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On Randomness Exposure Resilience of Group Signatures

Tomoyoshi ONO†∗, Nonmember and Kazuki YONEYAMA†a), Member

SUMMARY Group signature (GS) schemes guarantee anonymity of
the actual signer among group members. Previous GS schemes assume that
randomness in signing is never exposed. However, in the real world, full
randomness exposure can be caused by implementation problems (e.g., us-
ing a bad random number generator). In this paper, we study (im)possibility
of achieving anonymity against full randomness exposure. First, we for-
mulate a new security model for GS schemes capturing full randomness
exposure. Next, we clarify that it is impossible to achieve full-anonymity
against full randomness exposure without any secure component (e.g., a
tamper-proof module or a trusted outside storage). Finally, we show a pos-
sibility result that selfless-anonymity can be achieved against full random-
ness exposure. While selfless-anonymity is weaker than full-anonymity, it
is strong enough in practice. Our transformation is quite simple; and thus,
previous GS schemes used in real-world systems can be easily replaced by
a slight modification to strengthen the security.
key words: group signature, full-anonymity, selfless-anonymity, random-
ness exposure

1. Introduction

In our daily life, we use various web-services, and these ser-
vices often require authentication to verify if a user is qual-
ified. Anonymity is an important security notion in authen-
tication systems when sensitive information is handled. For
example, let us consider an electronic first-price sealed-bid
auction. All bidders submit sealed bids of their own valu-
ations, and the highest bidder wins and pays the price they
submitted. In this case, it is required that no bidder links a
valuation with any other participant. Thus, we need to verify
that a valuation is certainly submitted by one of bidders (i.e.,
authenticity), but it must be hidden who submits the valua-
tion (i.e., anonymity). Group signature (GS) [1] is a special
kind of digital signatures to provide both authenticity and
anonymity. In GS, a group manager issues signing keys of
a group of signers, and a signer generates a group signature
with his/her signing key. Any entity except the group man-
ager (or an opener) cannot distinguish the signer from other
group members. Hence, a verifier can verify the validity of
the group signature without knowing the actual signer. If we
apply GS to the auction, bidders generate group signatures
of their valuations, and only the auctioneer can verify sig-
natures and know who is the highest bidder though bidders
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and third parties cannot know it even with information of
signatures and their signing keys.

The first unified formal security model of GS is de-
fined by Bellare et al. [2]. Though this model is for the static
group case (i.e., a group of signers is fixed before signing.),
it is extended to the dynamic group case [3] (i.e., a new
signer can join the group after signing.). In these security
models, anonymity is defined as full-anonymity (FAnon).
Intuitively, FAnon guarantees that no adversary can dis-
tinguish two signatures generated by distinct signers even
if all signing keys of the group are given. Thus, FAnon
means that even the actual signer cannot decide if a signa-
ture is generated by his/her own. On the other hand, there
is a weaker anonymity definition, called selfless-anonymity
(SLAnon) [4]. SLAnon is the same as the FAnon except
signing keys of two signers for the challenge signature are
not given to the adversary. Thus, SLAnon means that the ac-
tual signer can decide if a signature is generated by his/her
own, but other signers (and third parties) cannot. Though
SLAnon is weaker than FAnon, it seems strong enough for
most of applications in practice.

1.1 Motivating Problem

Bellare et al. [2], [3] also propose generic constructions
of static or dynamic GS. In the past decade, various GS
schemes are introduced based on these generic construc-
tions, e.g, the static group setting [5]–[7] and the dynamic
group setting [8]–[13]. Some GS schemes (or its vari-
ants supporting user revocation) satisfy SLAnon [14]–[18].
These GS schemes are provably secure in formal security
models [2]–[4]. However, all of these security models sup-
pose that randomness in generating signatures is never ex-
posed. In the real world, randomness will be fully exposed
in various situations. For example, if a bad random num-
ber generator (RNG) is implemented in a system using GS,
then outputs of the RNG are easily predicted by adversaries;
and thus, randomness is fully exposed. (e.g., the incident of
Debian’s OpenSSL package [19]) Also, even if the RNG is
not weak, inappropriate implementations like reuse of nonce
or randomness cause full randomness exposure. If there is a
problem on the randomness generation in a system, random-
ness in the system setup and key generation procedure can
be protected because it is generated once in the setup tim-
ing, usually, outside of the system under the off-line manner.
Conversely, exposure of randomness in the signature gener-
ation procedure is not prevented because it must be gener-
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ated in the system under the on-line manner. Therefore, it
is desirable that GS schemes are still secure if randomness
in the signature generation is fully exposed. However, since
previous security models do not capture randomness expo-
sure, it is unclear if previous GS schemes are secure against
randomness exposure. Though leakage-resilient cryptogra-
phy (e.g., leakage-resilient signature [20]) or hedged cryp-
tography (e.g., hedged encryption [21]) seems a solution for
this problem, these approaches are not applicable if random-
ness is fully exposed because these approaches assume that
some uncertainty of randomness is left for adversaries.

1.2 Our Contribution

This paper clarifies the influence of full randomness expo-
sure for GS schemes, and how to make GS schemes secure
against randomness exposure.

First, we introduce a new security model of GS, which
captures randomness exposure. Especially, randomness ex-
posure affects anonymity. We call FAnon and SLAnon
against full randomness exposure FAnon-RE and SLAnon-
RE, respectively. In our model, the adversary can access an
additional oracle (Rev) to provide randomness in generat-
ing the challenge signature as well as oracles in the previous
security model [3]. In this paper, though we consider the dy-
namic group case, our modelling method is trivially applied
to the static group case.

Next, we show that it is impossible to achieve FAnon-
RE without any secure component. The secure compo-
nent means that the adversary cannot obtain any informa-
tion from it even with all oracles, and can be realized by a
tamper-proof module or a trusted outside storage. In other
words, if the adversary can obtain all secret information
of the actual signer, the adversary can distinguish the ac-
tual signer from others by using randomness for any GS
schemes. Specifically, we show a general attack procedure.

Finally, we propose a generic transformations of GS
to satisfy SLAnon-RE. Our transformation is quite sim-
ple: applying a pseudo-random function (PRF) to generate
new randomness with a secret salt. The salt is stored in a
part of the signing key. Similar techniques are used to re-
sist secret exposure attacks in authenticated key exchange
schemes like [22]. Thanks to its simplicity, we can replace
GS schemes implemented in systems by a slight modifica-
tion in order to provide randomness exposure. We prove
that a transformed GS scheme satisfies SLAnon-RE if the
original GS scheme satisfies SLAnon.

Furthermore, we show that FAnon-RE is also achiev-
able with a physical assumption. Specifically, by relying
on a secure component, we can avoid our impossibility
and construct a generic transformation of FAnon-RE GS
schemes. In this case, the salt of the PRF is stored in the se-
cure component. Though such an assumption is not natural,
it may be useful in applications that some secure component
(e.g., a smart card, a private cloud storage) can be used.

2. Security Model

In this section, we introduce a new security model for dy-
namic GS, which captures security against full randomness
exposure in the signature generation. The main difference
from the previous model is to add a new oracle in order to
expose randomness. We note that our security model can be
easily modified to the static group setting.

Throughout this paper we use the following notations.
IfALG is an algorithm, then by y← ALG(x; r) we denote
that y is output by ALG on input x and randomness r (if
ALG is deterministic, r is empty). If A is an adversary,
then by y ← A(x : Oracle) we denote that y is output byA
on input x andA can pose queries to Oracle.

2.1 Syntax of Dynamic Group Signatures

A dynamic group signature scheme GS consists of eight al-
gorithms (GKg,UKg,GSig, GVf,Open, Judge, Join, Iss).

• GKg is a group key generation algorithm which takes
as input a security parameter κ and outputs a group pub-
lic key gpk, an issuer key ik and an opener key ok. The
trusted third party runs the GKg, and the isuuer key
ik is provided to the issuer, and the opener key ok is
provided to the opener. The group public key gpk is
published.

• UKg is a user key generation algorithm for a user i,
which takes as input a security parameter κ and outputs
a user public key upk[i] and a user secret key usk[i].

• Join and Iss are interactive algorithms between a user i
and the issuer in order to add the user i as a group mem-
ber after the successful interaction. Join and Iss take as
input a current state and an incoming message Min, and
output an updated state, an outgoing message Mout and
a decision dec ∈ {accept, re ject, cont} where accept
means that the interaction is accepted, re ject means
that the interaction is accepted and cont means that the
interaction continues. We suppose that the user i sends
the first message to the issuer, and initial states for Join
and Iss contain (gpk, upk[i], usk[i]) and (gpk, ik, i,
upk[i]), respectively. If the issuer accepts, it makes an
entry reg[i] for the user i, in a registration table reg,
and fills this entry with a new membership certificate,
which is the final state output by Iss. If the user i ac-
cepts, it stores the final state output by Join as its group
signing key gsk[i]. We assume that the communication
takes place over a private and authenticated channel.

• GSig is a signature generation algorithm which takes
as input the group public key gpk, a message m and the
group signing key gsk[i], and outputs a signature σ on
the message m.

• GVf is a signature verification algorithm which takes
as input the group public key gpk, a message m and a
signature σ, and outputs 1 if σ is valid for the massage
m, otherwise outputs 0.
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AddU(i)
If i ∈ CU or i ∈ HU then return ⊥
HU← HU ∪ {i}
deci ← cont; gsk[i]← ⊥
(upk[i], usk[i])← UKg(1κ)
S tijn ← (gpk, upk[i], usk[i])
S tiiss ← (gpk, ik, i, upk[i]); M jn ← ⊥
(S tijn,Miss, deci)← Join(S tijn,M jn)
While deci = cont do

(S tiiss,M jn, deci)← Iss(S tiiss,Miss)
If deci = accept then reg[i]← S tiiss
(S tijn,Miss, deci)← Join(S tijn,M jn)

Endwhile
gsk[i]← S tijn
Return upk[i]

CrptU(i, upk)
If i ∈ HU ∪ CU then return ⊥
CU← CU ∪ {i}
upk[i]← upk
deci ← cont
S tiiss ← (gpk, ik, i, upk[i]);
Return 1

Op(m, σ)
If (m, σ) ∈ Gset then return ⊥
Return Open(gpk, ok, reg,m, σ)

Sig(i,m)
If i � HU then return ⊥
If gsk[i] = ⊥ then return ⊥
σ← GSig(gpk, gsk[i],m; r)
σset← σset ∪ (i,m, σ, r)
Return σ

SndToI(i,Min)
If i � CU then return ⊥
(S tiiss,Mout , deci)← Iss(S tiiss,Min)
If deci = accept then reg[i]← S tiiss
Return Mout

SndToU(i,Min)
If i � HU then
HU← HU ∪ {i}
(upk[i], usk[i])← UKg(1κ)
gsk[i]← ⊥
S tijn ← (gpk, upk[i], usk[i])
(S tijn,Mout , deci)← Join(S tijn,Min)
If deci = accept then gsk[i]← S tijn
Return (Mout , deci)

USK(i)
Return (gsk[i], usk[i])

RReg(i)
Return reg[i]

WReg(i, ρ)
reg[i]← ρ

Chb(i0, i1,m)
If i0 � HU or i1 � HU then return ⊥
If gsk[i0] = ⊥ or gsk[i1] = ⊥ then return ⊥
σ← GSig(gpk, gsk[ib],m; r)
Gset← Gset ∪ (m, σ)
σset← σset ∪ (ib,m, σ, r)
Return σ

Rev(m, σ)
If (i,m, σ, r) � σset then return ⊥
Return r

Fig. 1 Oracles

• Open is an opening algorithm which takes as input the
group public key gpk, the opener key ok, a registration
table reg, a message m and a signature σ, and outputs i
and τ where τ is a proof that σ is generated by the user
i.

• Judge is a judging algorithm which takes as input the
group public key gpk, a user i, a user public key upk[i],
a message m, a signature σ and a proof τ, and outputs
1 if τ generated by Open is valid, otherwise outputs 0.

2.2 Security Definition

2.2.1 Oracles

First, we define the adversarial capacity as the access to ora-
cles. In the previous model [3], ten oracles are defined: add
user AddU, corrupt user CrptU, send to issuer SndToI, send
to user SndToU, reveal user secret keys USK, read registra-
tion table RReg, write registration table WReg, sign Sig,
open Op and challenge Ch. In addition to these oracles,
we newly add oracle Rev which returns randomness r used
to produce σ. Let HU be a set of honest users, CU be a
set of corrupted users, Gset be a set of pair (m, σ) of mes-

sage/signature produced by Chb and σset be a set of a tuple
(i,m, σ, r) of user/message/signature/randomness produced
by Sig and Chb.

Figure 1 shows definitions of oracles. We must care-
fully define Rev. If inputs of Rev contain a user i as well as
a message and a signature, then the adversary can check if
the user i actually generates the signature. Thus, anonymity
is trivially broken by using Rev. We formulate Rev to avoid
such trivial attacks.

2.2.2 Correctness

Correctness means that a signature generated by an honest
group member should be valid, Open should correctly iden-
tify the signer from the signature, and the proof generated
by Open should be accepted by Judge.

Definition 2.1 (Correctness): We difine the experiment
Expcorr

GS,A(κ) for a probabilistic polynomial time (PPT) ad-
versaryA and a security parameter κ as follows:

Experiment Expcorr
GS,A(κ):

CU← ∅; HU← ∅
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(gpk, ik, ok)← GKg(1κ)
(i,m)← A(gpk : AddU(·),RReg(·))
If i � HU then return 0
If gsk[i] = ⊥ then return 0
σ← GSig(gpk, gsk[i],m)
If 0← GVf(gpk,m, σ) then return 1
( j, τ)← Open(gpk, ok, reg,m, σ)
If i � j or 0← Judge(gpk, i, upk[i],m, σ, τ)
then return 1 else return 0

The advantage of A is defined as: Advcorr
GS,A(κ) =

Pr[Expcorr
GS,A(κ) = 1]. We say that the dynamic group sig-

nature scheme GS is correct if Advcorr
GS,A(κ) = 0 for any PPT

adversaryA.

2.2.3 Anonymity

Anonymity means that the corrupted issuer and users should
be unable to distinguish the actual signer from others with a
signature. Especially, if even the actual signer cannot decide
if the signature is generated by him/herself, then we call full-
anonymity, FAnon. If the actual signer can decide if the
signature is generated by him/herself, then we call selfless-
anonymity, SLAnon.

Definition 2.2 (Anonymity): We define the experiment
Expanon−b

GS,A (κ) for a PPT adversary A and a security parame-
ter κ as follows:

Experimet Expanon−b
GS,A (κ):

CU← ∅; HU← ∅; Gset← ∅; σset← ∅
(gpk, ik, ok)← GKg(1κ)
b′ ← A(gpk, ik : Op(·, ·),SndToU(·, ·),WReg(·, ·),

USK(·),CrptU(·, ·),Sig(·, ·),Chb(·, ·, ·),Rev(·, ·))
Return b′

The advantage of A is defined as: Advanon
GS,A(κ) =

|Pr[Expanon−1
GS,A (κ) = 1] − Pr[Expanon−0

GS,A (κ) = 1]|. We say
that the dynamic group signature scheme GS is FAnon-
RE if Advanon

GS,A(κ) is negligible. We say that the dynamic
group signature scheme GS is SLAnon-RE if A poses nei-
ther USK(i0) nor USK(i1), and Advanon

GS,A(κ) is negligible for
any PPT adversaryA.

Remark 2.1: When Rev oracle is removed from
Expanon−b

GS,A (κ), the definition means FAnon or SLAnon in
[3], [4] (i.e., without considering randomness exposure).

2.2.4 Traceability

Traceability means that the corrupted opener and users
should be unable to generate a valid signature such that the
actual signer cannot be opened, and should be unable to gen-
erate a valid signature such that the proof generated by the
honest opener is rejected by Judge.

Definition 2.3 (Traceability): We define the experiment

Exptrace
GS,A(κ) for a PPT adversary A and a security param-

eter κ as follows:

Experiment Exptrace
GS,A(κ):

CU← ∅; HU← ∅; σset← ∅
(gpk, ik, ok)← GKg(1κ)
(m, σ)← A(gpk, ok : SndToI(·, ·),AddU(·),

RReg(·),USK(·),CrptU(·, ·),Rev(·, ·))
If 0← GVf(gpk,m, σ) then return 0
(i, τ)← Open(gpk, ok, reg,m, σ)
If i = ⊥ or 0← Judge(gpk, i, upk[i],m, σ, τ)
then return 1 else return 0

The advantage of A is defined as: Advtrace
GS,A(κ) =

Pr[Exptrace
GS,A(κ) = 1]. We say that the dynamic group signa-

ture scheme GS is traceable against randomness exposure if
Advtrace

GS,A(κ) is negligible for any PPT adversaryA.

2.2.5 Non-Frameability

Non-frameability means that the corrupted issuer and
opener should be unable to generate a valid signature and
a valid proof accepted by Judge for an honest user.

Definition 2.4 (Non-frameability): We define the experi-
ment Expn f

GS,A(κ) for a PPT adversary A and a security pa-
rameter κ as follows:

Experiment Expn f
GS,A(κ):

CU← ∅; HU← ∅; σset← ∅
(gpk, ik, ok)← GKg(1κ)
(m, σ, i, τ)← A(gpk, ok, ik : SndToU(·, ·),WReg(·, ·),

USK(·),CrptU(·, ·),Sig(·, ·),Rev(·, ·))
If 0← GVf(gpk,m, σ) then return 0
If i ∈ HU, gsk[i] � ⊥ and 1← Judge(gpk, i, upk[i],
m, σ, τ) then return 1 else 0

The advantage of A is defined as: Advn f
GS,A(κ) =

Pr[Expn f
GS,A(κ) = 1].

We say that the dynamic group signature scheme is
non-frameable against randomness exposure ifA poses nei-
ther USK(i) nor GSig(i,m), and Advn f

GS,A(κ) is negligible for
any PPT adversaryA.

3. Impossibility of Full-Anonymity against Full Ran-
domness Exposure

In this section, we show that FAnon-RE is not achievable if
users do not have any secure component (SC). The notion
of SC means that the adversary cannot obtain the content of
the SC even with any oracle queries like USK. In the real
world, the SC is realized by a local tamper-proof module
or a trusted outside storage. In other words, if a user does
not have any SC, then the adversary can obtain all secret
information of the user by posing USK because secret in-
formation must be stored in usk[i] or gsk[i] in the security
model.
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Definition 3.1: We say that a component is the SC if any
information stored in the component is not revealed by or-
acle queries AddU, CrptU, SndToI, SndToU, USK, RReg,
WReg, Sig, Op, Ch and Rev.

Theorem 3.1: We assume that users do not have any SC.
Then, there exists an adversary who breaks FAnon-RE.

Proof. We construct a generic adversary A breaking
FAnon-RE as follows:

1. Receive gpk and ik.
2. Choose the challenge users i0 and i1, and a message m.
3. Pose USK(i0) and USK(i1), and obtain (gsk[i0],

usk[i0]) and (gsk[i1], usk[i1]).
4. Pose Chb(i0, i1,m), and obtain σ.
5. Pose Rev(m, σ), and obtain r.
6. Compute σ0 ← GSig(gpk, gsk[i0],m; r) and σ1 ←

GSig(gpk, gsk[i1],m; r).
7. If σ0 = σ, then output 0, else if σ1 = σ output 1.

Since user i0 and user i1 do not have any SC,A has the
same power as i0 and i1 (i.e., gsk[i0], gsk[i1] and random-
ness r). σ is deterministically generated with GSig on input
(gpk, gsk[ib],m; r). Thus, σ must be identical to either σ0

or σ1. �

From Theorem 3.1, we cannot construct a GS scheme
satisfying FAnon-RE in the standard setting (i.e., without
any SC). On the other hand, the given attack is not appli-
cable to the case of SLAnon-RE because A cannot proceed
Step.3 due to the restriction of the definition of SLAnon-RE.

4. Generic Transformation for Selfless-Anonymity
against Full Randomness Exposure

In this section, we introduce a generic transformation of GS
to guarantee anonymity against full randomness exposure.
As we prove in Sect. 3, FAnon-RE is not achievable. How-
ever, we can achieve SLAnon-RE without any SC. Though
anonymity is weaker than FAnon-RE, it is strong enough in
practice to use in most of applications because only the ac-
tual signer may distinguish the his/her signature from other
signatures.

4.1 Building Block

Let κ be a security parameter, which is chosen according to
required key length. Let F = {Fκ : Domκ × S altκ → Rngκ}κ
be a function family with a family of domains {Domκ}κ, a
family of salt spaces {S altκ}κ and a family of ranges {Rngκ}κ.
Definition 4.1 (Pseudo-Random Function): We say that
function family F = {Fκ}κ is the pseudo-random function
(PRF) family, if for any PPT distinguisher D, |Pr[1 ←
DFκ(·)] − Pr[1 ← DRFκ(·)]| is negligible, where RFκ :
Domκ → Rngκ is a truly random function.

4.2 Transformation πS LAnon for SLAnon-RE

We give the generic transformation πS LAnon which provides

SLAnon-RE to a SLAnon GS scheme. For a GS scheme
GS = (GKg,UKg, Join, Iss,GSig, GVf,Open, Judge),
we denote the transformed GS scheme by πS LAnon(GS) =
(GKg′,UKg′, Join′, Iss′,GSig′, GVf′,Open′, Judge′). We
denote randomness used in GSig by (r1, . . . , rn). πS LAnon

uses PRFs (F1, . . . , Fn), where Dom and Rng of F j depend
on the space of r j. The protocol of πS LAnon is as follows:

GKg′(1κ): Choose PRFs (F1, . . . , Fn), generate (gpk,
ik, ok) ← GKg(1κ), and set gpk′ = (gpk, F1, . . . , Fn).
Output (gpk′, ik, ok).

UKg′(1κ): Choose salts (k1, . . . , kn), generate (upk[i],
usk[i])← UKg(1κ), and set usk[i]′= (usk[i], k1, . . . , kn).
Output (upk[i], usk[i]′).

Join′(S ti
jn,Mjn) and Iss′(S ti

iss,Miss): Iss′ is the same as
Iss. For Join′, execute (S ti

iss, Mjn, deci) ← Iss(S ti
iss,

Miss) and (S ti
jn,Miss, deci) ← Join(S ti

jn, Mjn) until
deci = accept, and set gsk[i]′ = (gsk[i], k1, . . . , kn).
Output gsk[i]′ for Join′ and reg[i] for Iss′.

GSig′(gpk′, gsk[i]′,m; (r′1, . . . , r
′
n)): Parse gpk′ into (gpk,

F1, . . . , Fn) and gsk[i]′ into (gsk[i], k1, . . . , kn), com-
pute {r j} = {F j(r′j, k j)} for 1 ≤ j ≤ n, and generate
σ← GSig(gpk, gsk[i],m; (r1, . . . , rn)). Output σ.

GVf′(gpk,m, σ),Open′(gpk, ok, reg,m, σ) and
Judge′(gpk, i, upk[i],m, σ, τ): GVf′, Open′ and Judge′ are

the same as GVf, Open and Judge, respectively.

4.3 Security

We show security statements of the generic transformation
πS LAnon.

Theorem 4.1 (Correctness of πS LAnon): If GS satisfies cor-
rectness, then πS LAnon(GS) does as well.

Correctness is obvious from the protocol.

Theorem 4.2 (SLAnon-RE of πS LAnon): If GS is SLAnon
and (F1, . . . , Fn) are PRFs, then πS LAnon(GS) is SLAnon-
RE.

Theorem 4.3 (Traceability of πS LAnon): If GS is traceable
and (F1, . . . , Fn) are PRFs, then πS LAnon(GS) is traceable
against randomness exposure.

Theorem 4.4 (Non-Frameability of πS LAnon): IfGS is non-
frameable and (F1, . . . , Fn) are PRFs, then πS LAnon(GS) is
non-frameable against randomness exposure.

Here, we give sketches of proofs.
First, we show the intuition of the proof of Theo-

rem 4.2. The difference between GS and πS LAnon(GS) is
how to generate a signature. In GS randomness is di-
rectly used, and in πS LAnon(GS) outputs of PRFs are used
instead of randomness. From pseudo-randomness of PRFs,
the adversary cannot distinguish outputs of PRFs from ran-
dom values because the adversary cannot pose USK(i0) and
USK(i1), and cannot obtain salts (k1, . . . , kn) of i0 and i1.
Thus, outputs of PRFs in πS LAnon(GS) can be replaced with
random values generated from random functions. In this
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situation, Rev oracle does not help the adversary because
outputs of Rev are independent to random values used in
πS LAnon(GS). Therefore, SLAnon of GS implies SLAnon-
RE of πS LAnon(GS).

Next, we show the intuition of the proof of Theo-
rem 4.3. In the experiment, an adversary does not have
the access to Sig and Chb. Thus, Rev oracle never returns
other than ⊥, and is not any help of the adversary. There-
fore, traceability ofGSwithout Rev oracle naturally implies
traceability of πS LAnon(GS).

Finally, we show the intuition of the proof of Theo-
rem 4.4. In the experiment, an adversary cannot pose USK
and CrptU for the target user. Hence, the adversary cannot
distinguish outputs of PRFs from random values because
the adversary cannot obtain salts (k1, . . . , kn) of the target
user. Outputs of PRFs in πS LAnon(GS) can be replaced with
random values generated from random functions. A subtle
point is that the adversary may pose Sig query for the tar-
get user before outputting the forgery. Thus, the simulator
guesses the target user in advance. It is possible because the
maximum number of group members is polynomial. There-
fore, non-frameability of GS without Rev oracle implies
non-frameability of πS LAnon(GS).

4.3.1 Proof of Theorem 4.2

We change the interface of oracle queries in the experiment
of Expanon−b

πS LAnon(GS),A(κ). These instances are gradually changed
over hybrid experiments, depending on specific sub-cases.
In the last hybrid experiment, SLAnon-RE of πS LAnon(GS)
is guaranteed from SLAnon of GS. We denote these hybrid
experiments by H0, . . . ,Hn, and the advantage of the adver-
saryA when participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes
Expanon−b

πS LAnon(GS),A(κ), and in this experiment the environment
forA is as defined in the protocol. Thus, Adv(A,H0) is the
same as Advanon

πS LAnon(GS),A(κ).

Hybrid experiment H j for 1 ≤ j ≤ n: The computation of
GSig′(gpk, gsk[i]′,m; (r′1, . . . , r′n)) in Chb oracle is changed.
Instead of computing r j = F j(r′j, k j), it is changed as obtain-
ing r̃ j from a random function RF.

We construct a distinguisher D to distinguish r̃ j from
r j = F j(r′j, k j) by assuming an adversary A distinguish H j

from H j−1. D performs as follows:

Setup. Generate (gpk′, ik, ok) ← GKg′(1κ), and set CU ←
∅, HU ← ∅, Gset ← ∅ and σset ← ∅. Give gpk′ and ik to
A as input.

Simulation.

• Op(m, σ): If (m, σ) ∈ Gset, then return ⊥. Otherwise,
return Open′(gpk′, ok, reg,m, σ).

• SndToU(i,Min): If i � HU then HU← HU ∪ {i}. Gen-

erate (upk[i], usk[i]′)← UKg′(1κ), and set gsk[i]′ ← ⊥
and S ti

jn ← (gpk′, upk[i], usk[i]′). Generate (S ti
jn,

Mout, deci) ← Join′(S ti
jn,Min). If deci = accept, then

gsk[i]′ ← S ti
jn. Otherwise, return (Mout, deci).

• WReg(i, ρ): Set reg[i]← ρ.

• USK(i): Return (gsk[i]′, usk[i]).

• CrptU(i, upk): If i ∈ HU ∪ CU, then return ⊥. Set
CU ← CU ∪ {i}, upk[i] ← upk, deci ← cont, and
S ti

iss ← (gpk′, ik, i, upk[i]).

• Sig(i,m): If i � HU, then return ⊥. If gsk[i]′ =
⊥, then return ⊥. Choose r′1, . . . , r

′
n from Dom of

PRFs and r̃1, . . . , r̃ j−1 from Rng of PRFs, pose r′j to the
PRF oracle (i.e., F j or RF), and obtain r j. Generate
σ ← GSig(gpk, gsk[ib], m; (r̃1, . . . , r̃ j−1, r j, F j+1(r′j+1,
k j+1), . . . , Fn(r′n, kn))). Set σset ← σset ∪ (i,m, σ, (r′1,
. . . , r′n)). Return σ.

• Chb(i0, i1,m): If i0 � HU or i1 � HU, then return
⊥. If gsk[i0]′ = ⊥ or gsk[i1]′ = ⊥, then return ⊥.
Choose r′1, . . . , r

′
n from Dom of PRFs and r̃1, . . . , r̃ j−1

from Rng of PRFs, pose r′j to the PRF oracle (i.e., F j or
RF), and obtain r j. Generate σ ← GSig(gpk, gsk[ib],
m; (r̃1, . . . , r̃ j−1, r j, F j+1(r′j+1, k j+1, . . . , Fn(r′n, kn)). Set
Gset ← Gset ∪ (m, σ) and σset ← σset ∪
(ib,m, σ, (r′1, . . . , r

′
n)). Return σ.

• Rev(m, σ): If (i,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. If A outputs b′ = b, then D outputs 1. Otherwise,
D outputs 0.

Analysis. IfA can check if randomness used in Chb oracle
is outputs of PRFs, then A can distinguish the simulation
from the real experiment. However,A cannot know salts of
i0 and i1 because USK(i0) and USK(i1) cannot be posed. For
A, the simulation byD is same as the experiment H j−1 if the
PRF oracle is the PRF F j. Otherwise, the simulation by D
is same as the experiment H j. Thus, if the advantage ofD is
negligible, then |Adv(A,H j) − Adv(A,H j−1)| is negligible.

Bounding Adv(A,Hn): In Hn, all computations of GSig′ in
Chb oracle use random (r̃1 . . . , r̃n) instead of (F1(r′1, k1), . . . ,
Fn(r′n, kn)). Thus, outputs of Rev oracle (r′1, . . . , r

′
n) are in-

dependent from σ.
We construct an adversary B for GS by assuming an

adversaryA for Hn. B performs as follows:

Setup. Receive (gpk, ik) as the challenge, choose PRFs
(F1, . . . , Fn), and set gpk′ = (gpk, F1, . . . , Fn) and σset ←
∅. Give gpk′ and ik toA as input.
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Simulation.

• Op(m, σ): Pose (m, σ) to Op, and return the output of
Op.

• SndToU(i,Min): Pose (i,Min) to SndToU, and return
the output of SndToU.

• WReg(i, ρ): Pose (i, ρ) to WReg.

• USK(i): Pose i to USK, obtain (upk[i], usk[i]), choose
salts (k1, . . . , kn), and set usk[i]′ = (usk[i], k1, . . . , kn).
Return (upk[i], usk[i]′).

• CrptU(i, upk): Pose (i, upk) to CrptU, and return the
output of CrptU.

• Sig(i,m): Pose (i,m) to Sig, obtain σ, and choose
(r′1, . . . , r

′
n). Set σset ← σset ∪ (i,m, σ, (r′1, . . . , r

′
n)).

Return σ.

• Chb(i0, i1,m): Pose (i0, i1,m) to Chb, obtain σ,
and choose (r′1, . . . , r

′
n). Set σset ← σset ∪

(∗,m, σ, (r′1, . . . , r′n)). Return σ.

• Rev(m, σ): If (∗,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. IfA outputs b′, then B outputs b′.

Analysis. For A, the simulation by B is same as the ex-
periment Hn. Thus, if the advantage of B is negligible, then
Adv(A,Hn) is negligible. �

4.3.2 Proof of Theorem 4.3

The proof is trivial. In Exptrace
πS LAnon(GS),A(κ), A does not have

Sig and Chb oracles. Thus, there is no record in σset, and
Rev oracle always returns ⊥. It means that Rev oracle is not
any help of A. Therefore, even if GS is traceable without
Rev oracle, πS LAnon(GS) is also traceable. �

4.3.3 Proof of Theorem 4.4

We change the interface of oracle queries in the experi-
ment of Expn f

πS LAnon(GS),A(κ). These instances are gradually
changed over hybrid experiments, depending on specific
sub-cases. In the last hybrid experiment, non-frameability
of πS LAnon(GS) is guaranteed from non-frameability of GS
without Rev oracle. We denote these hybrid experiments by
H0, . . . ,Hn+1, and the advantage of the adversary A when
participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes
Expn f

πS LAnon(GS),A(κ), and in this experiment the environment
forA is as defined in the protocol. Thus, Adv(A,H0) is the
same as Advn f

πS LAnon(GS),A(κ).

Hybrid experiment H1: The experiment fixes a user i∗
which is chosen from [1, . . . ,N], and if A outputs i � i∗
then halts.

Since the guess of the user matches with A’s choice
with probability 1/N for the maximum number of group
members N, Adv(A,H1) ≥ 1/N · Adv(A,H0).

Hybrid experiment H j for 2 ≤ j ≤ n + 1: The compu-
tation of GSig′(gpk, gsk[i]′,m; (r′1, . . . , r′n)) in Sig oracle is
changed. Instead of computing r j−1 = F j−1(r′j−1, k j−1), it is
changed as obtaining r̃ j−1 from a random function RF.

We construct a distinguisherD to distinguish r̃ j−1 from
r j−1 = F j−1(r′j−1, k j−1) by assuming an adversary A distin-
guish H j from H j−1. D performs as follows:

Setup. Generate (gpk′, ik, ok) ← GKg′(1κ), and set CU ←
∅ and HU← ∅, Gset← ∅ and σset← ∅. Give (gpk′, ik, ok)
toA as input.

Simulation.

• SndToU(i,Min): If i � HU then HU← HU ∪ {i}. Gen-
erate (upk[i], usk[i]′)← UKg′(1κ), and set gsk[i]′ ← ⊥
and S ti

jn ← (gpk′, upk[i], usk[i]′). Generate (S ti
jn,

Mout, deci) ← Join′(S ti
jn,Min). If deci = accept, then

gsk[i]′ ← S ti
jn. Otherwise, return (Mout, deci).

• WReg(i, ρ): Set reg[i]← ρ.

• USK(i): Return (gsk[i]′, usk[i]).

• CrptU(i, upk): If i ∈ HU ∪ CU, then return ⊥. Set
CU ← CU ∪ {i}, upk[i] ← upk, deci ← cont, and
S ti

iss ← (gpk′, ik, i, upk[i]).

• Sig(i,m): If i � HU, then return⊥. If gsk[i]′ = ⊥, then
return ⊥. If i = i∗, then choose r′1, . . . , r

′
n from Dom

of PRFs and r̃1, . . . , r̃ j−2 from Rng of PRFs, pose r′j−1
to the PRF oracle (i.e., F j−1 or RF), obtain r j−1, and
generate σ ← GSig(gpk′, gsk[i],m; (r̃1, . . . , r̃ j−2, r j−1,
F j(r′j, k j), . . . , Fn(r′n, kn))). Otherwise, then choose r′1,
. . . , r′n, and generate σ ← GSig′(gpk′, gsk[i]′,m; (r′1,
. . . , r′n)). Set σset ← σset ∪ (i,m, σ, (r′1, . . . , r

′
n)). Re-

turn σ.

• Rev(m, σ): If (i,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. If A outputs b′ = b, then D outputs 1. Otherwise,
D outputs 0.

Analysis. If A can check if randomness used in Sig oracle
is outputs of PRFs, then A can distinguish the simulation
from the real experiment. However, since A can pose nei-
ther USK(i∗) nor CrptU(i∗), A cannot know salts of i∗. For
A, the simulation byD is same as the experiment H j−1 if the
PRF oracle is the PRF F j−1. Otherwise, the simulation byD
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is same as the experiment H j. Thus, if the advantage ofD is
negligible, then |Adv(A,H j) − Adv(A,H j−1)| is negligible.

Bounding Adv(A,Hn+1): In Hn+1, all computations
of GSig′ in Sig oracle use random (r̃1 . . . , r̃n) instead of
(F1(r′1, k1), . . . , Fn(r′n, kn)). Thus, outputs of Rev oracle
(r′1, . . . , r

′
n) are independent from σ.

We construct an adversary B for GS by assuming an
adversaryA for Hn+1. B performs as follows:

Setup. Receive (gpk, ik, ok) as the challenge, choose PRFs
(F1, . . . , Fn), and set gpk′ = (gpk, F1, . . . , Fn) and σset ←
∅. Give (gpk′, ik, ok) toA as input.

Simulation.

• SndToU(i,Min): Pose (i,Min) to SndToU, and return
the output of SndToU.

• WReg(i, ρ): Pose (i, ρ) to WReg.

• USK(i): Pose i to USK, obtain (upk[i], usk[i]), choose
salts (k1, . . . , kn), and set usk[i]′ = (usk[i], k1, . . . , kn).
Return (upk[i], usk[i]′).

• CrptU(i, upk): Pose (i, upk) to CrptU, and return the
output of CrptU.

• Sig(i,m): Pose (i,m) to Sig, obtain σ, and choose
(r′1, . . . , r

′
n). Set σset ← σset ∪ (i,m, σ, (r′1, . . . , r

′
n)).

Return σ.

• Rev(m, σ): If (∗,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. IfA outputs b′, then B outputs b′.

Analysis. ForA, the simulation by B is same as the exper-
iment Hn+1. Thus, if the advantage of B is negligible, then
Adv(A,Hn+1) is negligible. �

5. Achieving Full-Anonymity against Full Randomness
Exposure with Physical Assumption

We show another way to avoid our impossibility in Sect. 3
by relying on a physical assumption (i.e., using the SC).
We give the generic transformation πFAnon which provides
FAnon-RE to a FAnon GS scheme. For a GS scheme
GS = (GKg,UKg, Join, Iss,GSig, GVf,Open, Judge),
we denote the transformed GS scheme by πFAnon(GS) =
(GKg′,UKg′, Join′, Iss′,GSig′, GVf′,Open′, Judge′). We
denote randomness used in GSig by (r1, . . . , rn) (i.e., GSig
internally generates n random values). πFAnon uses PRFs
(F1, . . . , Fn) and the SC S C, where Rng of F j depend on the
space of r j

†. The protocol of πFAnon is as follows:

†If some randomness are chosen from the common space, then
we can use the common PRF for such randomness.

GKg′(1κ): Choose PRFs (F1, . . . , Fn), generate (gpk,
ik, ok) ← GKg(1κ), and set gpk′ = (gpk, F1, . . . , Fn).
Output (gpk′, ik, ok).

UKg′(1κ): Choose salts (k1, . . . , kn), generate (upk[i],
usk[i])← UKg(1κ), and set usk[i]′= (usk[i], k1, . . . , kn).
Output (upk[i], usk[i]′).

Join′(S ti
jn,Mjn) and Iss′(S ti

iss,Miss): Iss′ is the same as
Iss. For Join′, execute (S ti

iss, Mjn, deci) ←
Iss(S ti

iss,Miss) and (S ti
jn,Miss, deci)← Join(S ti

jn, Mjn)
until deci = accept, store (k1, . . . , kn) to S C, and set
gsk[i]′ = (gsk[i], S C). Output gsk[i]′ for Join′ and
reg[i] for Iss′.

GSig′(gpk′, gsk[i]′,m; (r′1, . . . , r
′
n)): Parse gpk′ into (gpk,

F1, . . . , Fn) and gsk[i]′ into (gsk[i], S C), extract
(k1, . . . , kn) from S C, compute {r j} = {F j(r′j, k j)}
for 1 ≤ j ≤ n, and generate σ ← GSig(gpk,
gsk[i],m; (r1, . . . , rn)). Output σ.

GVf′(gpk′,m, σ), Open′(gpk′, ok, reg,m, σ) and
Judge′(gpk′, i, upk[i],m, σ, τ): GVf′, Open′ and Judge′ are

the same as GVf, Open and Judge, respectively.

5.1 Security

We show security statements of the generic transformation
πFAnon.

Theorem 5.1 (Correctness of πFAnon): If GS satisfies cor-
rectness, then πFAnon(GS) does as well.

Correctness is obvious from the protocol.

Theorem 5.2 (FAnon-RE of πFAnon): If GS is FAnon and
(F1, . . . , Fn) are PRFs, then πFAnon(GS) is FAnon-RE.

Theorem 5.3 (Traceability of πFAnon): If GS is traceable
and (F1, . . . , Fn) are PRFs, then πFAnon(GS) is traceable
against randomness exposure.

Theorem 5.4 (Non-Frameability of πFAnon): If GS is non-
frameable and (F1, . . . , Fn) are PRFs, then πFAnon(GS) is
non-frameable against randomness exposure.

Proofs of Theorem 5.2, 5.3 and 5.4 are shown in Ap-
pendix A. Here, we give sketches of proofs.

First, we show the intuition of the proof of Theo-
rem 5.2. The difference between GS and πFAnon(GS) is
how to generate a signature. In GS randomness is directly
used, and in πFAnon(GS) outputs of PRFs are used instead of
randomness. From pseudo-randomness of PRFs, the adver-
sary cannot distinguish outputs of PRFs from random val-
ues because the adversary cannot obtain salts (k1, . . . , kn)
from S C even when USK is posed. Thus, outputs of PRFs
in πFAnon(GS) can be replaced with random values gener-
ated from random functions. In this situation, Rev oracle
does not help the adversary because outputs of Rev are in-
dependent to random values used in πFAnon(GS). Therefore,
FAnon of GS implies FAnon-RE of πFAnon(GS).

Next, we show the intuition of the proof of Theo-
rem 5.3. In the experiment, an adversary does not have
the access to Sig and Chb. Thus, Rev oracle never returns
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other than ⊥, and is not any help of the adversary. There-
fore, traceability ofGSwithout Rev oracle naturally implies
traceability of πFAnon(GS).

Finally, we show the intuition of the proof of Theo-
rem 5.4. Like the situation of the proof of Theorem 5.2, the
adversary cannot distinguish outputs of PRFs from random
values because the adversary cannot obtain salts (k1, . . . , kn)
from S C even when USK is posed. Outputs of PRFs in
πFAnon(GS) can be replaced with random values generated
from random functions. Therefore, non-frameability of GS
without Rev oracle implies non-frameability of πFAnon(GS).
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Appendix A: Security Proofs for πFAnon

In this section, we prove security of generic transformations.

A.1 Proof of Theorem 5.2

We change the interface of oracle queries in the experiment
of Expanon−b

πFAnon(GS),A(κ). These instances are gradually changed
over hybrid experiments, depending on specific sub-cases.
In the last hybrid experiment, FAnon-RE of πFAnon(GS) is
guaranteed from FAnon of GS. We denote these hybrid ex-
periments by H0, . . . ,Hn, and the advantage of the adversary
A when participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes
Expanon−b

πFAnon(GS),A(κ), and in this experiment the environment
forA is as defined in the protocol. Thus, Adv(A,H0) is the
same as Advanon

πFAnon(GS),A(κ).

Hybrid experiment H j for 1 ≤ j ≤ n: The computation of
GSig′(gpk, gsk[i]′,m; (r′1, . . . , r

′
n)) in Chb oracle is changed.

Instead of computing r j = F j(r′j, k j), it is changed as obtain-
ing r̃ j from a random function RF.

We construct a distinguisher D to distinguish r̃ j from
r j = F j(r′j, k j) by assuming an adversary A distinguish H j

from H j−1. D performs as follows:

Setup. Generate (gpk′, ik, ok) ← GKg′(1κ), and set CU ←
∅, HU ← ∅, Gset ← ∅ and σset ← ∅. Give gpk′ and ik to
A as input.

Simulation.

• Op(m, σ): If (m, σ) ∈ Gset, then return ⊥. Otherwise,
return Open′(gpk′, ok, reg,m, σ).

• SndToU(i,Min): If i � HU then HU← HU ∪ {i}. Gen-
erate (upk[i], usk[i]′)← UKg′(1κ), and set gsk[i]′ ← ⊥
and S ti

jn ← (gpk′, upk[i], usk[i]′). Generate (S ti
jn,

Mout, deci) ← Join′(S ti
jn,Min). If deci = accept, then

gsk[i]′ ← S ti
jn. Otherwise, return (Mout, deci).

• WReg(i, ρ): Set reg[i]← ρ.

• USK(i): Return (gsk[i]′, usk[i]).
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• CrptU(i, upk): If i ∈ HU ∪ CU, then return ⊥. Set
CU ← CU ∪ {i}, upk[i] ← upk, deci ← cont, and
S ti

iss ← (gpk′, ik, i, upk[i]).

• Sig(i,m): If i � HU, then return ⊥. If gsk[i]′ =
⊥, then return ⊥. Choose r′1, . . . , r

′
n from Dom of

PRFs and r̃1, . . . , r̃ j−1 from Rng of PRFs, pose r′j to the
PRF oracle (i.e., F j or RF), and obtain r j. Generate
σ ← GSig(gpk, gsk[ib],m; (r̃1, . . . , r̃ j−1, r j, F j+1(r′j+1,
k j+1), . . . , Fn(r′n, kn))). Set σset ← σset ∪ (i,m, σ, (r′1,
. . . , r′n)). Return σ.

• Chb(i0, i1,m): If i0 � HU or i1 � HU, then return
⊥. If gsk[i0]′ = ⊥ or gsk[i1]′ = ⊥, then return ⊥.
Choose r′1, . . . , r

′
n from Dom of PRFs and r̃1, . . . , r̃ j−1

from Rng of PRFs, pose r′j to the PRF oracle (i.e., F j or
RF), and obtain r j. Generate σ ← GSig(gpk, gsk[ib],
m; (r̃1, . . . , r̃ j−1, r j, F j+1(r′j+1, k j+1), . . . , Fn(r′n, kn))). Set
Gset ← Gset ∪ (m, σ) and σset ← σset ∪
(ib,m, σ, (r′1, . . . , r

′
n)). Return σ.

• Rev(m, σ): If (i,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. If A outputs b′ = b, then D outputs 1. Otherwise,
D outputs 0.

Analysis. If A can check if randomness used in Chb or-
acle is outputs of PRFs, then A can distinguish the simu-
lation from the real experiment. However, since salts of i0
and i1 are stored in the SC, A cannot know salts even if
USK(i0) and USK(i1) are posed. For A, the simulation by
D is same as the experiment H j−1 if the PRF oracle is the
PRF F j. Otherwise, the simulation by D is same as the ex-
periment H j. Thus, if the advantage ofD is negligible, then
|Adv(A,H j) − Adv(A,H j−1)| is negligible.

Bounding Adv(A,Hn): In Hn, all computations of GSig′ in
Chb oracle use random (r̃1 . . . , r̃n) instead of (F1(r′1, k1), . . . ,
Fn(r′n, kn)). Thus, outputs of Rev oracle (r′1, . . . , r

′
n) are in-

dependent from σ.
We construct an adversary B for GS by assuming an

adversaryA for Hn. B performs as follows:

Setup. Receive (gpk, ik) as the challenge, choose PRFs
(F1, . . . , Fn), and set gpk′ = (gpk, F1, . . . , Fn) and σset ←
∅. Give gpk′ and ik toA as input.

Simulation.

• Op(m, σ): Pose (m, σ) to Op, and return the output of
Op.

• SndToU(i,Min): Pose (i,Min) to SndToU, and return
the output of SndToU.

• WReg(i, ρ): Pose (i, ρ) to WReg.

• USK(i): Pose i to USK, obtain (upk[i], usk[i]), choose
salts (k1, . . . , kn), and set usk[i]′ = (usk[i], k1, . . . , kn).
Return (upk[i], usk[i]′).

• CrptU(i, upk): Pose (i, upk) to CrptU, and return the
output of CrptU.

• Sig(i,m): Pose (i,m) to Sig, obtain σ, and choose
(r′1, . . . , r

′
n). Set σset ← σset ∪ (i,m, σ, (r′1, . . . , r

′
n)).

Return σ.

• Chb(i0, i1,m): Pose (i0, i1,m) to Chb, obtain σ,
and choose (r′1, . . . , r

′
n). Set σset ← σset ∪

(∗,m, σ, (r′1, . . . , r′n)). Return σ.

• Rev(m, σ): If (∗,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. IfA outputs b′, then B outputs b′.

Analysis. For A, the simulation by B is same as the ex-
periment Hn. Thus, if the advantage of B is negligible, then
Adv(A,Hn) is negligible. �

A.2 Proof of Theorem 5.3

The proof is trivial. In Exptrace
πFAnon(GS),A(κ), A does not have

Sig and Chb oracles. Thus, there is no record in σset, and
Rev oracle always returns ⊥. It means that Rev oracle is not
any help of A. Therefore, even if GS is traceable without
Rev oracle, πFAnon(GS) is also traceable. �

A.3 Proof of Theorem 5.4

We change the interface of oracle queries in the experi-
ment of Expn f

πFAnon(GS),A(κ). These instances are gradually
changed over hybrid experiments, depending on specific
sub-cases. In the last hybrid experiment, non-frameability
of πFAnon(GS) is guaranteed from non-frameability of GS
without Rev oracle. We denote these hybrid experiments
by H0, . . . ,Hn, and the advantage of the adversary A when
participating in experiment Hi by Adv(A,Hi).

Hybrid experiment H0: This experiment denotes
Expn f

πFAnon(GS),A(κ), and in this experiment the environment
forA is as defined in the protocol. Thus, Adv(A,H0) is the
same as Advn f

πFAnon(GS),A(κ).

Hybrid experiment H j for 1 ≤ j ≤ n: The computation of
GSig′(gpk, gsk[i]′,m; (r′1, . . . , r

′
n)) in Sig oracle is changed.

Instead of computing r j = F j(r′j, k j), it is changed as obtain-
ing r̃ j from a random function RF.

We construct a distinguisher D to distinguish r̃ j from
r j = F j(r′j, k j) by assuming an adversary A distinguish H j

from H j−1. D performs as follows:

Setup. Generate (gpk′, ik, ok) ← GKg′(1κ), and set CU ←
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∅ and HU← ∅, Gset← ∅ and σset← ∅. Give (gpk′, ik, ok)
toA as input.

Simulation.

• SndToU(i,Min): If i � HU then HU← HU ∪ {i}. Gen-
erate (upk[i], usk[i]′)← UKg′(1κ), and set gsk[i]′ ← ⊥
and S ti

jn ← (gpk′, upk[i], usk[i]′). Generate (S ti
jn,

Mout, deci) ← Join′(S ti
jn,Min). If deci = accept, then

gsk[i]′ ← S ti
jn. Otherwise, return (Mout, deci).

• WReg(i, ρ): Set reg[i]← ρ.

• USK(i): Return (gsk[i]′, usk[i]).

• CrptU(i, upk): If i ∈ HU ∪ CU, then return ⊥. Set
CU ← CU ∪ {i}, upk[i] ← upk, deci ← cont, and
S ti

iss ← (gpk′, ik, i, upk[i]).

• Sig(i,m): If i � HU, then return ⊥. If gsk[i]′ =
⊥, then return ⊥. Choose r′1, . . . , r

′
n and r̃1, . . . , r̃ j−1,

pose r′j to the PRF oracle (i.e., F j or RF), obtain r j,
and generate σ ← GSig(gpk, gsk[i],m; (r̃1, . . . , r̃ j−1,
r j, F j+1(r′j+1, k j+1), . . . , Fn(r′n, kn))). Setσset← σset∪
(i,m, σ, (r′1, . . . , r

′
n)). Return σ.

• Rev(m, σ): If (i,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. If A outputs b′ = b, then D outputs 1. Otherwise,
D outputs 0.

Analysis. IfA can check if randomness used in Sig oracle is
outputs of PRFs, thenA can distinguish the simulation from
the real experiment. However, since salts of users are stored
in their SCs, A cannot know salts even if USK(i) is posed.
For A, the simulation by D is same as the experiment H j−1

if the PRF oracle is the PRF F j. Otherwise, the simulation
by D is same as the experiment H j. Thus, if the advantage
ofD is negligible, then |Adv(A,H j)−Adv(A,H j−1)| is neg-
ligible.

Bounding Adv(A,Hn): In Hn, all computations of GSig′ in
Sig oracle use random (r̃1 . . . , r̃n) instead of (F1(r′1, k1), . . . ,
Fn(r′n, kn)). Thus, outputs of Rev oracle (r′1, . . . , r

′
n) are in-

dependent from σ.
We construct an adversary B for GS by assuming an

adversaryA for Hn. B performs as follows:

Setup. Receive (gpk, ik, ok) as the challenge, choose PRFs
(F1, . . . , Fn), and set gpk′ = (gpk, F1, . . . , Fn) and σset ←
∅. Give (gpk′, ik, ok) toA as input.

Simulation.

• SndToU(i,Min): Pose (i,Min) to SndToU, and return
the output of SndToU.

• WReg(i, ρ): Pose (i, ρ) to WReg.

• USK(i): Pose i to USK, obtain (upk[i], usk[i]), choose
salts (k1, . . . , kn), and set usk[i]′ = (usk[i], k1, . . . , kn).
Return (upk[i], usk[i]′).

• CrptU(i, upk): Pose (i, upk) to CrptU, and return the
output of CrptU.

• Sig(i,m): Pose (i,m) to Sig, obtain σ, and choose
(r′1, . . . , r

′
n). Set σset ← σset ∪ (i,m, σ, (r′1, . . . , r

′
n)).

Return σ.

• Rev(m, σ): If (i,m, σ, r) � σset, then return ⊥. Oth-
erwise, return r.

Output. IfA outputs b′, then B outputs b′.

Analysis. For A, the simulation by B is same as the ex-
periment Hn. Thus, if the advantage of B is negligible, then
Adv(A,Hn) is negligible. �
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