SimpleState(); Θ(s)← r;
20 new Transition (ip, τ, ε, ε, s);

21 while t � null do
22 ev← Event(t); const ← Constraint(t);

beh← Behavior(t);
23 if t = te then
24 s′ ← new FinalState();
25 new Transition (s, ev, const, beh, s′);
26 return ;

27 if Empty(t) ∧ |t • | = 1 then
28 t ← t • •; continue;

29 if |t • | ≥ 2 then
30 s′ ← new CompositeState(); Θ(s′)← r;
31 forall the p′ ∈ t• do
32 r′ ← new Region(); Θ(r′)← s;
33 p′′ ← •FJ(t) ∩ S ucc(p′);
34 RNG(p′, r′, p′′);
35 t ← FJ(t) ;
36 else
37 if A(t) ∈ {$m | m ∈ Ms} then t ← t • •;
38 s′ ← new SimpleState(); Θ(s′)← r;
39 t ← t • •;
40 new Transition (s, ev, const, beh, s′);
41 s← s′;

If U is empty, a CMMG can be obtained by applying the
following three transformation rules (Fig. 1):

1. separating fork and join transitions,
2. finding one-to-one correspondence, and
3. inserting dummy transition after receiving reply.

If U is not empty, a bridge u is cut by using Algorithm 4.
Let N′ be the new MMG obtained by cutting bridge u. We
calculate the set U′ of bridges in N′ and call cutBridges
recursively. Note that the set of bridges is finite and the
number of bridges monotonically decreases. Therefore, the
depth and width of the recursive call is finite.

For each CMMG N′, Algorithm 5 is executed to con-

MIYAMOTO: SYNTHESIZING PARETO EFFICIENT INTELLIGIBLE STATE MACHINES FROM COMMUNICATION DIAGRAM
1205

struct a state machine. In the algorithm, f iredt is a Boolean
variable and it is added as an attribute of the corresponding
class. If A(t) is a callee’s event, then Event(t) is the event;
otherwise, Event(t) = τ. Constraint(t) returns the guard
conditions as follows:

Constraint(t) =

⎧
⎪⎪⎨
⎪⎪⎩

∧
t∈G(t) f iredt if G(t) � ∅, and

ε otherwise,

where ε stands for empty expression. Behavior(t) yields the
following effect:

Behavior(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c.m() if A(t) = $m,

send m to c if A(t) =!m,m ∈ Maop,

reply to m if A(t) =!m,m ∈ Mrep,

f iredt = true if f iredt ∈ A, and

ε otherwise,

where the first three expressions show a synchronous call,
an asynchronous call, and a reply to a synchronous call in
cbUML and c is the callee service. Note that the first three
conditions and the fourth condition are not alternatives. The
predicate Empty(t) is true if and only if Event(t) = τ,
Constraint(t) = ε, and Behavior(t) = ε. The “new” ex-
pression shows that a new vertex or region is generated, and
it is added to V or R.

Procedure RNG(ps, r, pe) constructs a state machine
in region r for a subnet between places ps and pe. Lines
from 11 to 14 eliminate the transitions that do not have any
function. Because a transition from an initial pseudo-state
cannot have any triggers and guards [4], a simple state is in-
serted (lines 19 and 20). Lines 21 to 41 generate states and
transitions. When the end of the region is reached, a final
state is generated (lines 23 to 26). Lines 27 and 28 also
eliminate the transitions that do not have any function. If a
transition has more than one output place, procedure RNG(·)
is called recursively (lines 29 to 35). S ucc(p′) in line 33 re-
turns the set of successors of place p′. As shown in Fig. A· 2,
calling a synchronous operation and receiving its reply mes-
sage is represented by a single transition in cbUML; there-
fore, the succeeding transition that receives the reply mes-
sage is skipped at line 37.

State machines are evaluated in terms of intelligibility
relation ≺, and Pareto frontier is updated.

3.3 CSCB Tools

We have implemented the extended CSCB method as a plug-
in of Rational Software Architect (RSA), a UML modeling
tool, and presented in [9]. We use RSA as the editor for
communication diagrams and the repository to store synthe-
sized state machines. One can download the plug-in from
the author’s page†.

4. Example

An example choreography is shown in Fig. 2, which is taken

Fig. 2 Purchase Order System

Fig. 3 ⇒ of the purchase order system

from BPEL-WS 2.0 specification [10]††. The system is
composed of five services: Customer, Vendor, Shipping,
Invoicing, and Scheduling. When Vendor receives
order from Customer, it sends requests to Shipping,
Invoicing, and Scheduling.

The request to Shipping is shipReq, and the re-
ply from Shipping is shipInfo. The requests to
Invoicing are productInfo and shipType; the reply
from Invoicing is invoice. Vendor sends productInfo
after receiving order; it sends shipType after receiving
shipInfo. Invoicing does internal process to make an
invoice after receiving productInfo and shipType; then
it sends invoice as a reply. The request to Scheduling
are productSchedule and shipSchedule. Vendor

†http://is.eei.eng.osaka-u.ac.jp/miyamoto/index.php?CSCB(Eng)
††In the specification, many elements, such as variables, link

types, and data handling, are used. However, considering them is
out of the scope of the CRP.

1206
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Fig. 4 ⇒max
Vendor

of the purchase order system

Fig. 5 The MMG of Vendor constructed form Ymax
Vendor

sends productSchedule after receiving order; it sends
shipSchedule after receiving shipInfo. Vendor sends
orderReply to Customer after receiving shipInfo and
invoice and sending shipSchedule. The acyclic relation
⇒ on events is shown in Fig. 3.

Let us synthesize state machines for Vendor.
First, we synthesize the state machine by the CSCB

method in [6]. The CSCB method uses Ymax
Vendor

, shown
in Fig. 4, as the relation ⇒Vendor. Algorithm 2 constructs
the MMG in Fig. 5. The MMG has a T-T bridge from
shipInfo receive to invoice receive. Algorithm 4
cuts the bridge by moving the segment from place7 to
place3 between two transitions, init and end. Figure 6
represents the CMMG. Algorithm 5 constructs the state ma-
chine in Fig. 7.

Fig. 6 The CMMG of Vendor transformed from the MMG in Fig. 5

In the state machine, the composite state V1 has two re-
gions. But, the transition from state V3 can occur when the
Boolean variable shipInfo receive is true. This variable
becomes true in the state transition from V13 to V14. The
main flow of Vendor is represented in the another region in
V1. Three regions in V7 and V11 correspond to the three
concurrent processes.

Next, we synthesize the state machine by the extended
CSCB method. The extended CSCB method uses acyclic
relations Ymax

Vendor
and Ymin

Vendor
, which are shown in Figs. 4 and

8, respectively. We have eight relations in AVendor because

Ymax
Vendor \ Ymin

Vendor = {(?productInfo, ?invoice),

(!shipReq, ?shipInfo),

(!shipType, ?invoice)}.
From these relations, twelve state machines are constructed.
Table 1 shows the value of intelligibility metrics. The val-
ues in column No. is the number of a relation and a bridge.
The state machine in Fig. 7 is 8-1. The value of state ma-
chine 7-1 is smaller than or equal to the value of other
state machines for all metrics and smaller than at least one
metric. The state machine 7-1 is the most intelligible one

MIYAMOTO: SYNTHESIZING PARETO EFFICIENT INTELLIGIBLE STATE MACHINES FROM COMMUNICATION DIAGRAM
1207

Fig. 7 The state machine of Vendor constructed from the CMMG in
Fig. 6

Table 1 NSS, NT, NG, ND, and NP of state machines of Vendor

No. NSS NT NG ND NP
1-1 6 16 1 3 9
2-1 5 16 1 3 8
2-2 6 15 1 3 8
3-1 5 16 1 3 8
3-2 6 15 1 3 8
4-1 3 14 0 3 8
5-1 6 14 1 3 7
6-1 7 16 2 3 8
6-2 7 16 2 3 8
6-3 4 15 1 3 8
7-1 3 11 0 3 7
8-1 5 15 1 4 7

among the twelve state machines. In Figs. 9 and 10, the re-
lation and the best state machine are shown. The state ma-
chine behaves as follows. When Vendor receives order,
it sends productSchedule to Scheduling, productInfo
to Invoicing, and shipReq to Shipping. After that,

Fig. 8 ⇒min
Vendor

of the purchase order system

Fig. 9 ⇒Vendor from that the best state machine of Vendor is synthesized

Fig. 10 State machine of Vendor by the extended CSCB method

it receives shipInfo, then it sends shipSchedule to
Shipping and shipType to Invoicing. Finally, when it
receives invoice, it sends orderReply to Customer.

Comparing two state machines in Figs. 7 and 10, the
latter is simpler and, thus, more intelligible than the former.
In the former, the transition from state V3 has a guard and

1208
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.6 JUNE 2017

Table 2 Intelligibility comparison

method NSS NT NG ND NP
projection 30 61 0 1 4
CSCB 5 15 1 4 7
extended CSCB 3 11 0 3 7

the state transition can occur after occurring the state transi-
tion from V13 to V14. Thus, the former has implicit control
flow. On the contrary, the latter does not have any guards
and the three region in the composite state V2 represents the
three concurrent processes to three services. We think the
latter is easier to understand its behavior.

Let us compare the proposed method with other meth-
ods: projection [2] and CSCB [6] methods. Table 2 shows
the comparison result.

The projection method is equivalent to constructing the
state space, therefore, NSS and NT become large, NG is
zero, and ND is one. Compared to the projection method,
CSCB and extended CSCB methods succeeded in reducing
NSS and NT. However, state machines by the projection and
the extended CSCB methods are not comparable in terms of
intelligibility because the projection method is better on ND
and NP and the extended CSCB method is better on NSS
and NT. Therefore, these state machines are members of the
Pareto frontier.

The CSCB method uses Ymax
c as ⇒c. Because Ymax

c ∈
Ac, the state machine synthesized by the CSCB method is
synthesized also by the extended CSCB method. Thus, the
extended CSCB method always synthesizes more intelligi-
ble state machines than the CSCB method.

We may synthesize other state machines those are
members of the Pareto frontier. For example, we can synthe-
size a state machine with ND=2 by flattening the compos-
ite state V5 of the state machine in Fig. 10. The extended
CSCB method does not synthesize every state machine in
the Pareto frontier. However, extending the extended CSCB
method to synthesize flattened state machines is not difficult.

5. Conclusion

In this paper, we discussed an approach to CRP, considering
the intelligibility of state machines. A set of metrics for
synthesized state machines is introduced and an algorithm
of synthesizing Pareto efficient state machines for the CRP
is proposed. Currently, our algorithm uses the brute force
method. When the number of messages get larger, we may
need any efficient search strategy.

A method for synthesizing state machines from multi-
ple communication diagrams is also left for future research.

References

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Prentice Hall Professional Technical Reference, 2005.

[2] T. Bultan and X. Fu, “Specification of realizable service conversa-
tions using collaboration diagrams,” Service Oriented Computing
and Applications, vol.2, no.1, pp.27–39, April 2008.

[3] J. Su, T. Bultan, X. Fu, and X. Zhao, “Towards a theory of web

service choreographies,” Proc. 4th Intl. Conf. on Web Services and
Formal Methods, pp.1–16, Sept. 2007.

[4] Object Management Group, “OMG Unified Modeling Language
(OMG UML), superstructure,” Aug. 2011. (accessed Oct. 31, 2013).

[5] J.A. Cruz-Lemus, M. Genero, and M. Piattini, “Metrics for UML
statechart diagrams,” in Metrics for Software Conceptual Models,
ed. M. Genero, M. Piattini, and C. Calero, pp.237–272, Imperial
College Press, 2005.

[6] T. Miyamoto, Y. Hasegawa, and H. Oimura, “An approach for
synthesizing intelligible state machine models from choreography
using petri nets,” IEICE Trans. Inf. & Syst., vol.E97.D, no.5,
pp.1171–1180, May 2014.

[7] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, vol.77, no.4, pp.541–580, April 1989.

[8] T. Miyamoto, “Choreography realization by re-constructible decom-
position of acyclic relations,” IEICE Trans. Inf. & Syst., vol.E99.D,
no.6, pp.1420–1427, 2016.

[9] T. Miyamoto, “CSCB tools: A tool to synthesize pareto optimal state
machine models from choreography using Petri nets,” International
Workshop on Petri Nets and Software Engineering, pp.335–340,
2016.

[10] OASIS, “Web services business process execution language version
2.0,” 2006.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-specification-draft.html

[11] J. Esparza and M. Silva, “Circuits, handles, bridges and nets,” in
Advances in Petri Nets 1990, ed. G. Rozenberg, Lecture Notes in
Computer Science, vol.483, pp.210–242, Springer, 1991.

Appendix A: Operational Semantics of State Machines

Due to space limitations, the details of the operational se-
mantics of state machines are omitted. A state machine has
a message pool, and its state is defined by a consistent set
of active states, a set of suspended regions, a set of mes-
sages in the message pool, and values of the attributes. A
transition may fire when the originating vertex is active, the
message of the trigger event is in the message pool or is the
completion event, and the guard is true. When the transition
fires, the originating vertex and its descendants are inacti-
vated, the message is removed from the message pool, the
effect is executed, and the target vertex and initial pseudo-
states in the first descendant regions are activated. The steps
for synchronous calls and asynchronous calls are explained
with examples.

Figure A· 1 shows the execution steps of an asyn-
chronous call. In the figure, a state, a transition, and a region
is represented by a round-cornered rectangle, an arrow, and
a rectangle with dashed lines. However, in Fig. A· 1, regions
are omitted for simplification. The gray states are active.
When state machine sm1 transitions from state s11 to state
s12 due to the completion event, an asynchronous call is ex-
ecuted. At this time, the send event !m occurs and message
m is added to the message pool of sm2. The state machine
sm2 transitions from state s21 to state s22, consuming mes-
sage m due to the receive event ?m.

Figure A· 2 shows the execution steps of a synchronous
call. A synchronous call is executed in sm1. At this time,
the preparation event $m occurs in sm1, and the region that
contains the transition is suspended, where the suspended
region is represented by the gray region. Moreover, mes-

http://dx.doi.org/10.1007/s11761-008-0022-7
http://dx.doi.org/10.1007/978-3-540-79230-7_1
http://dx.doi.org/10.1007/978-3-540-79230-7_1
http://dx.doi.org/10.1587/transinf.e97.d.1171
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1587/transinf.2015fop0001
http://ceur-ws.org/Vol-1591/paper22.pdf
http://dx.doi.org/10.1007/3-540-53863-1_27

MIYAMOTO: SYNTHESIZING PARETO EFFICIENT INTELLIGIBLE STATE MACHINES FROM COMMUNICATION DIAGRAM
1209

Fig. A· 1 Steps for an asynchronous call

Fig. A· 2 Steps for a synchronous call

sage m is added to the message pool of sm2. State machine
sm2 transitions from state s21 to s22, consuming message m
by the occurrence of the send-receive event !m. Next, sm2
sends a reply message rm to sm1 upon transitioning from
s22 to s23. At this time, the send event !rm occurs, and
message rm is added to the message pool of sm1. Now, sm1
releases the suspended region and transitions from state s11
to state s12, consuming reply message rm by the occurrence
of the receive event ?rm. Note that the receive event ?rm
does not appear in the state machine because they were us-
ing the region-suspend mechanism.

Appendix B: Message Petri Nets

A Petri net [7] is a tuple N = (P,T, F), where P is the set of
places, T is the set of transitions, and F ⊆ P×T∪T×P is the
flow relation. For x ∈ P ∪ T , the set {y ∈ P ∪ T | (y, x) ∈ F}
is called the preset of x and denoted by •x. Similarly, the set
{y | (x, y) ∈ F} is called the postset of x and it is denoted by
x•. For set X, •X = ∪x∈X • x and X• = ∪x∈X x•.

A place p ∈ P is called a source place and a sink place
when •p = ∅ and p• = ∅, respectively. Similarly, a tran-
sition t ∈ T is called a source transition and a sink tran-
sition when •t = ∅ and t• = ∅, respectively. A transi-
tion t is called a fork transition and a join transition when
|t • | > 1 and | • t| > 1, respectively. The sets of join tran-
sitions and fork transitions are denoted by T join and T f ork,
respectively. Under the standard definition of Petri nets, if
∀p ∈ P : | • p| = 1 and |p • | = 1, then the Petri net is
called a marked graph. In this paper, we relax the condition

†A(t) = ε means that no event is assigned to t.
††A path is called elementary if no vertices appear twice or more

in it.

as follows: ∀p ∈ P : | • p| ≤ 1 and |p • | ≤ 1.

Definition 9 (MMG): A message marked graph (MMG) is
a tuple N = (P,T, F,G, A), where the underlying Petri net
(P,T, F) satisfies the following conditions:

1. N is acyclic,
2. Only one source place ps and one sink place pe exist,
3. No source transitions and sink transitions exist, and
4. |ps • | = 1, | • pe| = 1, and ∀p ∈ P\{ps, pe} : [| • p| =

1, |p • | = 1].

G : T → 2T is a firing constraint and the partial function
A : T → Σ ∪ {ε} assigns an event for each transition†.

Definition 10 (Bridge [11]): Let N = (P,T, F), and N1 =

(P1,T1, F1) and N2 = (P2,T2, F2) be subnets of N. An ele-
mentary path†† π = (n1, . . . , nr), r ≥ 2 is a bridge from N1 to
N2 if and only if π∩(P1∪T1) = {n1} and π∩(P2∪T2) = {nr}.
When n1 and nr are transitions, the bridge is called a T-T
bridge. P-T, T-P, and P-P bridges are defined in a similar
way.

Note that any MMG has only T-T bridges, no P-T, T-
P, or P-P bridge is in the MMG, because the cardinality of
preset or postset of any place is at most one.

Definition 11 (Parallel Path): For two elementary paths
π1 = (n1, . . . , nr) and π2 = (n1, . . . , nr), if π1 ∩ π2 = {n1, nr},
then π1 and π2 are called parallel paths.

For a transition t ∈ T in a T-T bridge-free MMG,
FJ(t) ⊆ T (resp. JF(t) ⊆ T) is the set of terminal (resp.
starting) transitions of parallel paths starting from (resp. ter-
minating at) t.

Definition 12 (Convertible MMG): An MMG is called a
convertible MMG (CMMG) if the following conditions hold:

1. |T f ork | = |T join|,
2. T f ork ∩ T join = ∅,
3. For any parallel paths η1 and η2, there exist no bridge

from one to the other,
4. If A(t) = $m, then t • • = {t′}, A(t′) =?re f (m), and
5. If A(t) =?m and m ∈ Mrep, then |t • | = 1.

Toshiyuki Miyamoto received his B.E.
and M.E. degrees in electronic engineering from
Osaka University, Japan in 1992 and 1994, re-
spectively. Moreover, he received Dr. of Eng.
degree in electrical engineering from Osaka
University, Japan in 1997. From 2000 to
2001, he was a visiting researcher in Depart-
ment of Electrical and Computer Engineering
at Carnegie Mellon University, Pittsburgh, PA.
Currently, he is an Associate Professor with the
Division of Electrical, Electronic and Informa-

tion Engineering, Osaka University. His areas of research interests include
theory and applications of concurrent systems and multi-agent systems. He
is a member of IEEE, SICE, and ISCIE.

