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SUMMARY Protecting critical files in operating system is very impor-
tant to system security. With the increasing adoption of Virtual Machine In-
trospection (VMI), designing VMI-based monitoring tools become a pref-
erential choice with promising features, such as isolation, stealthiness and
quick recovery from crash. However, these tools inevitably introduce high
overhead due to their operation-based characteristic. Specifically, they need
to intercept some file operations to monitor critical files once the operations
are executed, regardless of whether the files are critical or not. It is known
that file operation is high-frequency, so operation-based methods often re-
sult in performance degradation seriously. Thus, in this paper we present
CFWatcher, a target-based real-time monitoring solution to protect critical
files by leveraging VMI techniques. As a target-based scheme, CFWatcher
constraints the monitoring into the operations that are accessing target files
defined by users. Consequently, the overhead depends on the frequency of
target files being accessed instead of the whole filesystem, which dramati-
cally reduces the overhead. To validate our solution, a prototype system is
built on Xen with full virtualization, which not only is able to monitor both
Linux and Windows virtual machines, but also can take actions to prevent
unauthorized access according to predefined policies. Through extensive
evaluations, the experimental results demonstrate that the overhead intro-
duced by CFWatcher is acceptable. Especially, the overhead is very low in
the case of a few target files.
key words: Monitoring, VMI, target-based, filesystem

1. Introduction

Protecting critical files in modern operating system (OS),
such as drivers, configurations, confidentialities et al, is very
important to system security. Many attacks exploit unautho-
rized access to critical files as a prelude for more advanced
forms. For example, the file /dev/mem may be tampered to
compromise Linux kernel. As a result, many efforts have
been made to build up filesystem monitors. Traditional ap-
proaches [1]–[3] usually employ an agent or a kernel mod-
ule installed in the OS to detect what is happening to critical
files. Unfortunately, as malwares are running in the OS (or
even in the kernel), these in-the-box approaches take risks of
the monitor being detected and then subverted by malwares,
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which finally circumvents the detection.
As an emerging technique, Virtual Machine Introspec-

tion (VMI) offers a promising way to tackle aforementioned
dilemma. Within VMI-enabled architecture, monitoring
functions can be immigrated from Virtual Machine (VM)
to Virtual Machine Monitor (VMM). Since VMM is more
privileged and also transparent to VM, VM-level malwares
are difficult to be aware of or even attack VMM-level agents.
As far as we know, VMI-based filesystem monitoring tools
can be classified as: polling scheme [4], [5] and event-driven
scheme [6]–[11]. The former examines file integrity in each
interval, but leaves a gap between checkpoints exploited by
malwares to modify the files transiently and then roll back
without being detected, which undermines its effectiveness.
In comparison, event-driven scheme usually monitors spe-
cific file operations at runtime. When every operation oc-
curs, it will be intercepted to ensure whether it should be
permitted. However, as file operation is high-frequency in
the OS, such operation-based scheme has to suffer from per-
formance degradation caused by all files rather than critical
files that take up a small percentage. Heavy overhead makes
operation-based scheme less practical in real world.

To meet performance requirements of monitoring tools,
such as real-time and low-overhead features, we devise and
implement target-based approaches to monitor critical files
in both Linux and Windows by leveraging VMI, namely
CFWatcher [12]. The term target-based means that the mon-
itor will be triggered only if accessing the target files (open,
deletion et al). The obvious advantage beyond operation-
based scheme is that the overhead mainly depends on the
frequency of accessing target files rather than that of file op-
erations on all files, which can dramatically reduce the over-
head. In order to enable target-based monitoring, we inves-
tigate into the internal mechanisms of Linux and Windows
filesystems in depth, and locate the relevant operations when
accessing the target files. Our core idea is to monitor the
operations on meta objects of target files in VM’s memory
instead of themselves. When the target files are being ac-
cessed, the meta objects will also be operated. Afterwards,
monitoring these operations in VMM can guarantee that ac-
cessing other files will not trigger the monitor.

To enhance CFWatcher’s abilities, we take a further
step in two aspects. First, we allow users to define the set of
critical files on their own and even express complex rules.
At runtime CFWatcher can take actions to protect critical
files from unauthorized access by determining whether any
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predefined rules are violated or not. Second, we harness
automatic semantic analysis tools that can release the com-
plexity from binary analysis manually, to render CFWatcher
well compatible with most of Linux and Windows distribu-
tions without any modification.

The main contributions of our work are as follows:

• We propose CFWatcher, a target-based event-driven
approach to monitor critical files in both Linux and
Windows, which allows users to define the rules
on their own so as to determine whether unautho-
rized access is permitted in a timely and proper way.
CFWatcher also demonstrates several advantageous
features, such as transparency to VM and isolation
from VM attack vectors.
• CFWatcher prototype is implemented in a hardware-

assisted virtual environment within good compatibil-
ity via automatic semantic analysis tools that extract
meaningful information from binary memory data.
• The effectiveness and performance of CFWatcher is

evaluated extensively, which proves that its overhead is
acceptable, especially when the number of target files
is low.

This paper is extended from [12], which proposed a
target-based critical file monitor for Linux VMs. In this pa-
per, we first extend CFWatcher to Windows VMs, which
means CFWatcher can also monitor and protect the Win-
dows VM files in a target-based way. Second, we proposed
a novel agent-based method to create cache objects sup-
porting both Windows and Linux VMs. Third, we present
the detailed design and implementation for Windows VMs.
Fourth, the effectiveness and performance of CFWatcher in
Windows VMs are also evaluated and discussed. Further-
more, we compare CFWatcher with operation-based and
commercial approaches. Finally, we discuss the security
analysis and potential countermeasures.

The rest of this paper is structured as follows: Sect. 2
summarizes the related work. The design of CFWatcher
is introduced in Sect. 3. Section 4 states the implementa-
tion comprehensively. Section 5 evaluates the effectiveness
and performance of our solution. Section 6 discusses se-
curity analysis and potential countermeasures with conclu-
sions and future work presented in Sect. 7.

2. Related Work

Since file integrity is important to computer security, there
have been many efforts devoting to the topic. Traditional
filesystem monitor usually acts as an agent or a kernel mod-
ule running in the OS. For example, ICAR [1] works as
an Linux kernel module, and checks for file intrusion. It
can recover the original version of the subvirted file from
a backup. Unlike ICAR, [2] stores all of the crucial data
in a physically write-protected storage, and uses them to
check file integrity. XenRIM [3] runs in Xen environment
where the agents are running in VMs to intercept file op-
erations and the server is running in Dom0 to receive logs

sent by agents. Unfortunately, these in-the-box approaches
take risks of the monitor being detected and subverted by
the coexisting malwares.

In recent years VMI-based security tools becomes
more popular increasingly. As a promising technique,
VMI [13] demonstrates its advantages in many areas since
it allows administrators to monitor a running VM’s execu-
tion in an out-the-box way, such as virtual machine moni-
toring [14], virus analysis [15] and intrusion detection [16].

Generally, VMI-based filesystem monitoring tools can
be divided into two types: polling scheme and event-driven
scheme. Polling scheme compares current file attributes
with those previously gathered periodically, such as the
owner and content etc. It also can find malwares on the disk
by using the blacklist. [4] works in visualization environ-
ment and compares low security level file with the baseline
databases. CFMT [5] stores each file’s checksum into file
itself and periodically checks the integrity of them. In sum-
mary, the key to polling scheme is the tradeoff between ac-
curacy and performance in term of inspection cycle. If the
cycle is too short, high-frequency inspection will pose a se-
rious impact on system performance. Otherwise, it cannot
detect the variation in a large cycle. The attacker could mod-
ify and then recover the critical files immediately.

By contrast, event-driven monitoring tools are more
popular because they can protect critical files by intercept-
ing file operations during the execution. They often hook
system calls or backend drivers to get the attributes of the
operated target files. Flogger [6] can be implemented in both
VM and PM (physical machine) kernels, which captures file
operations and then records the events in log files. [7] and
[8] intercept file operations in VMM. The breakpoints are
implanted into target system, and hooks system calls related
with file operations, such as open and close. vMon [9] hooks
QEMU I/O handler to achieve secure check and designs
File-to-Block Mapper to bridge the semantic gap between
the disk level and Linux file system level. [10] works in the
Qemu-dm which exists in Dom0, and analyzes every vir-
tual machine’s I/O request to make sure they are secure. For
Windows VMs, Filesafe [11] intercepts every read or write
request to disk blocks to check whether it violates the poli-
cies in the Policy List. It bridges the file-level and block-
level semantic gap by designing a FSP (File System Parser)
which is used to analyze Windows FAT32 file system.

However, these methods are operation-based, which
implies file operation is intercepted by monitoring tools as
long as it is being executed. Different with the existing
works in the literature, our paper aims to design and imple-
ment a target-based low-overhead approach to monitor crit-
ical files effectively by using VMI, which can support both
Linux and Windows VMs. Several papers (e.g., [24]–[29])
have also studied related security issues.
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3. Design

3.1 Overview

To the best of our knowledge, most of existing real-time file
monitoring approaches are based on operation. Due to the
system-level interception on file operation, the majority that
are irrelevant to critical files will waste too many process-
ing capacities. Different from the operation-based schemes,
our proposed solution in this paper is a target-based one
that monitors merely the events of target files, which con-
sequently reduces potential overhead dramatically.

Similar to most VMI-based systems, CFWacther har-
nesses VMI techniques to monitor VM filesystem as illus-
trated in Fig. 1. The right is a normal VM (target VM) to be
monitored, and the left is the privileged VM (Secure VM)
where CFWatcher works. With a higher privilege than VM,
VMM can inspect the events in target VM and redirect them
into Secure VM. Then, Secure VM can change the content
of target VM’s underlying hardwares if necessary. There are
two major components: Policy Engine and Toolkit Library.
Policy Engine manages security policies while Toolkit Li-
brary is responsible to interact with VMM and provide a
holistic view of target VM for Policy Engine through inter-
preting hardware states exported by VMM. When an event
is passed from Toolkit Library, Policy Engine will react with
proper actions after analysis.

Aiming at target-based monitoring, we explore the in-
ternal mechanisms of Linux and Windows filesystems in
depth. In general, one common file contains two kinds of
information: real data (content) and meta data (file name,
file type, file size etc). When opening a file, meta data
will be loaded into the memory at first, and later the con-
tent will be retrieved at the request of read/write event. To
optimize memory utilization, if some meta data already ex-
ist in the memory (for example, the file has been opened
by other processes), OS will increment reference counter of
meta data rather than loading another hard copy. In particu-
lar, when the counter is reduced to zero, meta data may be

Fig. 1 The architecture of CFWatcher.

freed up for more available memory. According to the above
observation, such reference counters are useful to monitor
the files in a target-based mode, i.e. to monitor the events
over the corresponding memory area. Considering the dif-
ferences between Linux and Windows filesystems, we de-
sign distinct approaches to be accustomed to them, which
will be detailed in the following parts respectively.

As a prerequisite, meta data have to be cached into the
memory in advance, but it is not sure that target files had
been accessed before or meta data are maintained all the
time. Thus, two different methods of meta data construction
are proposed in this paper to guarantee the liveness of meta
data.

Besides, as long as the operations on target files are de-
tected, CFWatcher immediately begins to examine the au-
thorization according to security policies that users can pre-
define in a complex way. For example, if the file /test/test
is permitted to be opened by the user admin with the pro-
gram cat, CFWatcher will restore the running state of VM
and check whether the program is cat and the user is admin
when /test/test is accessed at runtime. If a violation occurs,
CFWatcher will trigger an alarm and take actions to abort
the operation.

We assume that the VMM and the SVM are both se-
cure, and the guest VM may be attacked by attackers. How-
ever, since CFWatcher depends on the meta data reference
counter mechanism, the subversion of this mechanism could
affect CFWatcher. To the best of our knowledge, this kind
of attack does not exist, but we should also assume that the
reference counter mechanism should be integrity.

3.2 CFWatcher Monitor in Linux

All files are accessed through Virtual File System
(VFS) [17] in Linux. VFS regards each directory as an or-
dinary file that consists of several sub-directories and files.
As one directory or file is loaded into memory, the kernel
will create a designated object named dentry. Generally, the
kernel will create a dentry object for every part in the path-
name. For example, when searching the path /home/target-
file, the kernel will first create a dentry for /, then create a
second-level dentry for home beneath /, and finally create a
third-level dentry for target-file beneath home. Since den-
try creation is a time-consuming operation, dentry mainte-
nance for future use becomes important to better memory
efficiency even if previous operations have finished.

All dentry objects are stored in a special memory area
called dentry cache. Due to limited memory space, the
kernel needs to clean up unused dentry objects. In order
to prevent in-use dentry objects from discarding, reference
counter is designed to record how many processes are using
the dentry object. When a process opens a file, the reference
counter will be incremented. Otherwise, the counter will be
reduced until zero if no process uses the file. As shown in
Fig. 2, when another process accesses the same file whose
dentry object has existed, it will increase the corresponding
reference counter instead of creating a new dentry object.
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Fig. 2 Dentry and reference number.

In our design, CFWatcher actually monitors the opera-
tions on target files via the dynamicity of reference counters
used by dentry objects over time. It can be achieved in the
following steps:

1. Locate the region of the dentry objects corresponding
to target files in VM’s memory with OS-level semantic
information.

2. Find the memory address of the reference counter by
calculating its offset in dentry structure.

3. Monitor the changes of these memory area. If some
reference counter increases, which means the corre-
sponding file is being accessed, CFWatcher can be
aware of the events in real time so as to take necessary
actions in time.

When no process uses a file, the reference counter of its
dentry object will be decreased to zero and later the dentry
object may be discarded. To maintain the monitored dentry
objects alive in memory, CFWatcher will increase the ref-
erence counter before it becomes zero. In this case, even
though there is no valid reference to the dentry object, the
value of its reference counter is one and it will be alive in
memory all the time.

Notably, a file is actually regarded as a dentry in view
of VFS but as an inode in view of disk. That is, each den-
try corresponds with one filepath while each file on the disk
corresponds with one inode object. However, an inode ob-
ject may be pointed to by multiple dentry objects. For ex-
ample, hard link can make this happen because a file with
hard links can have multiple paths as shown in Fig. 3. When
this file is accessed, the corresponding inode and dentry ob-
jects will be loaded into the memory together. Fortunately,
there is also a field in inode structure to record how many
hard links point to itself. When a file is removed, the inode
object’s hard links will decrease correspondingly. As a re-
sult, our CFWatcher can succeed in detecting the deletion
of target files by monitoring the number of inode objects’
hard links, which similar to monitoring the dentry object’s
reference counter.

3.3 CFWatcher Monitor in Windows

To support better compatibility, we work on the NTFS

Fig. 3 The relationship between dentry and inode.

filesystem of Windows 7. Because Windows is a private-
proprietary OS and the memory layout of NTFS filesystem
is unknown, the design in Windows is more challenging
than in Linux. By analyzing the binary data in the memory
deeply, CFWatcher restores part of semantic information to
enable the monitor on NTFS filesystem.

Specifically, as every process opens a file in Windows,
an object FILE OBJECT will be created and stored in the
handle table. If the file is opened more than one time, each
operation will generate an independent FILE OBJECT that
is stored in the handle table affiliated to the process.

In NTFS, there is a unique File Control Block ( FCB)
object stored in the memory, which corresponds to each
opened file. Similar to the function of inode object in Linux,
FCB records the state of a file, such as hard links. A file can

have many attributes, including an unnamed attribute and
multiple named attributes, and every attribute can be opened
and operated independently. Unnamed attribute is used to
store file content while named attribute usually stores meta
data (like author, version et al.). When operating an at-
tribute, a corresponding Stream Control Block ( SCB) ob-
ject will be created in the memory. These objects are or-
ganized together as a bi-direction link. All FILE OBJECT
objects in a process point to the corresponding SCB ob-
ject. In summary, there is only one FCB object for a file,
but this object can be in correspondence with multiple SCB
objects. Every SCB object may be referenced by multiple
FILE OBJECT objects. Like dentry object in Linux, SCB

object records how many FILE OBJECT objects are refer-
encing on itself so as to stay alive in the memory.

As shown in Fig. 4, process 1 opens a named attribute
and an unnamed attribute simultaneously, which correspond
with two different SCB objects respectively. Also, they
both point to a single FCB object. If a new process 2 wants
to access the content of this file, the FILE OBJECT object
will point to the SCB object and the reference counter in
SCB object will be increased. Similarly, CFWatcher mon-

itors the file by sensing the change of reference counter in
the corresponding SCB object. An increase of reference
counter means that the file is being accessed.

CFWatcher in Windows works very similar with Linux.
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Fig. 4 Core structures of NTFS filesystem.

The main difference is using SCB object in Windows in-
stead of dentry object in Linux.

3.4 Creating Cache Objects

To ensure the existence of necessary caches in memory
before monitoring, we design two cache construction ap-
proaches, i.e. system-call-based and agent-based, which are
both suited for Linux and Windows. In a modern OS, all
important resources (such as files, devices) can only be ac-
cessed via system calls. The objects in previous sections
(dentry and SCB) actually are all set up by invoking partic-
ular system calls. Therefore, we can use this feature to open
target files and construct their caches in memory.

As a completely out-of-box solution, the core idea of
system-call-based approach is to insert an extra open system
call into on-the-fly normal routine, which will open target
files to be monitored. Figure 5 (a) shows the normal routine
where the OS will enter kernel mode so as to handle the sys-
tem call invoked by users. As shown in Fig. 5(b), we moni-
tor the events on the execution of VM’s system calls outside
the VM. As long as target VM switches into kernel mode,
the original system call will be modified immediately and
then redirected to our extra open system call. After finish-
ing our add-on system call, we resume the original system
call by manipulating instruction pointer. In this case, origi-
nal system call can be continued and will return as expected,
which is totally transparent to users.

Agent-based approach is simpler than system-call-
based one. An agent runs in a VM and is responsible to
open all of our monitored files, which can be launched as
a daemon process at boot time. Through memory sharing
mechanism with VMM, CFWatcher is able to store the paths
of target files into the memory of the agent. After the agent
finishes all opening operations, the states of target files can
be fed back in the same way. At last the agent will shut
down automatically.

Actually, it is hard to tell which approach is better than
the other one. System-call-based approach is completely
transparent to users and more secure, but it manipulates in-
struction pointer, which brings unreliability to commercial
systems. In the contrary, agent-based approach is more re-
liable and easy to deploy, but it may be detected and even
compromised by malwares.

Fig. 5 System call routines.

3.5 Taking Actions

CFWatcher is triggered by intercepting the operations on tar-
get files, which can enable timely and proper actions against
malicious intentions. To prevent the unauthorized access,
CFWatcher makes ongoing system calls fail by setting their
return values to a negative number and clearing the related
file descriptors, which does not allow the process to access
the target file as usual. Clearing the related file descriptor is
a must after setting return value, because it is possible for a
process to guess potential locations of file handlers accord-
ing to memory layout even though open operation is failed.
Moreover, we also need to protect key objects (such as inode
or FCB) from modification, which can prevent the removal
of target files.

4. Implementation

4.1 Environment

CFWatcher prototype is built on an x86 server with Intel
VT [18] technique support. It can also be implemented on
64-bit platforms. The VMM is a popular open-source hyper-
visor - Xen [19], which is widely used in cloud computing.
The VMs running atop VMM are Ubuntu and Windows 7
distributions.

Since all data in VM’s memory are binary mode in-
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stead of meaningful semantic context in the VMM’s view,
VMI-based tools have to restore semantic information from
raw binary data, which is so-called semantic gap. Fortu-
nately, there are many efforts contributed by memory analy-
sis communities who template most of kernel data structures
(covering the majority of Linux and Windows distributions)
by analyzing binary data in memory. Therefore, we lever-
age the Volatility Framework [20] to provide an OS-level
view of guest VM and extract semantics automatically in our
prototype. As a well-known memory forensics framework,
Volatility integrates and builds the set of memory templates
with which it can automatically extract semantic context
from binary data. Because Volatility is a programmed OS-
level analysis toolkit, CFWatcher is able to monitor most
of operating systems without any modification. Using Xen
toolkit library to expose the memory of a VM to the Dom0,
we can read the live VM’s memory to allow Volatility to
analyze the binary data directly.

4.2 Initializing Cache Objects

In the Sect. 3 we introduce two approaches (i.e. System-call-
based and Agent-based) to create cache objects if they are
not alive in memory. Here, we emphasize on system-call-
based one as a case. The core idea of system-call-based
method is to insert an extra open into normal routine when
system call is invoked. To that end, we exploit the features
of Intel fast system call entry mechanism in Linux 2.6, Win-
dows XP and later.

In Intel x86 architecture, SYSENTER/SYSEXIT [21]
instructions are used for fast entry to switch between ker-
nel and user mode. SYSEXIT is a companion instruction
to SYSENTER. The SYSENTER instruction is used by sys-
tem calls to convert user mode to kernel mode. Meanwhile,
EAX register stores the number of system call, EBX stores
the first argument, and ECX stores the second argument, and
so on. SYSEXIT leverages EAX to pass return value when
system call is finished. It is easy to modify the number and
parameters of system call by changing the content of rel-
evant registers when SYSENTER/SYSEXIT is executing,
which is exploited by CFWatcher as follows:

1. It monitors the operation on the kernel point ad-
dress, i.e. the execution of the kernel entrance in-
struction, whose address is stored in the register
IA32 SYSENTER EIP.

2. When SYSENTER is in execution, it stores the content
of all registers at first, sets RAX register to system call
number of our extra open, and replaces other registers
with the corresponding parameters.

3. It captures the execution of kernel entrance whose ad-
dress is not far away from the kernel point and can be
obtained by traversing the kernel’s memory.

4. After finishing our extra system call that will open all
target files stealthily, IP register will be reset to the ker-
nel point address and meanwhile other registers will
also be recovered with previous parameters stored in

Step 2. Especially, we need to carefully tackle the cor-
respondence between SYSENTER and SYSEXIT in-
structions. Since a process may be switched out in the
context, an SYSENTER followed by an SYSEXIT may
be generated by different processes. Because a pro-
cess can not request a new system call before the previ-
ous one has not finished yet, CR3 register can be used
to map SYSENTER and SYSEXIT with each other.
All threads in a process have the same CR3 value,
but they have different ESP values. Therefore, when
CFWatcher captures SYSEXIT instruction, it will com-
pare the CR3 value and the ESP value with those of
SYSENTER in Step 2.

4.3 Locating Cache Objects

Before monitoring, the cache objects of target files must be
located in VM’s memory. Because Volatility allows devel-
opers to easily extend new functions for different uses, we
design a new plugin called cachefinder to find out the re-
lated objects of target files in memory, i.e. dentry/inode in
Linux and SCB/ FCB in Windows. Besides, cachefinder
will record all addresses of target files so as to facilitate the
monitoring.

Cachefinder utilizes the existing templates for the ex-
traction of kernel data structures. The templates in Volatility
that contain dentry/inode structures is sufficient for Linux
to find cache objects in VM, but more efforts are required
in Windows because SCB and FCB structures are still un-
known except FILE OBJECT. Through binary analysis, we
can find the reference to SCB, the pointer to FCB and the
offset of hard link’s counter in FCB structure.

4.4 Monitoring Special Memory Region

CFWatcher monitors the modification and execution of spe-
cial memory region using Intel Extended Page Table (EPT)
mechanism that is used to provide memory virtualization.
The EPT’s permissions deliberately granted by us can help
CFWatcher to realize whether any special EPT page is being
accessed.

Basically, CFWatcher sets the EPT entries of physical
pages related with monitored memory region to read-only
(to intercept the write events) or read-only and write-only
(to intercept the execution events) [22]. When a target page
is accessed, an EPT violation will be triggered and then cap-
tured by CFWatcher. If the accessed address lies in the re-
gion to be monitored, which means some of target files are
being accessed, CFWatcher can invoke the predefined han-
dler. Then, CFWatcher sets the corresponding EPT entries
to normal and resumes target VM in single-step mode, so
that target VM can access the special memory region. After
finishing the operations, CFWatcher finally resets the corre-
sponding EPT entry to read-only for future events.
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4.5 Getting Target Process Information

To support advanced access rules, CFWatcher extracts the
semantics of the process that is operating the files. Ev-
ery process in Linux has a structure named task struct that
maintains several related information, such as PID, UID,
GROUPID et al. All task struct data are linked in a bi-
direction way and start from the address of init task. Simi-
lar to Linux, the process information in Windows is stored
in the EPROCESS structure. CFWatcher locates the cor-
responding structure of target process via CR3, and then
leverages Volatility to restore the semantics of the process
automatically.

4.6 Preventing Rule Violations

CFWatcher modifies the illegal system call’s return value to
prevent rule violations. After checking rules, CFWatcher
monitors the execution of the illegal system call. When the
corresponding SYSEXIT is executed, CFWatcher sets the
value of EAX to −1 and clears the related file descriptors.

5. Evaluation

In order to demonstrate CFWatcher’s advantages, we eval-
uate our prototype system in a testbed, which runs in a
hardware-assisted virtual environment - Xen 4.3 with the
configuration of 2.4GHz Intel Core i5 dual-core processor
and 4GB memory. Meanwhile, two VMs to be monitored,
i.e, 32-bit Ubuntu 12.04 and 32-bit Windows 7, are hosted in
a full-virtualization mode. In the following we will demon-
strate the effectiveness and performance in Linux and Win-
dows VMs respectively.

5.1 Effectiveness

5.1.1 Linux

Rootkits are very common in Linux and mainly compro-
mise the kernel in two different ways: directly modifying the
kernel’s memory or inserting themselves as LKM modules.
In our experiment Phalanx is employed as a testing tool,
which is a self-injecting kernel rootkit designed for Linux
2.6 branches. It uses /dev/mem interface to inject hostile
codes into kernel memory and hijack system calls. More-
over, to enable the compatibility with our testbed (Ubuntu
12.04 with kernel version 3.2), we rewrite Phalanx and ren-
der it runnable in target VMs. The whole processing is per-
formed as follows: 1) initialize CFWatcher and configure it
to monitor the file /dev/mem; 2) run Phalanx to modify the
kernel. Our experimental results show that CFWatcher can
detect and prevent the operation on /dev/mem triggered by
Phalanx, which proves its effectiveness in Linux.

5.1.2 Windows

In this part, system critical file Host is used to evaluate the

effectiveness in Windows, which is actually an associated
database that stores the mapping between common domain
names and their ip addresses. When a user inputs a do-
main name in the browser, the system first automatically
confirms whether the corresponding ip address exists in the
Host. Thus, Host is often able to speed DNS resolving or
block some websites locally. However, malwares misuses
this feature to modify the Host and then compromise the
users, such as logging on a phishing website. Similarly, we
write a program to simulate an attack on the Host.

In the test, we first initialize CFWatcher to monitor the
Host. Then, our program attempts to modify the Host. The
experimental results show that CFWatcher can capture and
prevent the operation on the Host when the modification oc-
curs, which proves the effectiveness of CFWatcher in Win-
dows.

5.2 Filesystem Performance

5.2.1 Linux

As a filesystem monitor, CFWatcher definitely involves in
additional overhead on VM filesystem, which should be esti-
mated, especially performance variation with the increasing
number of target files. Thus, we use a build-in command dd
to assess the overhead of VM filesystem. dd is a command-
line utility whose primary purpose is to convert and copy
files in Unix and Unix-like OSes. To simulate the work-
loads, we make use of device drivers for hardware (such as
hard disks) and special device files (such as /dev/zero and
/dev/null) that dd can read/write. /dev/zero can provide as
many null characters (ASCII NUL, 0x00) as requested, so
copying data from it can generate write workloads exclu-
sively. In the contrast, /dev/null is a device file that dis-
cards all data written to it, which can barely produce read
workloads by copying data to it. In short, dd can be used
to generate and measure the read/write operations. Differ-
ent from other file access controllers, CFWatcher is sensi-
tive to read/write operations. When lots of files are moni-
tored, CFWatcher monitors a large scale of memory pages
of the VM file cache. However, reading and writing files
will also cause memory operations in this area. As a result,
if we monitor lots of files, the monitored pages are usually
accessed by these file operations, causing massive overhead.
Since CFWatcher also impose overhead on open/close oper-
ations, we will evaluate them in another benchmark.

In our test we measure read speed by using the com-
mand dd bs=128k count=10240 if=/dev/xvda of=/dev/null,
which copies 10K blocks (128KB) from the disk to
/dev/null. Then we use dd bs=128k count=10240
if=/dev/zero of=testfile to measure write speed. We com-
pare the read/write performance between original VM and
CFWatcher-enabled VM. Figure 6 shows the read/write per-
formance of the VM when CFWatcher monitors a varying
number of files. The horizontal axis represents the number
of files to be monitored (0 means that CFWatcher is dis-
abled), and the vertical axis represents the read/write speed
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Fig. 6 Linux filesystem performance.

Table 1 Processing time of unzipping kernel.

Monitored Files Time

0 25
50 25.3

100 26.1
200 27.1
400 29.8

(MB/s). Empirically, the number of in-use files in a running
Linux is 900 on average. Our tests monitor no more than
400 files simultaneously.

From Fig. 6 we can see that when the number of mon-
itored file is less, the loss of read/write performance will
be smaller. For 50 monitored files, the performance loss as
compared to an unmonitored system is less than 5%. And
in the case of 100 monitored files, the performance loss is
less 9%. The max read performance decrease is 15% while
the max performance decrease is 17.4% when the number
of monitored files is up to 400.

Besides read/write speed, other file operations like cre-
ation and copy, are also important to filesystem perfor-
mance. Thus, we employ compression tools to unzip a
Linux kernel, which can create a large number of small files
in a short time, to evaluate the influence on filesystem per-
formance. We compare processing time when monitoring
different numbers of files (0 means that CFWatcher is dis-
abled).

The results are shown in Table 1: when the number
of monitored files is less than 100, time difference is less
than 5%; when the number is up to 400, time difference also
increases to 19.2%.

In the above test cases, the files accessed by the bench-
mark programs are not included in the monitored files. Ac-
cording to our design, when monitored files are being ac-
cessed, rule checker will be triggered immediately, which
also brings extra overhead. Thus, we write a program de-
ployed in the monitored VM to open 100 monitored files
successively and record total time spent. The experimental
results show that rule checker introduces extra 2ms. If the
monitored files are not accessed continuously, rule checker
will only have a small impact on the whole system. Further-

Fig. 7 Windows performance.

more, the performance of rule checker could be optimized.
The overhead is mainly introduced by getting the target pro-
cess information, which is completed in real time now. If we
cache the obtained information and update it periodically,
the overhead will be significantly decreased.

5.2.2 Windows

To evaluate the overhead in Windows VM, we make use of
PCMark 7 [23], which is a complete PC benchmarking so-
lution, including 7 tests combining more than 25 individual
workloads covering storage, computation, image and video
manipulation, web browsing and gaming. In our test we
run storage suite in PCMark 7 to evaluate filesystem perfor-
mance. The storage suite is a collection of workloads that
isolate the performance of PC’s HDD or SSD, such as Win-
dows Defender, importing pictures, video editing. It also
can test other storage devices in addition to the main system
drive. After finishing the test, PCMark will give a perfor-
mance score.

We run storage suite in different VMs: CFWatcher-
disabled, CFWatcher with monitoring from 50 to 400 files.
Figure 7 shows that performance loss is similar with Linux
VM, but is better than Linux VM. When monitoring 50 files
simultaneously, the loss of filesystem performance is 1.6%.
If the number of files is up to 100, the loss will increase to
4.9%. At the worst, when CFWatcher monitors 400 files at
the same time, the performance of VM filesystem become
worse by 11.9%. In the above test cases, the files accessed
by the benchmark programs are not included in the moni-
tored files. We also measure the overhead introduced by rule
checker when monitored files are being accessed. Through
the test, the overhead of rule checker is also 2ms.

5.3 Memory Performance

Since we employ Intel EPT to set up the monitoring, we
need to evaluate the influence on memory performance
via Memory Bandwidth Benchmark (MBW) tools. Band-
width [24] is a benchmark primarily for measuring memory
bandwidth on x86 and x86 64 based computers, useful for
identifying bottlenecks in memory subsystem. It not only
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Table 2 The comparison of CFWatcher and operation-based approach.

Operation-based Target-based
Benchmarks Performance Overhead Performance Overhead

Reading speed 42.4MB/s 20.5% 45.3MB/s 15.2%
Writing speed 32.3MB/s 25% 35.5MB/s 17.4%

Unzipping Linux kernel 78s 212% 29.8s 19.2%

Fig. 8 Linux memory performance.

can read/write data blocks of different size in the sequential
or random way, but also can simulate the read/write patterns
of normal softwares.

In our experiments we run the command mbw 128,
which performs bandwidth measurement on 128M memory
in MEMCPY, DUMB and MCBLOCK modes. We compare
the memory bandwidth with/without CFWatcher as shown
in Fig. 8 where the horizontal axis means the number of
monitored files (0 means that CFWatcher is disabled), and
the vertical axis means memory bandwidth.

We can see that the memory bandwidth is not always
the highest when CFWatcher does not work. The variation
of all results is no more than 6%, which implies that the
influence of CFWatcher on memory performance is small.
Because we use Intel EPT to enable the monitoring on VM
memory region in VMM independent on OS types, it is eas-
ily inferred that the overhead of Windows VM is equivalent
to Linux VM.

5.4 Comparison with Operation-Based Approaches

5.4.1 Linux

To compare with operation-based approaches, we also im-
plement an operation-based approach in Linux VM. We
monitor the execution of the kernel entrance instruction to
intercept the system calls. We first set the corresponding
memory page to non-executable. When the page is executed
and the execution address is the kernel entrance, we can
aware that a system call is executed in the monitored VM.
By using this method, we monitor several system calls (i.e.
sys open, sys read, sys write), which are usually monitored
by operation-based file monitors (e.g., [7]) to intercept file
operations. To simplify the experiment, we record system
call information when intercepting file operations. We use

the same benchmarks (reading/writing speed and unzipping
Linux kernel) to evaluate the performance in this condition.

The experimental environment is as the same as
CFWatcher’s, and the results are shown in Table 2. From the
results, we can see that when even monitoring 400 files, the
performance of CFWatcher is better than that of operation-
based approaches.

5.4.2 Windows

We also implement an operation-based Windows filesystem
monitor in VMM to compare with CFWatcher. When target
system calls are intercepted, we get the arguments by read-
ing registers, and then log them. We use PCMark 7 storage
suite to evaluate the performance of operation-based moni-
tor. We run ten times to calculate the average score. From
the results, performance loss is about 35%, which is much
larger than CFWatcher.

5.5 Comparison with the Commercial Approach

We also compare CFWatcher with commercial approach.
VMware provides an agentless security solution named
vShield Endpoint, which offloads antivirus agent processing
to a dedicated secure virtual appliance delivered by VMware
partners. By using a thin agent installed in the monitored
VM, vShield Endpoint can monitor VM events and notify
the antivirus engine. Trend Micro Deep Security can lever-
age vShield Endpoint to scan on-access files in VM. To com-
pare with it, we deploy vShield Endpoint on VMware ESXi
5.5 and VMware vCenter 5.5. Then we use Trend Micro
Deep Security 9.6 as the antivirus engine. Since vShield
Endpoint only supports Windows VMs, we compare the per-
formance of CFWatcher with that of VMware solution in
Windows VM. PCMark 7 storage suite is also selected as
the benchmark. We first run the benchmark process in the
VM with vShield enabled, and then run it in another VM
with vShield disabled. The experimental results show that
the average performance loss is about 11.5%, which is larger
than that of CFWatcher with less than 385 monitored files in
Windows VM.

5.6 Discussion

According to experimental results, we can conclude that no
matter what OS the VM is, the impact on VM performance
will become more serious if the number of monitored files
increases. The reason is: monitoring memory region works
at page level. When we need to monitor a special memory
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region in a page, we have to set the page to read-only or
write-only mode. At the same time the modification on other
data in the same memory region inevitably will bring extra
overhead. The more files are monitored, the more pages will
be monitored, which consequently increases the overhead.
Through our tests, when the number of monitored files is
small, specially no more than 50, the overhead is very low.

There is another interesting observation that the per-
formance of Window VM is better than that of Linux VM.
The reason is that file control structure in Linux is more in-
tensive, which implies that more structures coexist in one
page. When one of them is monitored, the access to others
that should not be monitored in the same page generates ex-
tra overhead and has a serious impact on the performance.
By comparison, we find that the distribution of file control
structures in memory is more sparse, the overhead is lower.

We can also find that our operation-based method’s
overhead is much larger than other system call interception
methods, such as [7] (10.7% in the Linux case). We think
the main reason is that our interception method is at page-
level, which means that the execution of every instruction in
the monitored page will trigger the VMExit event, causing
a heavy load. As shown in Sect. 5.2.1 and 5.2.2, the over-
head of CFWatcher varies with the number of the monitored
files. But the performance of operation-based approaches is
not related to the number of monitored files. So even com-
paring with the overheads reported in other related studies,
the overhead of CFWatcher will be smaller in the case of
monitoring a small number of files (e.g., less than 100 files).

Cache object monitoring of CFWatcher may cause
some other effects, such as memory shortage. When the user
specifies a large number of files as critical, there are lots of
cache objects occupying the VM memory. Since these ob-
jects are small in size (e.g., the dentry object is 128 bytes in
size), monitoring hundreds or thousands of files can not lead
to memory shortage. However, if the user monitors tens of
thousands of files, that will cause memory shortage. Fur-
thermore, the performance degradation on filesystem will
also be very high in this case. So CFWatcher is more suit-
able for monitoring a small number of files. We have also
tested the effect on VM shutdown, because the monitored
files can’t be closed. In the test, the VMs can be shutdown
properly with several files monitored.

6. Security Analysis and Countermeasures

An attacker may exploit some vulnerabilities to bypass
CFWatcher, and even try to compromise CFWatcher espe-
cially when detecting its existence. In this part, we initial
the discussion on security analysis, including potential at-
tack vectors and countermeasures.

6.1 Hard Link

Hard link mechanism in both Linux and Windows allows a
file to have multiple different filepaths, which is exploited to
circumvent most of malware detection based on the filepath.

An attacker first creates a hard link or uses an existing hard
link to connect with one monitored file. As a result, there
are two filepaths in the filesystem both pointing to the same
monitored file. If we monitor the paths instead of the hard
links, the attacker can easily access the monitored files with
different paths so as to bypass the monitor.

Fortunately, hard links related to the same file have
their own dentry objects in the memory, which are organized
as a bi-direction link. In order to handle with hard links,
CFWatcher will search all dentry objects related to target
files if hard links exist. Consequently, CFWatcher can fight
against the attacks on hard links by examining the change
of their number when connecting or disconnecting to target
files.

6.2 Direct Operations

In fact CFWatcher is built on the filesystem of modern op-
erating system to monitor target files. Based on this knowl-
edge, an attacker may circumvent CFWatcher by directly
operating storage devices. For example, he can read the bi-
nary data from the underlying disk and afterwards reassem-
ble the meta data. That way, the attacker can locate the stor-
age addresses of target files on the disk successfully, which
allows the attacker to access target files at last. Since the
attacker does not operate target files using filesystem func-
tions, there are no corresponding objects that are available
for CFWatcher to monitor the operations on target files.

The basic idea of above attack is to directly read/write
the underlying devices. They are similar in both Linux VFS
and Windows NTFS through accessing special device files,
i.e. /dev/xdva is the path of hard disk in Ubuntu while D:\
is the path of logical D disk in Windows. In order to fight
against this attack, CFWatcher can enable the monitor on
read/write events of these files.

6.3 Kernel Attack

Kernel attack is another way to subvert CFWatcher by tam-
pering or even replacing the kernel. CFWatcher is based
on the meta data reference counter mechanism, CFWatcher
can not work well if this mechanism is compromised. This
mechanism is very difficult to be tampered, because it is a
core mechanism of filesystems. As a result, there are no
rootkits attacking it. To eliminate this risk completely, we
can employ existing kernel protection tools to defeat it.

7. Conclusion

In this paper we present CFWatcher, a target-based real-
time monitoring approach for critical files. Different
from operation-based solutions, the overhead introduced by
CFWatcher depends on the frequency of target files being
accessed rather than the whole filesystem. The core idea
is to constrain the interception on file operations into criti-
cal files, which consequently reduces the overhead. In order
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to facilitate target-based monitoring, we propose two con-
struction methods (i.e. system-call-based and agent-based)
to set up associated entities corresponding to target files
in VM’s memory. By monitoring on in-memory meta in-
formation, CFWatcher can prevent unauthorized access in
an out-the-box way once any invalid operation is detected.
Furthermore, we extensively investigate the differences be-
tween Linux and Windows to render CFWatcher more fea-
sible in practice. With the prototype system built on Xen,
we evaluate the effectiveness and performance in Linux and
Windows VMs respectively. Through the experiments, the
overall overhead is acceptable. Specifically, when the num-
ber of target files is below 50, it is less than 5%; and in the
case of 100 target files, it is less than 9%.

In the future, we are going to extend our system to a
full-featured IDS and improve the performance with the in-
creasing number of target files.
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