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SUMMARY As advances in networking technology help to connect in-
dustrial control networks with the Internet, the threat from spammers, at-
tackers and criminal enterprises has also grown accordingly. However, tra-
ditional Network Intrusion Detection System makes significant use of pat-
tern matching to identify malicious behaviors and have bad performance
on detecting zero-day exploits in which a new attack is employed. In this
paper, a novel method of anomaly detection in industrial control network
is proposed based on RNN-GBRBM feature decoder. The method employ
network packets and extract high-quality features from raw features which
is selected manually. A modified RNN-RBM is trained using the normal
traffic in order to learn feature patterns of the normal network behaviors.
Then the test traffic is analyzed against the learned normal feature pattern
by using osPCA to measure the extent to which the test traffic resembles
the learned feature pattern. Moreover, we design a semi-supervised in-
cremental updating algorithm in order to improve the performance of the
model continuously. Experiments show that our method is more efficient in
anomaly detection than other traditional approaches for industrial control
network.
key words: anomaly detection, industrial control network, GBRBM, RNN-
GBRBM, osPCA, semi-supervised

1. Introduction

In recent decades, industrial control systems have been well
researched and extensively developed extensively with a
high rate, and widely applied in various fields, such as oil,
water, traffic and even nuclear. However, the development
of network intrusion technology has surpassed the secu-
rity study in industrial control systems at a terrifying pace.
For achieving the decentralized management and the remote
control, more and more control systems connect to open net-
works. But most of these industrial control networks (ICNs)
were not designed with security constraints in the primary
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system design [1], and are vulnerable to network attacks
nowadays. The critical infrastructures in an industrial con-
trol network, especially control systems, are the most po-
tential targets of network attacks from cyber-terrorist, ma-
licious hacker and disgruntled employees [2]. Disruption
from any of them would cause a tremendous loss of pro-
duction cost if we do not act on these in time, and even
sometimes it may cause serious environmental damage and
endanger the public safety.

In response to the threats of anomalous behaviors in in-
dustrial control network, anomaly detection techniques are
becoming a hot field in industrial network security research.
In general, there are two basic modeling theories for build-
ing a Network Intrusion Detection System (NIDS). One is
signature based or rule based NIDS, which detects intrusion
by observing events in the system and applying a set of rules
that lead to the decision regarding whether a given pattern of
activity is suspicious or not. The other one is anomaly based
NIDS, which compares events against an established base-
line, and the baseline will identify what is “normal” for this
network [3]. Signature and anomaly based NIDS are simi-
lar in terms of conceptual operation and composition. The
main difference between these methodologies is inherent in
the concepts of “attack” and “anomaly”. An attack can be
defined as “a sequence of operations that puts the security
of a system at risk”. An anomaly is just “an event that is
suspicious from the perspective of security”. Based on this
distinction, we point out the main advantages and disadvan-
tages of each NIDS type as follows.

Signature based NIDS (S-NIDS) provides very reliable
detection results for specified well known attacks with a low
false positive rate (or FP, events erroneously classified as at-
tacks). However, S-NIDS is not capable of detecting new,
unfamiliar intrusion, even if it is built as minimum variant
of already known attacks. On the contrary, the most pow-
erful ability of anomaly based NIDS is detecting unknown
intrusion events as well as “zero day” attacks, because they
model the normal operation of a network and detect devi-
ation from them. However, the high false positive rate in
anomaly based NIDS is a serious problem [4].

Given the promising capabilities of anomaly based net-
work intrusion detection system (A-NIDS), this approach
is currently a principal focus of research and development
in the field of industrial control network intrusion detec-
tion. There are a lot of effective techniques have been pro-
posed for anomaly based detection, which can be divided
into three types: statistical anomaly detection, machine
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learning based anomaly detection and data mining based
anomaly detection [3]. Lots of real NIDSs based on these
techniques had a good performance in the past decades,
such as Next-Generation Intrusion Detection Expert System
(NGIDES) [5] and Event Monitoring Enabling Responses
to Anomalous Live Disturbances (EMERALD) [6], which
were both developed by Stanford Research Institute (SRI).
However, an increasing number of undetected attacks have
arisen in industrial control network as of late, there are three
factors leading to the situation [7]–[9]:

· Attacks have become more sophisticated than before.
The behavior of attack is interconnected with multiple
protocol fields and network environment.
· With multi-strategy sequential attacks being more and

more frequently, recognizing anomaly pattern within a
single network packet becomes unrealistic. It is too
hard to detect intrusion by inspecting single packet
content for a conventional A-NIDS.
· With the development of network technology, attacks

are updating at an ever faster speed. Conventional A-
NIDSs performed poorer with unseen attacks. We need
keep training models with latest network data in order
to maintain the performance of detection.

Focusing on above factors, we proposed a modified architec-
ture of machine learning based A-NIDS, including a novel
RNN-GBRBM based feature decoder. The rest of this paper
is organized as follows. Section 2 gives a brief overview of
models, which are involved in the feature decoder, including
Restricted Boltzmann Machines (RBMs) and RNN-RBM.
The architecture that system used are shown in Sect. 3. Sec-
tions 4 and 5 elaborate on the decoder, classifier we have
adopted, and a novel semi-supervised incremental updating
algorithm. Section 6 is dedicated to the description of exper-
iments and discussion of their results. At the end, we give
our summary in Sect. 7.

2. Overview of Models

2.1 Restricted Boltzmann Machine

Restricted Boltzmann machine (RBM) is a stochastic neural
network, which is powerful enough to represent complicated
distribution [10]. Mostly, RBMs have been used as genera-
tive models of many types high-dimensional data including
labeled or unlabeled images that represent speech, bags of
words that represent documents, and user ratings of movies.
Also, recently some NIDS researches has been dipping their
toe into RBMs [11].

As shown in Fig. 1, the standard type of RBMs has
n binary-valued hidden units and m binary-valued visible
units, and consists of a matrix of weights W = (wi j) associ-
ated with the connection between hidden unit hj and visible
unit vi, as well as bias weights (offsets) bhj for the hidden
units and bvi for the visible units.

A joint configuration (v, h), the visible and hidden
units, has an energy given by Eq. (1).

Fig. 1 Structure of a restricted Boltzmann machine

E(v, h) =
n∑

j=1

m∑
i=1

wi jh jvi −
m∑

i=1

bvi vi −
n∑

j=1

bhj h j (1)

The network assigns a probability to every possible pair of
a visible unit and a hidden vector via a energy function as
shown in Eq. (2).

p(v, h) =
1
Z

e−E(v,h) (2)

Where Z denotes the “partition function” which is given by
summing over all possible pairs of visible and hidden vec-
tors, as shown in Eq. (3).

Z =
∑

v,h
e−E(v,h) (3)

Because of the specific structure of RBMs, visible and hid-
den units are conditionally independent given one-another,
as shown in Eqs. (4) and (5).

p(v | h) =
∏

i=1
p(vi | h) (4)

p(h | v) =
∏

j=1
p(h j | v) (5)

In the commonly studied case of using binary units, where
v j, hi ∈ {0, 1}, we obtain a probabilistic version of the usual
neuron activation function [12], as shown in Eqs. (6) and (7),
from Eqs. (1), (2).

p(vi = 1 | h) = σ

(
bvi +

∑
j=1

h jwi j

)
(6)

p(h j = 1 | v) = σ

(
bhj +

∑
i=1

viwi j

)
(7)

Whereσ(•) is the logistic sigmoid activation function 1/(1+
e−x). The independence between the variables in visible
or hidden layer makes Gibbs sampling especially easy: In-
stead of sampling new values for all variables subsequently,
the states of all variables in either layer can be sampled
jointly. Thus, Gibbs sampling can be performed in just two
steps: sampling a new state h for the hidden units based on
p(h | v) and sampling a state v for the visible layer based
on p(v | h) [10]. This is also referred to as block Gibbs
sampling.

The parameters of RBMs, which include Θ =
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Fig. 2 Structure of a RNN-RBM

(W, bh, bv), are obtained by training. Training means find-
ing the values of these parameters that correspond to desir-
able values for the energy, usually such that the energy is
minimized. Thus, a possible training strategy may aim at
minimizing the log-likelihood of the training data that is es-
timating its gradient with respect to the model parameters.
While an exact computation is intractable, the gradient can
be estimated using a method called contrastive divergence
(CD) [11]. CD learning is highly successful and is becom-
ing the standard learning, only runs block Gibbs sampling
for k (usually k = 1 [13]) steps to approximate the second
term in the log-likelihood gradient from a sample from the
RBM distribution [14].

2.2 RNN-RBM

The RNN-RBM is an energy-based model generalized from
RTRBM [15] for density estimation of temporal sequences,
where the feature vector v(t) at time window t may be high-
dimensionality. The structure of RNN-RBM is shown in
Fig. 2. It allows to describe multimodal conditional distri-
bution of v(t) |A(t) where A(t) ≡ {vτ | τ < t} denotes the se-
quence history at time t, via a series of conditional RBMs
whose parameters b(t)

v , b(t)
h (as shown in Eq. (8) and (9)) de-

pend on the output of a deterministic RNN with hidden units
u(t).

b(t)
v = bv +Wuvu(t−1) (8)

b(t)
h = bh +Wuhu(t−1) (9)

For simplicity, we denote the RBM parameters as W, b(t)
v ,

b(t)
h and a single-layer RNN whose hidden units u(t) are

only connected to their direct predecessor u(t−1) and to v(t)

Eq. (10) [16].

u(t) = tanh(bu +Wuuu(t−1) +Wvuu(t)) (10)

In the Sect. 5, we will introduce the training algorithm of a
modified RNN-RBM in our system in details.

3. System Architecture

As mentioned above, Our NIDS architecture is based on ma-
chine learning based A-NIDS schemes. More specifically,
the architecture is based on clustering and outlier detection
strategy, which works by grouping the observed data into

Fig. 3 (a) The architecture of conventional clustering & outlier strategy
NIDS. (b) The modified architecture of the NIDS

clusters, according to a given similarity or distance measure.
The process most commonly used for this strategy includes
following four steps.

· Features are extracted from the acquired data.
· Selecting a representative feature vector for the cluster

of normal data.
· The feature vector of each new data is classified as be-

longing to the given cluster according to the proximity
to the corresponding representative feature vector.
· If the vector doesn’t belong to the cluster, then it is

the outlier and represents an anomaly in the detection
process.

To solve the problems mentioned in Sect. 1, we made two
modifications on the architecture of conventional cluster-
ing & outlier strategy NIDS. First, a novel feature decoder
is introduced. In order to analyze continuous time series
of network data with highly complex structure, the RNN-
GBRBM (modified RNN-RBM) is adopted. Combining the
desirable characteristics of RNNs and RBMs have proven
to be non-trivial [16] because RNN enables the network to
have a simple version of memory with very minimal over-
head and allows more freedom to describe the temporal de-
pendencies involved [17], as well as because RBM can cap-
ture complicated, high-order correlations between the ac-
tivities of hidden features [18] and provide a closed-form
representation of the distribution underlying the observa-
tions [10]. Moreover, a semi-supervised incremental updat-
ing algorithm, which is appropriate for training the decoder
and updating the parameter of classifier, is proposed. The
algorithm provides equivalent detection performance as the
conventional supervised training method while decreasing
reliance on manual inspection. In addition, the algorithm
also dynamically updates the profiles of normal network
data. This is a very important property, since normal net-
work data profiles may change over time.

The comparison between the architecture of conven-
tional clustering & outlier strategy NIDS and the modified
architecture of the NIDS is shown in Fig. 3. The arrows rep-
resent different types of streaming of network data. The
black arrows indicate raw data, the blue arrows indicate
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feature vectors generated by Feature Extractor, the red ar-
rows indicate decoded feature vectors which are processed
from feature vectors, and the green arrows indicate the out-
put result.

In this paper, given a sequential industrial control net-
work data, denoted as X = {x(1), x(2), . . . , x(T )}, we suppose
to build a model λ when λ(xtest ≤ τ). Considering xtest as
an outlier or anomaly, we define that xtest is unseen network
data and τ is a preset threshold. According to the designed
architecture, λ becomes to Eq. (11), Where ν is the model of
classifier, and μ is the model of feature decoder (i.e. RNN-
GBRBM), μ(x) denotes the decoded feature vectors.

λ(x) = ν(μ(x)) (11)

4. Feature Decoder

4.1 Feature Extraction

In order to construct the input of trainer and classifier, fea-
ture extraction is necessary. Feature extraction starts from
an initial set of measured raw network data and builds de-
rived values (features) in a unified form that is intended to be
informative and non-redundant, facilitating the subsequent
training, decoding and classification. The usual way of fea-
ture extraction is picking or combining some of the protocol
field values or network parameters as features (vectors) via
human analysts [2]–[6], [11], [19]–[21].

We define the extracted feature of raw network data as
Eq. (12). Where xt is the t-th network data in a network
data sequence, draw is the dimensionality of the feature vec-
tor ⇀v (xt), and vk(xt) is a real value which indicates the k-th
feature of xt.

⇀v (xt) = [v1(xt), v2(xt), . . . , vdraw (xt), ] (12)

However, it is sometimes better to increase the dimension-
ality of features with another technique, this still happens
when data is extremely complex. Simple extracted features
are not enough to represent the information of raw data, and
to derive good results. We proposed a novel idea of using
RNN-GBRBM as feature decoder, so as to make features
more informative and convey more information to the clas-
sifier. For concreteness, thanks to some traits of GBRBM,
the feature decoder increases the dimensionality of extracted
features v and converts features from real-valued vectors
into binary vectors.

4.2 Gaussian-Bernoulli Boltzmann Machine (GBRBM)

As described in Sect. 3, we need make some modification
on the original RNN-RBM to joint our settings. The most
major modification on RNN-RBM is reforming RBM to
Gaussian-Bernoulli RBM (GBRBM). As shown in Eqs. (5)
and (6), the random binary variables are assumed for the in-
puts of the RBM [10]. This assumption becomes a critical
issue in considering real applications such as network data.

Reference [22] proposed that RBMs can extend harmoniums
into the exponential family, such as Gaussian, which could
make them much more widely applicable. Hence, RBM can
be extended to GBRBM which can take real-valued vari-
ables as inputs in the visible units, and obtain an efficient
classification feature (decoded feature) as outputs in the hid-
den units [14].

The GBRBM has visible units with real-valued vari-
ables and binary hidden units. The energy function of the
GBRBM is defined as Ref. [12], and is shown in Eq. (13).
Where bvi and bhj are bias corresponding respectively to vis-
ible and hidden units, wi j is the connecting weights between
the visible and hidden units and σ j is the standard deviation
associated with Gaussian visible units vi. Conditional prob-
abilities for visible and hidden units are shown in Eq. (14)
and Eq. (15). Where N(• | μ, σ2) denotes the Gaussian prob-
ability density function with mean μ and standard deviation
σ.

E(v, h) =
n∑

j=1

m∑
i=1

wi jh j
vi

σ j
−

m∑
i=1

(vi − bvi )
2

2σ2
−

n∑
j=1

bhj h j

(13)

p(vi = v | ⇀h ) = N

(
⇀v

∣∣∣∣∣∣ bvi +
∑

j
h jwi j, σ

2
i

)
(14)

p(h j = h | ⇀v ) = f

(
bhj +

∑
i
wi j

vi

σ2
i

)
(15)

In this case, the GBRBM takes an extracted feature ⇀v as
input in the visible units and obtains a decoded feature ⇀

h
in the hidden units. ⇀

h is defined as Eq. (16). Where xt is
the t-th network data in a network data sequence, ddecoded

is the dimensionality of the decoded feature vector ⇀

h (xt),
and hk(xt) is a binary value which indicates the k-th code of
decoded features.

⇀

h (xt) = [h1(xt), h2(xt), . . . , hddecoded (xt)] (16)

This procedure of transforming extracted features into de-
coded features, called “decoding” in this paper, is basically a
half step of block Gibbs sampling, i.e. sampling a new state
h as a decoded feature for the hidden units based on p(h | v)
with a well-trained GBRBM. On the contrary, the other half
step of block Gibbs sampling, i.e. sampling a state v for the
visible layer based on p(v | h) [10] called “encoding”.

In addition, Ref. [18] presented that stacking multiple
hidden layers in a GBRBM structure (i.e. Deep Boltzmann
Machines, DBMs) can obtain a tighter variational lower
bound on the log-probability of the test data and have the
potential of learning internal representations that become in-
creasingly complex. This however, would be computation-
ally very expensive, since we adopt only one hidden layer in
this paper.

4.3 RNN-GBRBM

As mentioned before, we will rarely be interested in de-
coding an individual extracted feature vector by a GBRBM.
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Instead, consider extracting information of temporal depen-
dencies from a series of extracted features and decoding
these vectors into a fixed length decoded feature vector by
joining multiple GBRBMs with a RNN structure, i.e. RNN-
GBRBM.

Intuitively, we use RNN to encode the decoded features
outputted from GBRBM into a more compact and informa-
tive form. Consider the output of RNN-GBRBM as an ulti-
mate decoded feature ⇀s . ⇀s is defined as Eq. (17). Where xt

is the t-th network data in a network data sequence, ddecoded

is the dimensionality of the decoded feature vector ⇀s (xt,Δt),
sk(xt) is a binary value which indicates the k-th code of de-
coded features, and Δt is the number of the hidden units in
RNN which indicates ⇀s is encoded with Δt decoded features
⇀

h (xt),
⇀

h (xt+1), . . . , ⇀h (xt+Δt−1).

⇀s (xt,Δt) = [s1(xt), s2(xt), . . . , sddecoded (xt)] (17)

The training algorithm of RNN-GBRBM need estimate
following parameters: u(0), bv, bh, Wuh, Wuv, Wuu, Wvu.
An iteration of training is based on the following general
scheme [16]:

· Propagate the current values of the hidden units u(t) in
the RNN portion of the graph using Eq. (10).
· Calculate the RBM parameters that depend on the u(t)

(Eqs. (8) and (9)) and generate the negative particles
v(t)∗ using k-step block Gibbs sampling.
· Use CD (contrastive divergence) to estimate the log-

likelihood gradient (Eq. (6)) with respect to W, b(t)
v , b(t)

h .
· Propagate the estimated gradient with respect to b(t)

v ,
b(t)

h backward through time (BPTT) [23] to obtain the
estimated gradient with respect to the RNN parameters.

5. Anomaly Classifier

Given a set of normal industrial control network data
Xtrain = {x(1), x(2), . . . , x(T )} and a set of unseen network
data Xunknown = {x(tu), x(tu+1), . . .}. We use Xtrain as a train-
ing dataset to train the decoder μ. With this well-trained
decoder, we decode the data in Xtrain and Xunknown into de-
coded features Strain and Sunknown, defined as Eqs. (18) and
(19).

Strain = {⇀s (xt,Δt)}, t = 0, 1, 2, . . . ,T − Δt + 1 (18)

Sunknown = {⇀s (xt,Δt)}, t = tu, tu+1, . . . (19)

In this section, we propose the model of classifier ν and a
semi-supervised incremental updating algorithm. The net-
work data xtest will be a normal data if ν(xtest) ≤ τ, xtest ∈
Xunknown. Otherwise xtest will be an outlier or anomaly.

5.1 Oversampling Principal Component Analysis

In the past, many outlier detection methods have been pro-
posed. Typically, these existing approaches can be divided
into three categories: distribution (statistical), distance and
density-based methods [24]. It is worth noting that the above

Fig. 4 The effects of adding/removing an outlier or a normal data in-
stance on the principal directions.

methods are typically implemented in batch mode, and thus
they cannot be easily extended to anomaly detection prob-
lems with streaming data or online settings. While some on-
line or incremental-based anomaly detection methods have
been recently proposed, it turns out that their computational
cost or memory requirements might not always satisfy on-
line detection scenarios [25], [26].

Reference [24] proposed an online anomaly detection
technique, named oversampling Principal Component Anal-
ysis (osPCA) in order to solve the above problems. Most
importantly, it is a good algorithm to process binary vectors
like decoded feature vectors since there is no other efficient
algorithm for classifying or clustering bit arrays data.

Principal Component Analysis (PCA) is a well-known
unsupervised dimension reduction method, which deter-
mines the principal directions of the data distribution. To
obtain these principal directions, one needs to construct the
data covariance matrix and calculate its dominant eigenvec-
tors. These eigenvectors will be the most informative among
the vectors in the original data space, and are thus consid-
ered as the principal directions. The osPCA consider the
size of the dataset is typically large for practical anomaly
detection problems, and thus it might not be easy to observe
the variation of principal directions caused by the presence
of a single outlier. As shown in Fig. 4, the proposed osPCA
scheme will duplicate the target instance multiple times, and
the idea is to amplify the effect of outlier rather than that of
normal data so as to detect the outlier [24].

In this paper, we use osPCA as our classification algo-
rithm. Firstly, sticking with previous definitions at start of
this section, calculate the dominant eigenvectors of a spe-
cific dataset Strain mentioned before, and consider it as the
principal direction ut of Strain:

ΣSunknown ut = λut (20)

Then, duplicate the unseen network data stest, stest ∈ Sunknown

r times, make them and Strain merge into a new set Sdeviated,
defined as:

Sdeviated = Strain ∪ {su, . . . , su} (21)

Likewise, calculate the principal direction ud of Sdeviated:
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Fig. 5 The confusion matrix

ΣSdeviated ud = λud (22)

Once these eigenvectors are obtained, we use the absolute
value of cosine similarity to measure the variation of the
principal directions, i.e.

θ = 1 −
∣∣∣∣∣∣
〈ut, ud〉
‖ut‖ ‖ud‖

∣∣∣∣∣∣ (23)

The θ can be considered as a “score of outlierness”, which
indicates the anomaly of target network data. We note that
θ can be also viewed as the influence of the target network
data in the resulting principal direction, and a higher θ score
(closer to 1) means that the target network data is more
likely to be an outlier. For a target network data xtest, if its θ
is above the threshold τ, we then identify xtest as an outlier.

In this paper, we define the entities that are identified
as anomaly as “positive”, and the entities that are identified
as normal as “negative”. Additionally, we also define the
correct prediction as “true”, and wrong prediction as “false”.
To determine the parameter τ, we stick with reducing the
false positives (maximizing the recall of anomaly detection)
on the condition of minimum the false negatives (optimal
precision). Mainly because 1. Every single false negative
(shown in Fig. 5) is fatal to an industrial system, we cannot
allow any underlying intrusion to penetrate into the system.
2. The normal data in the industrial control network is much
more than the anomaly, we can sort the normal data out of
the false positives (shown in Fig. 5) by human analyst at a
very low cost, although, it is nearly impossible to sort the
anomaly out of the false negatives.

We consider the parameter τ as the tolerance of
anomaly. The larger τ is, the more tolerance the model has,
and the less anomaly the model can find out. If the amount
of false positives is much more than false negatives, then τ
is underestimated, otherwise τ is overestimated. Therefore,
in order to avoid unnecessary losses as much as possible, we
initialize τ to 0 at first, and keep τ increasing until the con-
dition that a minimum amount of false positives with 0 false
negative occurs.

5.2 Semi-Supervised Incremental Updating Algorithm

We would also like to point out that the proposed techniques
mentioned before might not enough in practical anomaly de-
tection scenarios due to the problem of cool start and the

Table 1 The general framework for the semi-supervised incremental up-
dating algorithm.

continuous updates of intrusions. When a large amount of
brand new network data appear in the network, we need up-
date the decoder of NIDS, training it with the new types of
normal data but discarding the outliers.

The proposed semi-supervised incremental updating
algorithm determines whether incoming data is anomaly and
maintains the training dataset and the parameter τ incre-
mentally. The process of algorithm can be divided into two
phases:

· Unsupervised training phase: In the training phase, the
algorithm performs two steps: (a) training the decoder
μ with current training dataset X(i)

train and unseen dataset
Xunknown,; (b) updating the classifier ν and the parameter
τ with decoded features outputted by the well-trained
decoder μ.
· Supervised sorting phase: In the sorting phase, the al-

gorithm determines whether the unseen network data
in Xunknown joins the next training dataset X(i+1)

train or is
discarded.

Details of the general framework for the semi-supervised
incremental updating algorithm are shown in Table 1.

6. Experiment and Performance Evaluation

6.1 Description of Dataset

A set of experiments was performed on the Modbus PLC
Simulator (MOD RSSIM) for evaluating performance of the
algorithm in Modbus environments. We generated 250000
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Table 2 Features used in experiments.

packets, based on a simulated Modbus server and a sim-
ulated Modbus client on MOD RSSIM, which consist of
1495 normal instances (shown in yellow dots in Fig. 7) and
5 anomalous instances (shown in red dots in Fig. 7). In order
to construct the needed feature space, we have to determine
a basic set of features describing the behavior pattern in a
specific time interval (the observation epoch). The extracted
features, derived from 12 key Modbus protocol fields, are
listed in Table 2. Most features take a value in a numeri-
cal range, and are indicated as “continuous”. Other features
are nominal, i.e., they assume one value from a discrete set
of possible values. These features are tagged as “discrete”.
Note that some features are derived, i.e., calculated starting
from the values of other features.

Some of features in normal instances, for example,
“byte count”, are generated from a random non-linear com-
bining function (shown in Eq. (24), (25)) that consists of
a Poisson factor (sampled from a Poisson distribution), a
number of Sine factors and a noise factor (sampled from a
normal distribution), which ensure not only the time conti-
nuity of data but also the complexity to approximate to ac-
tual network data. And the same features in anomalous in-
stances are randomly sampled only from the range [95, 105].
Obviously, it causes a covert deviated segment in a con-
secutive network data records, although the mean value of
anomalous instances is still in the normal range. To sim-
plify the process of data preprocessing, we organized these
generated raw features into a fixed size vector directly, and
forwardly arranged all of the vectors in chronological order
into a matrix (or sequence) form that our system can deal
with. By testing these counterfeit data in the forementioned
mature NIDS, which is NGIDES, it turns out that there are
only 3 anomalous instances can be detected. It has proved
that some of the hidden anomaly features (like anomaly dis-
tribution) in this dataset can not be easily found out by con-
ventional methods. The Fig. 6 shows an example of a coun-
terfeit Modbus packet.

vk(xt) = aX +
b∑
i

ci sin(di ∗ (t + ei)) + f Y (24)

a +
b∑
i

ci = 100, f = 1 (25)

Fig. 6 An example of a counterfeit Modbus packet

X ∼ Poisson(a), Y ∼ N(100, 1), ei ∼ U(−π, π),
di ∼ U(0, 50) (26)

Moreover, over 13000 real Modbus packets with 9 anoma-
lous instances have also been used in our experiments. How-
ever, these anomalous instances only includes two types
of common anomalous behaviors since the hidden anomaly
cases are not able to be collected.

6.2 Evaluation Criteria

If the task of the algorithm is to classify cases into one of
the several categories, examining a confusion matrix can be
highly informative (shown in Fig. 5). A confusion matrix
contains as many rows and columns as there are classes. For
every case, its class is chosen to be that corresponding to
the output neuron that has the maximum activation. The
content of the entry at the i-th row and the j-th column of
the confusion matrix is the number of test cases that truly
belong to class j but which were classified into class i. Ide-
ally, one would obtain a strictly diagonal matrix. Quantities
in off-diagonal positions represent misclassifications. The
principal strength of the confusion matrix is that it clearly
identifies the nature of errors, as well as their quantity. The
experimenter is then free to evaluate the performances of a
NIDS in terms of relative severity of misclassifications. The
evaluation parameters that have been selected are thus:

· false positive rate: as known as false alarm ratio, refers
to the probability of falsely rejecting the null hypothe-
sis for a particular test:

false positive rate =
FP
N′

· true negative rate: as known as specificity, measures
the proportion of negatives that are correctly identified:

true positive rate =
T P
P

Ideally, it is the most worthwhile goals for the NIDS that the
false positive rate is supposed to be zero and the true positive
rate is supposed to be one.

6.3 Result Using Decoders

We first apply our GBRBM-decoder on the entire exper-
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imental dataset. To see whether the learned GBRBM-
decoded feature vectors preserve class information, we used
t-distributed stochastic neighbor embedding (t-SNE) [27] to
visualize the decoded and extracted feature vectors of all ex-
perimental data from both normal and anomalous classes.
Figure 7 (a) shows that for the experimental dataset the
12-dimensional extracted features are visualized in a two-
dimensional space.

Figure 7 (a) (b) show a little difference between the dis-
tributions of original extracted features vectors and our 200-
bits decoded feature vectors produced by the GBRBM. The
GBRBM seems to provide a more uniform points distri-
bution and better dispersion due to the decoding process.
But there is still no clear boundary between normal data
and anomalous data in Fig. 7 (b). The red points (anomaly)
are distributed around the edge of the cluster and mixed
with some of the yellow points (normal). And as shown
in Fig. 7 (c), the normal data are highly concentrated in the
upper right corner of the 2-D feature space. Rather, four
fifth of outlier are placed at the bottom left of the space dis-
persedly. It indicates that our decoded feature vectors are
far better at preserving the information of original data than
the extracted feature vectors when the decoded feature vec-
tors ascended up the dimension from 200 to 2000. Higher
dimensionality means more bits of information or more “ex-
perts” (each expert model can constrain a different subset
of the dimensions in a high-dimensional space, and their
product will then constrain all of the dimensions [13]) on
data. The results of Fig. 7 (a) (b) (c) reveal that the GBRBM
significantly magnifies the fine distinction between normal
data and anomalous data and optimizes the representations
of network data, which are better for classification.

Moreover, using RNN-GBRBM decoder to process the
same dataset, as shown in Fig. 7 (d), got a really astonish-
ing result that all of outliers have been separated from the
normal data points since RNN structure takes the context of
network data into account.

6.4 Performance Evaluation

For the purpose of comparison, the results of the proposed
hybrid method are compared with that of a single osPCA
and an one class support vector machine (OCSVM) based
algorithm [28]. Note that The OCSVM algorithm maps in-
put data into a high dimensional feature space (via a ker-
nel) and iteratively finds the maximal margin hyper plane
which best separates the training data from the origin. The
OCSVM may be viewed as a regular two-class SVM where
all the training data lies in the first class, and the origin is
taken as the only member of the second class. The out-
come of the experiments is summarized in Table 3. For
each experiment, the same dataset has been tested, in-
cluding 250000 conterfeit network packets (with 1495 nor-
mal instances and 5 anomalous instances) and 13000 real
Modbus packets (with 874 normal instances and 9 anoma-
lous instances). Also the performance of each method is
indicated for counterfeit data and real data respectively in

Fig. 7 A two-dimensional embedding based on t-SNE. (a) 12-
dimensional extracted feature vectors. (b) 200-bit GBRBM-decoded fea-
ture vectors. (c) 2000-bit GBRBM-decoded feature vectors. (d) 2000-bit
RNN-GBRBM-decoded feature vectors
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Table 3 Experimental results

Fig. 8 The ROC curves of three methods

Table 3. On the first row of the table, the precision (1− false
negative rate) and recall (1 − false positive rate) for RNN-
GBRBM decoder & osPCA are listed. And on the following
two rows of the table, the results using single osPCA and
OCSVM with radial basis function (RBF) kernel are shown
analogously. The left number shows the result for counter-
feit data and right for real data.

In order to show the effectiveness of the decode more
directly, in Fig. 8, we show the receiver operating charac-
teristic (ROC) curve of each method, which is created by
plotting the true positive rate (TPR) against the false pos-
itive rate (FPR) at various threshold settings. The x-axis
indicate the false positive rate from 0 to 1, and the y-axis in-
dicate the true positive rate from 0 to 1. The curve in Fig. 8
is created by plotting the true positive rate against the false
positive rate at various threshold settings. It can be seen that
there is a substantial improvement going from the proposed
method to the other two methods since the area under the
curve (AUC) of the proposed method (RNN-GBRBM de-
coder & osPCA) is much larger than that of other methods.

7. Conclusions

In this paper, we proposed a novel RNN-GBRBM based
feature decoder, which aimed to make extracted features a
better representation for classification. We have shown the
performances of the proposed system from two aspects. On
one hand, we show the effectiveness of the RNN-GBRBM
decoder, on the other hand we illustrate the sustainability of
this architecture, which means it has a better performance as
time goes on and environment varies, since the combination
of osPCA and semi-supervised incremental updating algo-
rithm. The method delivers a substantial recall increases

while maintaining a general precision.
Since the complexity of deep architecture is relatively

high, the GPU based computation device is needed to ac-
celerate the parallel computation speed on the increase of
network traffic or model complexity. The simulation model
in this paper only applies the relatively simple architecture
for quick verification of the algorithm feasibility. And the
proposed architecture is merely an attempt that applies the
deep learning model on the anomaly detection in industrial
control network. However, in real network environment, the
actual scalability cost or other factors will be considered in
the future.
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