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Towards an Efficient Approximate Solution for the Weighted User
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Jianfeng LU†,††a), Member, Zheng WANG†, Dewu XU†, Changbing TANG†, and Jianmin HAN†, Nonmembers

SUMMARY The user authorization query (UAQ) problem determines
whether there exists an optimum set of roles to be activated to provide a
set of permissions requested by a user. It has been deemed as a key is-
sue for efficiently handling user’s access requests in role-based access con-
trol (RBAC). Unfortunately, the weight is a value attached to a permis-
sion/role representing its importance, should be introduced to UAQ, has
been ignored. In this paper, we propose a comprehensive definition of the
weighted UAQ (WUAQ) problem with the role-weighted-cardinality and
permission-weighted-cardinality constraints. Moreover, we study the com-
putational complexity of different subcases of WUAQ, and show that many
instances in each subcase are intractable. In particular, inspired by the idea
of the genetic algorithm, we propose an algorithm to approximate solve an
intractable subcase of the WUAQ problem. An important observation is
that this algorithm can be efficiently modified to handle the other subcases
of the WUAQ problem. The experimental results show the advantage of
the proposed algorithm, which is especially fit for the case that the compu-
tational overhead is even more important than the accuracy in a large-scale
RBAC system.
key words: role-based access control, user authorization query, weight,
constraint, genetic algorithm

1. Introduction

The user authorization query (UAQ) problem for role based
access control (RBAC), introduced by Zhang et al. [1], is to
determine whether there exists an optimum set of roles that
should be activated to provide a particular set of permissions
requested by a user, which has been the subject of consid-
erable research in recent years, and is widely accepted as
a key issue related to efficiently handing users’ access re-
quests [2], [3].

The concept of UAQ was originally proposed by Du et
al. [4] with the name of inter-domain role mapping (IDRM)
problem. However, the definition of IDRM is basic and
incomplete, as an unique minimal set of roles that exactly
covers the requested permissions may not exist. Chen et
al. [4], [5] redefined the IDRM problem by ensuring two
aspects of constraints: (i) all of the requested permissions
should be available; (ii) the principle of least privilege
should be observed. Zhang et al. [1] generalized IDRM
as UAQ, and divided it into three subcases: the exactly
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match, the availability match, and the least privilege match.
Wickramaarachchi et al. [6] extended the UAQ problem to
a more general definition, in which the number of permis-
sions granted is restricted to both a lower bound and an up-
per bound. One optimization objective is to prefer a set of
roles that has permissions as close to the lower bound as
possible, and the other prefers a set of permitted permis-
sions as close to the upper bound as possible. The above
specifications for UAQ have considered only the optimiza-
tion objective for the number of permissions, while the opti-
mization objective for the number of roles is also equally im-
portant, which has been largely ignored. Mousavi et al. [7]
gave a formulation of UAQ as a joint optimization objective
for both of the number of roles and the number of permis-
sions. However, they only considered the optimization ob-
jective for extra permissions, while the missing permissions
is omitted. Hence, Lu et al. [2] proposed a comprehensive
definition of the UAQ problem by considering the optimiza-
tion objectives for the number of permissions as well as the
number of roles, where the UAQ problem includes two com-
ponents: the Core-UAQ problem and the Constrained-UAQ
problem by introducing the irreducibility, role-cardinality,
and permission-cardinality constraints to Core-UAQ. A typ-
ical RBAC system may optionally include any Core-UAQ or
Constrained-UAQ.

A key limitation of existing works for the specification
of UAQ rely on the assumption that there is no difference
between permissions, i.e., they did not consider the differ-
ent nature and importance of each permission, or treated
the permissions evenly. However, this is not always true
in practice. For example, the permission that writes to the
student achievement may be more important than the per-
mission reads of the student achievement. Unfortunately,
the existing works of UAQ simply ignores this difference.
Here, we present an example to motivate the new features of
the notation about the weight of permission/role to optimize
the UAQ problem. Let us assume that the requested permis-
sion set is {p2, p3, p4}, permissions p1 and p2 belong to r1,
permissons p3 and p4 belong to r2, permissons p2, p4 and
p5 belong to r3. It is obvious that both {r1, r2} and {r2, r3}
are the solutions for the available match of UAQ, since each
of them has only one extra permissions p1 and p5, respec-
tively. However, it may not make any sense for choosing the
solution {r1, r2}, if the permission p1 is more critical than
the permission p5, such as p1 denotes as the permission that
writes to the student achievement, while p5 represents as the
permission that reads to the student achievement. In such
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case, the solution {r2, r3} is a better choice if we consider
the weight of the extra permissions. Therefore, the weight
of permission/role is a value attached to a permission/role
representing its importance [8], [9], which is very important
rather than trivial extension that should be introduced to the
specification of the UAQ problem, and we name it as the
weighted user authorization query (WUAQ) problem.

As discussed in [2], we have studied the computational
complexity of the UAQ, and shown that many instances
in each subcase with additional constraints are intractable.
Since the UAQ problem is only a subcase of WUAQ as it as-
sumes that each permission has the same impact of weight,
it is obvious that the WUAQ problem is also intractable.
In this work, we continue our research into the computa-
tional complexity of the UAQ problem by considering the
weights of permissions and roles. A more important issue is
how to design efficient algorithms to resolve the intractable
instances of the WUAQ problem. In previous, several re-
searchers have proposed exhaustive algorithms to compute
a solution for the UAQ problem. Zhang et al. [1] proposed
a two-step algorithm for the UAQ problem. However, this
algorithm may falsely reject some legal success requests.
Wickramaarachchi et al. [6] introduced two approaches to
address the UAQ problem: (i) developing algorithm that us-
ing the backtracking-based search techniques; (ii) reducing
the problem to the MAXSAT problem. As pointed out by
Armando et al. [11], the first approach is exponential-time
in design, thus it does not seem to scale to larger RBAC poli-
cies. The second approach is unsound, inefficient and offers
only limited support for the joint optimization of the number
of roles and extra permissions, as pointed out by Mousavi
et al. [7]. Lu et al. [2] proposed an approach to solve the
intractable cases of the UAQ problem by employing static
pruning, preprocessing and depth-first search based algo-
rithm to reduce its running time. However, the above ex-
haustive algorithms may not fit with the WUAQ problem
due to two major reasons: (i) the previous algorithm fo-
cus on the numbers of roles and permissions, rather than the
weights of them; (ii) under the premise of ensuring the accu-
racy, the computational overhead may be even more impor-
tant [8]. Thus, an efficient approximate approach is urgently
needed for WUAQ.

Briefly, the main contributions of this paper can be
summarized as follows.

• We propose a comprehensive definition of the WUAQ
problem, by introducing the weight of permission/role
to UAQ, and consider the role-weighted-cardinality
and permission-weighted-cardinality constraints.

• We study the computational complexity of different
subcases of WUAQ problems, and show that many in-
stances in each subcase are intractable.

• We propose an algorithm to approximately solve the
intractable cases of the WUAQ problem, an impor-
tant observation is that this algorithm can be efficiently
modified to handle the other subcases of the WUAQ
problems.

The rest of this paper is organized as follows. In Sect. 2,
we give the formal definition of the WUAQ problem, and
study the computational complexity of its variants subcases.
Section 3 presents an approximate algorithm to solve the in-
tractable cases of the WUAQ problem. In Sect. 4, we imple-
ment the proposed algorithm, and make a comparison with
other work. We conclude this paper in Sect. 5.

2. The Weighted User Authorization Query Problem

Ma et al. have introduced a formal definition of the weight
of permission/role, and given methods of calculating them.
For more details, please refer to [8], [9]. In this section, we
assume that the weights are given by the system, and in-
troduce two types of constraints: role-weighted-cardinality
and permission-weighted-cardinality to the WUAQ prob-
lem. Continuing the specification style of UAQ in [2], the
WUAQ problem is defined as follows.

Definition 1. (The WUAQ Problem) Given a set R of all
roles, a set P of all permissions, and a set Preq of permis-
sions requested by a user u, the WUAQ problem is to iden-
tify a role set R ⊆ R that can be activated by u while may
optionally satisfy the following constraints:

• Role-weighted-cardinality: A role-weighted-cardinali-
ty constraint is denoted as rwc〈R,Or〉, where R ⊆ R,
Or ∈ {k,∞+,∞−}, and k is a positive number. We say
that rwc〈R,Or〉 is satisfied if and only if the following
conditions hold:

– W(R) ≤ k, if Or = k, where W(R) denotes the
weight of the role set R;

– W(R) is maximized if Or = ∞+;
– W(R) is minimized if Or = ∞−;

• Permission-weighted-cardinality: A permission-wei-
ghted-cardinality constraint is denoted as pwc〈R,Op〉,
where R ⊆ R, Op ∈ {t+, t−, t±, 0+, 0−, 0±}, and t is a
positive number. We say that R satisfies pwc〈R,Op〉, if
and only if the following conditions hold:

– Perm(R) ⊇ Preq and W(Perm(R) − Preq) ≤ t if
Op = t+, where Perm(R) maps a role set R onto a
set of all available permissions, W(P) denotes the
weight of the permission set P;

– Perm(R) ⊆ Preq and W(Preq − Perm(R)) ≤ t if
Op = t−;

– W(Preq∪Perm(R)−Preq∩Perm(R)) ≤ t if Op = t±;
– Perm(R) ⊇ Preq and for all R′ ⊆ R, Perm(R′) ⊇

Preq that W(Perm(R′)−Preq) ≥ W(Perm(R)−Preq)
if Op = 0+;

– Perm(R) ⊆ Preq and for all R′ ⊆ R, Perm(R′) ⊆
Preq that W(Preq−Perm(R′)) ≥ W(Preq−Perm(R))
if Op = 0−;

– for all R′ ⊆ R, W(Preq ∪ Perm(R′) − Preq ∩
Perm(R′)) ≥ W(Preq∪Perm(R)−Preq∩Perm(R))
if Op = 0±;

A permission-weighted-cardinality constraint specifies
an optimization requirement on the weight of the permis-
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sions that can be acquired by the requesting user. The pa-
rameter t+ and t− specify the threshold values that the weight
of extra and missing permissions that the system can be able
to tolerate, respectively, while t± specifies the threshold val-
ues that the weight of both extra and missing permissions.
Similarly, the parameters 0+, 0− and 0± prefer to minimize
the weight of extra permissions, missing permissions and
the union of them. For instance, when the system can be able
to tolerate missing permissions that the total weight of them
is 0.5, then t can be set to 0.5 for the case Op = t−. When
the total weight of extra permissions that more than 1.0 may
bring the intolerable risk to the system then t can be set to
1.0 for the case Op = t+. Similarly, if the system want to
minimize the total weight of extra and missing permissions,
then the case Op = 0± can satisfy such requirement. In
another aspect, a role-weighted-cardinality constraint spec-
ifies an optimization requirement on the weight of activated
roles. The parameter k specifies the threshold values that the
weight of selected roles by the system, while the parameters
∞+ and ∞− prefer to maximize and minimize the weight
of selected roles, respectively. It may be useful when secu-
rity constraints make some selected roles to be unavailable,
while minimizing the weight of selected roles activated in a
user’s session may allow an administrator to more efficiently
manage the system. For example, when the system can be
able to tolerate a set of roles whose total weight is no more
than 1.5 that activated in a session, then k can be set to 1.5
for the case Or = k, while the case Or = ∞+ can satisfy the
requirement that the system want to maximize the selected
roles.

To specify a subcase of the WUAQ problem, we
write it followed by the list of constraints within a pair of
braces. For instance, WUAQ〈rwc : k + pwc : t+〉 de-
notes the subcase that finds the role set R to satisfy not only
rwc〈R, k〉, but also pwc〈R, t+〉. Note that all the permission-
weighted-cardinality constraints can be combined with the
role-weighted-cardinality constraints, there may be conflicts
between these two types of constraints, we hence simply as-
sign higher priority to the permission-weighted-cardinality
constraints than the role-weighted-cardinality to solve such
conflicts.

The UAQ problem essentially is a subcase of WUAQ,
since it just assumes that each permission and role has the
same impact of weight. In this case, determining the com-
putational complexity of the WUAQ problem is a challenge
work. In the following, Theorem 1 derives the complexity
of different subcases of WUAQ problems.

Theorem 1. The computational complexity of different sub-
cases of WUAQ problems are as shown in Table 1.

Proof. The proof for Theorem 1 consists of three parts:
(i) We show that WUAQ〈rwc : k〉 is NP-complete by

proving that it is both NP-hard and in NP. Firstly, it can see
that WUAQ〈rwc : k〉 is in NP, this is because if one correctly
guess a subset R of R as a solution for WUAQ〈rwc : k〉, ver-
ifying whether W(R) ≤ k, which can be done in polynomial

Table 1 Computational complexities of different subcases of WUAQ
problems.
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time. Secondly, we prove that WUAQ〈rwc : k〉 is NP-hard
by reducing the NP-complete subset sum problem [12] to it.
The subset sum problem can be depicted as follows: Given
a set A = {ai : 1 ≤ i ≤ n} of positive integers and a positive
integer M, the goal is to determine whether there exists a
subset of A sum of whose elements equal to a given integer
M. The reduction is as follows: Given A and M, construct
WUAQ〈rwc : k〉 as follows: Let each element in A map to a
role weight W(r) | r ∈ R in the problem, and let M equal to
k. Next, we construct an RBAC state as follows: For each
corresponding role in the element of A, create a single per-
mission p to which the role is covered, and assign the value
of W(r) as its weight. The resulting solution R can be found
with respect to W(R) ≤ k, if and only if, there exists a subset
of A sum of whose elements equal to M.

(ii) We study the complexities of WUAQ problems
for the subcases Op = t+. In fact, the UAQ problem
can be regarded as a special case of the WUAQ problem.
For example, UAQ〈available + pc : t+〉 in [2] is equal
to WUAQ〈pwc : t+〉 when we assume that each permis-
sion has the same weight. In this case, the complexity of
WUAQ〈pwc : t+〉 is at least as hard as UAQ〈available+pc :
t+〉, because any solution for the former problem is also a so-
lution for the later one. It obviously that WUAQ〈pwc : t+〉
is in NP, since verifying whether a given role set is a solution
for WUAQ〈pwc : t+〉 can be done in polynomial time. Sim-
ilarly, the remainder subcases for Op = t+, and the WUAQ
problems for Op = t−, Op = 0+ and Op = 0− can be derived.

(iii) Since the complexities of WUAQ problems for the
subcases Op = t± are at least as hard as both of the cases
Op = t+ and Op = t−, as any solution for one of the lat-
ter two is also a solution for the former one. Similarly, we
can derive the complexity of WUAQ problems for the cases
Op = 0±.

Other results in Table 1 can be implied from the proved
cases. �
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3. An Efficient Approximate Algorithm for the
Weighted User Authorization Query problem

The fact that WUAQ is intractable, as shown in Theorem 1,
means that there exist difficult problem instances that take
exponential time in the worst case. However, many in-
stances that will be encountered in practice may still be ef-
ficiently solvable. For example, WUAQ〈pwc : 0+〉 is NP-
hard as shown in Table 1. In order to solve such intractable
subcase, we first propose a binary evolutionary (BE) algo-
rithm to approximate solve it, which is inspired by the idea
of the genetic algorithm [13], [14]. Next, we show that our
algorithm can be efficiently modified to handle the other
subcases of the WUAQ problems.

3.1 The Binary Evolutionary Algorithm

In the BE algorithm, we first generate a population of role
sets at random, and evaluate their fitness. Next, we gener-
ate a new population based on mutation and crossover with
a probability distribution. Finally, the algorithm will stop
when iteration times are over the threshold value, and out-
put a solution that approximate solve WUAQ〈pwc : 0+〉.
The steps of the BE algorithm are summarized as follows,
and the pseudo code is given in Algorithm 1. This algorithm
has a time complexity of O(lmn), where l, m, n denote the
number of iteration times, the size of population, the num-
ber of all available roles, respectively. The main notations
used in this paper are shown in Table 2.

(i) Preprocess: Remove roles in R that do not have at least
one permission in Preq.

(ii) Coding: Convert each solution of the WUAQ problem
to a corresponding chromosome, that use n-bit string
y1, · · · , yn where each bit yi is either 1 or 0 to represent
whether the ith role is selected in the solution.

(iii) Start: Select a population of m points x1, · · · , xm to
represent the roles set at random, and set l = 0.

(iv) Compute fitness: Compute the fitness of the role set
using the evaluation function.

(v) Replacement: Sort the m points according to the value
of their fitness from large to small, and replace the lat-
ter half part by the front half.

(vi) Regeneration: If all the points in the first half of the
population have the same fitness, set l = l + 1, save x1,
and go to step (iii).

(vii) Mutate: For each point xi that m
2 < i ≤ m in the popu-

lation and for each bit in xi, with probability pmuta, alter
its value.

(viii) Crossover: For each y j in the pair points xi and x(i+1)

from the x m
2
, · · · , xm, with probability pcross, exchange

xi.y j with x(i+1).y j.
(ix) Stop: Set l = l + 1, if l is equal to the threshold value,

stop. Otherwise go to step (iv).

Algorithm 1 The BE Algorithm for WUAQ〈pwc : 0+〉
Input: R, P,RP, Preq,W(p), pmuta, pcross,T ;
Output: O.R[n]
1: for each r ∈ R do
2: if Perm(r) ∩ Preq = ∅ then
3: R← R/{r}
4: end if
5: end for
6: Rand(E[m]) /∗ generate a random population∗/
7: while + + l ≤ threshold do
8: for each i ∈ [0, n) do
9: E[i]. f it ← psize − wep − 100wmp

10: end for
11: Sort(E[m]) /∗From big to small sort∗/
12: if O. f it < E[0]. f it then
13: O← E[0]
14: end if
15: if E[0]. f it == E[ m

2 − 1]. f it then
16: Rand(E[m])
17: end if
18: for each i ≤ m

2 do
19: E[ m

2 + i]← E[i]
20: end for
21: for each i > m

2 do
22: for each j ∈ [0, n) do
23: if rand() < pmuta then
24: E[i].R[ j]← E[i].R[ j]
25: end if
26: end for
27: for each i%2 == 0 do
28: for each j ∈ [0, n) do
29: if rand() < pcross then
30: E[i].R[ j]↔ E[i + 1].R[ j]
31: end if
32: end for
33: end for
34: end for
35: end while

Table 2 Main notations used in this paper.

Notation Description
O The Optimal solution.

E[m] The population of m points.
E[i]. f it The fitness of E[i].

E[i].R[ j] The jth role in ith point of the population.
pcross The probability for crossover.
pmuta The probability for mutation.

psize
The size of the total permissions available in
the system.

rsize
The size of the total roles available in
the system.

wep
The weight of the extra permissions, i.e.,
wep = W(Perm(R) − Preq).

wmp
The weight of missing permissions, i.e.,
wmp = W(Preq − Perm(R)).

wsr
The weight of selected roles, i.e.,
wmp = W(R)).

3.2 Handling the Other Subcase of the WUAQ Problems

The algorithm described in the previous subsection address
a subcase WUAQ〈pwc : 0+〉. An important observation
is that this algorithm can handle the other subcases of the



1766
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Fig. 1 The runtime and accuracy for different probability of mutation and crossover.

Table 3 Key differences among the five parameters α, β, γ, δ, ε
for various WUAQ problem subcases with role-weighted-cardinality and
permission-weighted-cardinality constraints.
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−100, 1
rsize

Op = t− 1, 0,−100, 1, 1,−100, 1, 1 − 100,

Op = 0− −1, 0 −1,− 1
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−1, 1
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Op = t± 1, 0,−1, 1, 1,−1, 1, 1,−1,

Op = 0± −1, 0 −1,− 1
rsize

−1, 1
rsize

WUAQ problems by efficiently modifying the evaluation
function of fitness. The evaluation function of fitness used
in the BE algorithm is defined as follows.

Definition 2. The evaluation function of fitness is defined
as: f it = α × psize + β × rsize + γ × wep + δ × wmp + ε × wsr,
where α, β, γ, δ and ε are parameters used to adjust the
relative importance about psize, rsize, wep, wmp and wsr.

Table 3 summarizes the differences among the compo-
nents used for the different subcases of the WUAQ problem
with role weighted-cardinality and permission weighted-
cardinality constraints. For example, in order to deal with
the subcase WUAQ〈pwc : 0+〉, the evaluation function of
fitness is defined as f it = psize − wep − 100wmp, where we
set α = 1, β = 0, γ = −1, δ = −100 and ε = 0. In par-
ticularly, 100 × wmp can be regarded as a strict penalty for
cases where the chosen roles do not cover all the requested
permissions, while 1×wep can be regarded as a less penalty
for choosing extra permissions. This algorithm will search
for the least weight of extra permissions, which is a solution
for WUAQ〈pwc : 0+〉.

4. Experimental Results

In order to show the advantage of the proposed BE algo-
rithm, we have implemented it and performed several ex-
periments using randomly generated instances. We make
a comparison of our BE algorithm with the Depth-First
Search (DFS) algorithm in [2] for solving the subcase
WUAQ〈pwc : 0+〉 for two major reasons: Firstly, the com-
parison of the DFS with the Backtracking-Based Search
(BBS) algorithm proposed in [6] has shown the effective-
ness of the DFS algorithm. Secondly, both BE and DFS
algorithm can be efficiently modified to handle the other
subcases of the WUAQ/UAQ problems. The implementa-
tion of both BE and DFS algorithms were written in C. All
the experiments have been carried out on a standard desk-
top PC with a Intel(R) Core(TM) i7-4790 CPU running at
3.60GHz, and with DDR3 16GB 1600MHz memory, run-
ning Microsoft windows 7 Ultimate Editions. For each in-
stance, 10 randomly generated test cases are run, the aver-
ages of the test results are used to generate the graphs.

4.1 Effectiveness of Mutation and Crossover

In order to verify the accuracy of the solutions obtained. We
first implemented the DFS algorithm to generate an optimal
solution RDFS for reasonable size problems. We next ran
the BE algorithm to get a role set RBE , and computed the
accuracy of the BE algorithm, which was defined as follow.

Definition 3. The accuracy of the BE algorithm is defined
as:
(
1 − W(Perm(RBE ))−W(Perm(RDFS ))

W(Perm(RDFS ))

)
× 100%.

Figure 1 shows the average CPU times and accuracy
under different probability of crossover and mutation for the
test case: Preq = 30, R = 60, P = 600, the size of popu-
lation m = 120, and the number of iteration l = 100. The
x-axis denotes the probability of mutation which we fix its
value as 1

rsize
, 2

rsize
, 3

rsize
and 4

rsize
respectively. It can be clearly

seen from Fig. 1 (a) that the average CPU times is least when
we choose the parameter pmuta =

2
rsize

for the fixed pcross, and
the average CPU times increases with the maximal pcross for
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Fig. 2 Running time and accuracy for Binary Evolutionary (BE) algorithm and Depth First Search
(DFS) algorithm.
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the fixed pmuta. This is reasonable because the BE algorithm
depends on the generated data and the size of the role set R,
hence the less pcross will save the CPU times. But the im-
pact of pmuta for CPU times is less. As shown in Fig. 1 (b),
the average accuracy increases with the maximal pcross for
the fixed pmuta. This is because it is easy to find an optimal
solution if we assign a big value for pcross. However, we
can’t get the optimal solution when the value of pcross is ei-
ther maximum or minimum. Together with the observation,
we choose the parameters pmuta =

2
rsize

and pcross = 0.6 for
the remainder experiments.

4.2 Comparison of the BE Algorithm with the DFS Algo-
rithm

Figure 2 shows the results of running the experiments for
the four test case (1) Preq : R : P = 1 : 1 : 2; (2) Preq :
R : P = 1 : 1 : 10; (3) Preq : R : P = 1 : 2 : 4;
(4) Preq : R : P = 1 : 2 : 20. In particularly, we gen-
erate four different instances: BE 50-60, BE 50-280, BE
180-60, BE 180-280, the first parameter denotes the size of
the population, and the second parameter denotes the num-
ber of iteration in this algorithm. The runtime and accuracy
of these two algorithms depend on the total number of the
requested permissions Preq, available roles R and available
permissions P.

In Figs. 2 (a), (c), (e) and (g), both of these two algo-
rithms produce comparable results when the number of re-
quested permissions is small. However, as the number of re-
quested permissions increases, the overall CPU time taken
increases exponentially, this makes the DFS algorithm im-
practical for implementation in dynamic systems. However,
the BE algorithm with different instances take a few sec-
onds, even for a larger number of roles, permissions and
requested permissions. The reason is that the BE algorithm
will stop when iteration times are over the threshold value.
It is worth noting that the BE algorithm turns out to be more
effective when both of the population m and iteration l are
small. Such as BE 50-60 always has the least CPU times,
and BE 180-280 always has the largest CPU times compare
with the other two subcases of BE. However, the accuracy
of BE is close to the DFS algorithm when we choose large
number of m and l. As the number of requested permissions
increases, the accuracy of the BE algorithm decreases. For
example, the accuracy of BE 50-60 is less than 75% for a
bad instance, as shown in Fig. 2 (h).

Consequently, for the case that the accuracy is not very
critical, we can make the accuracy of the BE algorithm in an
acceptable extent by enlarging the value of population size
and iteration. The BE algorithm is able to efficiency approx-
imate solve the WUAQ problem even though the number of
permissions in a larger scale RBAC.

5. Conclusion

In this paper, we introduced the concept of permission/role
weight, and gave a formal definition for the WUAQ prob-

lem by considering two types of constraints: role-weighted-
cardinality and permission-weighted-cardinality. In fact,
WUAQ is a more comprehensive definition that includes the
UAQ problem. Furthermore, we studied the computational
complexity analysis of various subcases of the WUAQ,
and showed that most instances of WUAQ problem are in-
tractable. In particular, we proposed a BE algorithm to effi-
cient approximate solve an instance of WUAQ, and showed
how it can be efficiently modified to handle the other sub-
cases. The comparison between the BE algorithm and DFS
algorithm shown the efficiency and accuracy of the proposed
BE algorithm. This algorithm is especially fit for the case
that the computational overhead is even more important than
the accuracy.
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