
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017
1603

PAPER Special Section on Multiple-Valued Logic and VLSI Computing

Automatic Generation System for Multiple-Valued Galois-Field
Parallel Multipliers∗

Rei UENO†a), Student Member, Naofumi HOMMA†, and Takafumi AOKI†, Members

SUMMARY This paper presents a system for the automatic generation
of Galois-field (GF) arithmetic circuits, named the GF Arithmetic Module
Generator (GF-AMG). The proposed system employs a graph-based cir-
cuit description called the GF Arithmetic Circuit Graph (GF-ACG). First,
we present an extension of the GF-ACG to handle GF(pm) (p ≥ 3) arith-
metic circuits, which can be efficiently implemented by multiple-valued
logic circuits in addition to the conventional binary circuits. We then show
the validity of the generation system through the experimental design of
GF(pm) multipliers for different p-values. In addition, we evaluate the per-
formance of three types of GF(2m) multipliers and typical GF(pm) mul-
tipliers (p ≥ 3) empirically generated by our system. We confirm from
the results that the proposed system can generate a variety of GF parallel
multipliers, including practical multipliers over GF(pm) having extension
degrees greater than 128.
key words: GF arithmetic circuits, formal design, parallel multipliers,
automatic generation, multiple-valued logic

1. Introduction

Applications of error correction code (ECC) and cryptogra-
phy based on arithmetic operations over Galois fields (GFs)
are rapidly proliferating as the importance of reliable and
secure communications increases [2] Recently, these oper-
ations are being increasingly implemented on hardware in
embedded devices such as cell phones and radio-frequency
identification (RFID) chips, and the performance of the
arithmetic circuits have a significant impact on the effec-
tiveness and security of the entire system. In addition, some
applications with elliptic curve and pairing-based cryptogra-
phies employ GF arithmetic circuits of characteristic greater
than 2 (i.e., GF(pm) where p and m are prime and natu-
ral numbers, respectively), which are inherently represented
in a non-binary manner. For example, some pairing-based
cryptographies use GF with p = 3 [2]–[6], and a hyperel-
liptic curve over GF with p = 5 or 7 is useful for efficient
implementation of pairing-based cryptography [7], [8].

Most such arithmetic circuits have been designed at
the lowest logic level by designers whose training in GF
arithmetic is specialized for a particular type of applica-
tion. Conventional hardware description languages (HDLs)

Manuscript received October 13, 2016.
Manuscript revised February 20, 2017.
Manuscript publicized May 19, 2017.
†The authors are with Tohoku University, Sendai-shi, 980–

8579 Japan.
∗A preliminary version of this paper appeared in the IEEE

45th International Symposium on Multiple-Valued Logic (ISMVL
2015) [1].

a) E-mail: ueno@aoki.ecei.tohoku.ac.jp
DOI: 10.1587/transinf.2016LOP0010

do not currently have high-level arithmetic data structures,
arithmetic operations, or formulae over Galois fields. More-
over, conventional high-level synthesis techniques have a
difficulty in describing GF arithmetic circuits because the
mapping of arithmetic operations over GFs varies with the
basis and the modular polynomial even if they are rep-
resented by the same operator. Due to the large variety
of GF multipliers, designers would be forced to describe
the behavior of a GF multiplier in lowest-level expressions
even with high-level synthesis tools. Furthermore, complete
functional verification of GF arithmetic circuits designed by
hand is much harder than that for integer arithmetic circuits
because many GF operations in ECCs and cryptography
are performed with operands having more than 64 bits for
achieving enough error correction capability and resistance
to cryptoanalysis attacks, respectively. Even for statistical
verification by Monte Carlo simulation, the generation of
test patterns for GF operations is more intractable than for
integer operations.

To address the above problems, we present a system for
the automatic generation of GF arithmetic circuits, named
the GF Arithmetic Module Generator (GF-AMG). Given a
circuit specification, the system generates the corresponding
HDL description whose function is completely verified in a
formal manner. The system we have developed focuses on
the generation of GF(2m) and GF(3m) parallel multipliers
for various modular polynomials. The basic idea of GF-
AMG is to use a graph-based representation of GF arith-
metic circuits, called the GF Arithmetic Circuit Graph (GF-
ACG) [9], as the internal data structure. We can represent
an arbitrary GF arithmetic circuit by a GF-ACG and verify
it formally even if the operand bit length (i.e., the extension
degree) is greater than 128. The verified GF-ACG is then
mapped into the corresponding HDL description, which can
be implemented in either multiple-valued logic or conven-
tional binary logic.

In this paper, we first present an extension of the GF-
ACG for describing arithmetic circuits over GF(pm) in or-
der to design hardware for elliptic curve and pairing-based
cryptographies including the above ones, and mapping them
into multiple-valued logic circuits in addition to binary logic
circuits. The basic idea of the extension is to add an encod-
ing function from a p-valued variable to several R-valued
variables (p > R) as new nodes at the lowest level, where
R is determined by an implementation logic. The encoding
function is given by algebraic equations. We then present
our GF-AMG framework based on the extended GF-ACG

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

1604
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

and describe our experimental evaluation of the system.
While a preliminary evaluation was performed in the

previous version [1], in this paper, we show an extension and
further evaluation of the proposed system. First, we extend
our system to support more variety of GF(pm) multipliers
while the previous version supported only p = 2 and 3. We
then demonstrate the validity of GF-AMG using the exper-
imental design and verification of GF(pm) (p = 2, 3, 5, 7,
and 11) parallel multipliers. The results show that the pro-
posed system can generate a verified GF(11256) multiplier
in about five minutes. In addition, we show the generation
results of typical GF(2m) parallel multipliers based on three
arithmetic algorithms. We also show the generation results
of typical multipliers over GF(pm) (p ≥ 3) implemented in
binary logic.

2. Galois-Field Arithmetic Circuit Graph

2.1 Definition of Galois-Field Arithmetic Circuit Graph

Figure 1 shows an overview of the GF-ACG. A GF-ACG G
is defined as (N, E), where N is a set of nodes and E is a set
of directed edges. A node represents an arithmetic circuit
by its functional assertion and internal structure. A directed
edge represents the flow of data between nodes and defines
the data dependency. We assume that every node has at least
one edge connection.

A node n ∈ N is defined by (F,G′), where F is the
functional assertion given as a set of equations over GFs
(the GF equations) and G′ is the internal structure given as
a smaller GF-ACG. A node at the lowest level of abstrac-
tion does not have an internal structure and is thus described
as (F, nil). A functional assertion is represented as a re-
lation El = Er, where El and Er are the output and input
expressions, respectively, and each expression is given by
variables, constants, or combinations of two or more ex-
pressions connected by any of the arithmetic operators +, −,
or ×.

A directed edge e ∈ E is defined as (src, dest, x), where
src and dest represent the start and end nodes, respectively,
and x represents the variable indicating an element of GF.
If either src or dest is nil, the directed edge represents an
external input or output for the given GF-ACG. Each vari-
able x is associated with a Galois field. A Galois field GF
is defined as (B,C, IP), where B is the basis, C is the co-
efficient vector, and IP is the irreducible polynomial. More
precisely, B, C, and IP are given as

B = (γm−1, γm−2, . . . , γi, . . . , γ0), (1)

Fig. 1 Overview of Galois-field arithmetic circuit graph.

C = (Cm−1,Cm−2, . . . ,Ci, . . . ,C0), (2)

IP = βm + cm−1β
m−1 + · · · + ciβ

i · · · + c0β
0, (3)

where β is the indeterminate element (i.e., a root of an irre-
ducible polynomial), m is the degree of field extension, Ci is
the coefficient set of degree i (i ∈ Z, 0 ≤ i ≤ m − 1), and ci

is the i-th element of the coefficient set Ci. γi = β
i if GF is

represented by a polynomial basis (PB), and γi = α
pi

if GF
is represented by a normal basis (NB), where α = βn and p
is the characteristic. IP = nil if GF is a prime field. Thus,
the above description can handle both prime and extension
fields. Let h (0 ≤ h ≤ m − 1) and l (0 ≤ l ≤ h) be the most
and least significant degrees, respectively. A variable is then
represented as x = (GF, (h, l)), where the ordered pair (h, l)
is called the degree range. Using the above notation, we can
handle any specific variable xi of degree i.

A variable can be decomposed to an expression with
sub-variables at a lower level of abstraction. Let x be a
variable and xi (l ≤ i ≤ h) be a lower-level variable. We
have two types of decomposition nodes, whose functions
are given as

x(e)
h + x(e)

h−1 + · · · + x(e)
l = x, (4)

x(p)
h γh + x(p)

h−1γh−1 + · · · + x(p)
l γl = x. (5)

Equation (4) indicates that x ∈ GF(pm) is divided into a
number of variables of degree i [i.e., x(e)

i ∈ GF(pm), l ≤ i ≤
h]. On the other hand, Eq. (5) indicates that x ∈ GF(pm) is
divided into a number of variables over the prime field [i.e.,
x(p)

i ∈ GF(p), l ≤ i ≤ h]. We also have two types of com-
position nodes, given as the inverse relations of the above
inputs and outputs. Using the decomposition and composi-
tion nodes, we can change the level of abstraction of edge
representation. Note that these nodes are implemented by
wiring and have no internal structures.

The above GF-ACG can also be used to represent any
binary logic circuit. A logic variable is defined as a variable
over the GF whose coefficient set is limited to the zero ele-
ment “0” and the unit element “1”. Any binary logic oper-
ation can be represented with pseudo-logic equations, such
as and(a, b) = ab. Note that the idempotent law is defined
as one of the functional assertions in the corresponding node
(i.e., a = a2 and b = b2).

Thus, the original GF-ACG can represent any GF(2m)
arithmetic circuit in binary logic. The arithmetic circuits
given by GF-ACGs are verified by a formal verification
method using a Gröbner basis and a polynomial reduction
technique [9].

2.2 Extension to GF(pm) Arithmetic Circuit

An extension of the GF-ACG is presented for describing a
GF(pm) arithmetic circuit, enabling it to be implemented in
multiple-valued logic as well as in binary logic. In the above
GF-ACG, a mapping from a GF variable to a logic variable
at the lowest level description is implicitly given [i.e., 0 and
1 in GF(2) are mapped into 0 and 1 in binary logic, respec-
tively] because it focuses only on GF(2m) arithmetic circuits

UENO et al.: AUTOMATIC GENERATION SYSTEM FOR MULTIPLE-VALUED GALOIS-FIELD PARALLEL MULTIPLIERS
1605

Table 1 Mapping of GF values onto logic values.

(a) An example of GF(2)
GF(2) value Logic value

0 0
1 1

(b) An example of GF(3)
GF(3) value Logic value

0 00
1 01
2 10

Fig. 2 GF-ACGs for GF(3) multiplier.

and their binary implementations. Therefore, such mapping
is done without the need for any additional procedure. In
order to describe and verify nodes with GF(p) (p ≥ 2) vari-
ables and their R-valued (R ≥ 2) implementation, however,
we need to give an explicit mapping at the lowest level of ab-
straction. Our plan is to provide a mapping function, called
an encoding function, for transforming GF(p) variables into
R-valued logic variables in the form of a functional assertion
(i.e., a GF equation) for the lowest-level nodes.

We first describe an encoding function for transforming
GF(p) variables into binary logic variables. Each GF vari-
able in Ci (a coefficient set of degree i) is encoded by at least
�log2 |Ci|	 logic variables. Table 1 gives examples of such
mappings, showing encodings of (a) GF(2) ∈ {0, 1} and (b)
GF(3) ∈ {0, 1, 2} into binary logic variables. Note that for
cases having characteristic p > 2, any encoding is possible,
including non-minimum-length encoding. Such encoding
can be represented by a specific equation, referred to as an
encoding equation. Let x and Lj (0 ≤ j ≤ k − 1) be a GF
variable over GF(p) and a logic variable used for encoding,
respectively. Let α = (α0, α1, . . . , αk−1) ∈ {0, 1}k be a k-bit
logic value. The general form of the encoding equation is
then given as

x =
∑
α∈{0,1}k

(
f (α) × Πk−1

j=0L
α j

j

)
, (6)

where f (α) is the GF value corresponding to α, and L
α j

j is
the j-th literal, defined as

L
α j

j =

{
1 − Lj (α j = 0)
Lj (α j = 1)

. (7)

For example, the encoding equations for Table 1 (a) and (b)
are given as x = L0 and x = (1 − L1)L0 + 2L1(1 − L0),
respectively.

Figure 2 shows GF-ACGs for a 2-input multiplier over
GF(3) implemented in binary logic [10], where the node in
Fig. 2 (a) corresponds to the shaded part in Fig. 2 (b). This

Table 2 Nodes, Galois fields and variables in Fig. 2 (b).

Nodes
n0 = ({z = x × y},G1)

n1 = ({(1 − xL1)xL0 + 2xL1(1 − xL0) = x, xL0 xL1 = 0}, nil)
n2 = ({(1 − yL1)yL0 + 2yL1(1 − yL0) = y, yL0yL1 = 0}, nil)
n3 = ({w0 = AND(xL1, yL1)}, nil)
n4 = ({w1 = AND(xL0, yL0)}, nil)
n5 = ({w2 = AND(xL0, yL1)}, nil)
n6 = ({w3 = AND(xL1, yL0)}, nil)
n7 = ({zL0 = OR(w0, w1)}, nil)
n8 = ({zL1 = OR(w2, w3)}, nil)
n9 = ({z = (1 − zL1)zL0 + 2zL1(1 − zL0), zL1zL0 = 0}, nil)

Galois field

GF(3) = ((β0), ({0, 1, 2}), nil)
Logic = ((β0), ({0, 1}), nil)

Galois field variables
x = (GF(3), (0, 0)) xL0, xL1 = (Logic, (0, 0))
y = (GF(3), (0, 0)) yL0, yL1 = (Logic, (0, 0))
z = (GF(3), (0, 0)) zL0, zL1 = (Logic, (0, 0))
wi = (Logic, (0, 0)), (0 ≤ i ≤ 3)

indicates that node n0 has an internal structure consisting
of lower-level nodes in the corresponding shaded part. Ta-
ble 2 shows the nodes, GFs and variables used in Fig. 2. The
nodes of n1, n2, and n9 in Fig. 2 (b) perform the mapping
between GF variables and logic variables. More precisely,
the functions of n1 and n2 are to translate GF variables into
logic variables, while the function of n9 is to translate logic
variables into GF variables. Note that the functional asser-
tions of such nodes require equation(s) that represent un-
used inputs. In this example, one such equation is given as
xL0xL1 = 0 because (xL0, xL1) = (1, 1) is not used. Thus, any
GF(pm) arithmetic circuit will be implemented by binary
logic circuits in a uniform manner.

Next, we then describe an extension of the above en-
coding equation for the case of R-valued implementation.
Table 3 shows examples of the mapping of (a) GF(3) ∈
{0, 1, 2} and (b) GF(5) ∈ {0, 1, 2, 3, 4} into ternary logic. Let
x and Lj (0 ≤ j ≤ k−1) be a GF variable over GF(p) and an
R-valued logic variable used for encoding, respectively. Let
α = (α0, α1, . . . , αk−1) ∈ {0, 1, . . . ,R−1}k be a k-bit R-valued
logic value; the encoding equation is then given as

x =
∑

α∈{0,1,...,R−1}k

(
f (α) × Πk−1

j=0L
α j

j

)
, (8)

and L
α j

j is represented by

L
α j

j =
∏

l∈{0,1,...,R−1}
l�α j

L j − l

α j − l
, (9)

where Eqs. (8) and (9) are based on arithmetic operations
over GF(p).

For example, the encoding equations for Table 3 (a) and
(b) are given by x = L0 and x = (2L1+3L1+1)L0+2L2

1+L1,
respectively.

1606
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 3 Mapping of GF values onto 3-valued logic values.

(a) An example of GF(3)

GF(3) value
3-valued

logic value
0 0
1 1
2 2

(b) An example of GF(5)

GF(5) value
3-valued

logic value
0 00
1 01
2 02
3 10
4 11

3. Galois-Field Arithmetic Module Generator

This section presents an automatic generation system, the
Galois-Field Arithmetic Module Generator (GF-AMG), for
producing GF parallel multipliers. The system employs the
extended GF-ACG for producing multiplier modules whose
functions are completely verified at the algorithmic level.

3.1 System Framework

Figure 3 is a block diagram of GF-AMG. It consists of (i) the
GF-ACG Code Synthesizer, (ii) the GF-ACG Verifier, and
(iii) the ACG-to-HDL Translator. The GF-ACG Code Syn-
thesizer generates GF-ACG code according to the user’s de-
sign specification, which includes characteristic, multipli-
cation algorithm, modular polynomial, and logic type. Ta-
ble 4 shows a list of characteristics, multiplication algo-
rithms, modular polynomial degrees, and logic types that
can be generated by the GF-AMG system. The GF-ACG
Verifier proceeds to formally verify the generated GF-ACG
code by a method using a Gröbner basis and a polyno-
mial reduction technique, following the procedure given in
[9]. The ACG-to-HDL Translator then translates the verified
GF-ACG code into the equivalent Verilog-HDL code, using
the algorithm shown in Algorithm 1. Given a GF-ACG G,
we extract a set of relations of internal edges at the lowest
level of abstraction from G recursively. The relations of in-
ternal edges are then translated into the corresponding HDL
format by one-to-one mapping.

3.2 Generation of GF(pm) Parallel Multipliers

This section focuses on the design and generation of
GF(pm) parallel multipliers in GF-AMG. For the conven-
tional design of GF(2m) parallel multipliers also generated
by GF-AMG, see [11], [12], and [13]. Let x and y ∈ GF(pm)
be the inputs and let z ∈ GF(pm) be the output. The multi-
plication over GF(pm) is first divided into the following two
functions:

m−1∑
i=0

wi = x × y, (10)

z =
m−1∑
i=0

wi, (11)

where wi ∈ GF(pm) (0 ≤ i ≤ n − 1) is the i-th partial prod-
uct. We then consider the internal structure of the nodes

Fig. 3 Block diagram of GF-AMG.

Table 4 Specification supported by GF-AMG.

Characteristic p Algorithm Degree for IP Logic type
Full-tree 2-256

2 Mastrovito 2-256 binary
Massey-Omura 2-64

3, 5, 7, 11 Full-tree 2-256
binary

p-valued logic

Algorithm 1 Translate GF-ACG to HDL
Input: GF-ACG G = (N, E)
Output: HDL Description D
1: function Mapping(G)
2: D′ := ∅; str S ;
3: for each (F,G′) ∈ N do
4: if G′ � nil then
5: D′ := D′∪Mapping(G′);
6: end if
7: end for
8: S := GFACGtoHDLmodule(G);
9: D := D′ ∪ {S };

10: return D
11: end function

corresponding to Eqs. (10) and (11) to obtain its hierarchi-
cal GF-ACG description. Each wi is given by

wi = xi × y, 0 ≤ i ≤ m − 1 (12)

where xi is the i-th element obtained by the decomposition
of x =

∑m−1
i=0 xi and y ∈ GF(pm). This means that the internal

structure of the node performing Eq. (10) is composed of
m nodes performing Eq. (12). The nodes corresponding to
Eq. (11) are composed of m−1 2-input 1-output adders over
GF(pm), which are given by m 2-input 1-output adders over
GF(p).

For example, Fig. 4 shows the GF-ACGs for the
GF(34) parallel multiplier at the top four levels of abstrac-
tion. Table 5 shows the corresponding nodes, GFs and GF
variables. Note that the decomposition and composition
nodes are not shown in Table 5. The nodes in Fig. 4 (a), (b),
and (c) correspond to the shaded parts in Fig. 4 (b), (c), and
(d), respectively. The 2nd-level nodes “Partial Product Gen-
erator” (PPG) and GF “Accumulator” (GFA) in Fig. 4 (b)
have functional assertions corresponding to Eqs. (10) and
(11), respectively. The 3rd-level nodes “PPGi” in Fig. 4 (c)

UENO et al.: AUTOMATIC GENERATION SYSTEM FOR MULTIPLE-VALUED GALOIS-FIELD PARALLEL MULTIPLIERS
1607

Fig. 4 GF-ACGs for GF(34) parallel multipliers of (a) the top-level to
(d) the 4th-level.

have the functional assertion corresponding to Eq. (12). The
nodes “GFAi” in Fig. 4 (c) indicate 2-input 1-output adders
over GF(34) to construct “Accumulator”. In addition, the
nodes in Fig. 4 (d) indicate GF(3) arithmetic circuits, and
these are described as given in Fig. 2, which showed the bi-
nary implementation case. Thus, we have the GF-ACGs for
the GF(pm) parallel multiplier represented in a hierarchical
manner.

Algorithm 2 displays an algorithm for synthesizing
GF(pm) multipliers. Given a design specification (i.e., an
irreducible polynomial and an implementation logic), the
algorithm generates a GF-ACG. The function “Degree” in
Line 2 obtains the degree of the irreducible polynomial. Ac-
cording to the value obtained, its internal structure is gen-
erated in a recursive manner. The function “GetEquation”
in Line 4 obtains an equation of the “PPGi” expressions
that are represented in Eq. (12). The functions “CountSub-
Operator” and “CountAddOperator” count the numbers of
“−” and “+” operators in the equation, respectively. Us-
ing the above numbers and the degree, we generate 4th-
level GF-ACGs for GF(p) arithmetic circuits. The functions
“GenerateGFpMultiplier”, “GenerateGFpAdditiveInv”, and
“GenerateGFpAdder” return GF-ACGs for GF(p) multipli-
ers, additive inverters, and adders, respectively. Their in-
ternal structures are determined by the given logic L. If L is
binary logic, the internal structure is given by the netlist cor-
responding to GF(p) multiplier, additive inverter, and adder
which are designed in a manner similar to Fig. 2. If L is not
binary logic, the internal structure is given as nil in order
for designers to use custom logic cells designed by them-
selves. The function “GeneratePPGi” in Line 16 generates
“PPGi” expressions (0 ≤ i ≤ d − 1) from the 4th-level GF-
ACGs, where the GF(p) adders are placed as a tree. The
function “GeneratePPG” in Line 18 generates a GF-ACG
for “Partial Product Generator” from the 3rd-level GF-ACGs

Table 5 Nodes, Galois fields and variables in Fig. 4.

Nodes
[Multiplier] n0 = ({z = x × y},G1)

[Partial Product Generator]
n1 = ({w0 + w1 + w2 + w3 = x × y},G2)

[PPG0] n3 = ({w0 = x × y0},G4)
n10 = ({w0,0 = x0 × y0,0},G11)
n11 = ({w0,1 = x1 × y0,0},G12)
n12 = ({w0,2 = x2 × y0,0},G13)
n13 = ({w0,3 = x3 × y0,0},G14)

[PPG1] n4 = ({w1 = x × y1},G5)
n14 = ({w6 = x0 × y1,1},G15)
n15 = ({w1,2 = x1 × y1,1},G16)
n16 = ({w1,3 = x2 × y1,1},G17)
n17 = ({w1,0 = x3 × y1,1},G18)
n18 = ({w7 = −w1,0},G19)
n19 = ({w1,1 = w6 + w7},G20)

[PPG2] n5 = ({w2 = x × y2},G6)
n20 = ({w8 = x0 × y2,2},G21)
n21 = ({w2,3 = x1 × y2,2},G22)
n22 = ({w2,0 = x2 × y2,2},G23)
n23 = ({w9 = x3 × y2,2},G24)
n24 = ({w10 = −w2,0},G25)
n25 = ({w11 = −w9},G26)
n26 = ({w2,1 = w10 + w9},G27)
n27 = ({w2,2 = w8 + w11},G28)

[PPG3] n6 = ({w3 = x × y3},G7)
n28 = ({w12 = x0 × y3,3},G29)
n29 = ({w3,0 = x1 × y3,3},G30)
n30 = ({w13 = x2 × y3,3},G31)
n31 = ({w14 = x3 × y3,3},G32)
n32 = ({w15 = −w3,0},G33)
n33 = ({w16 = −w13},G34)
n34 = ({w17 = −w14},G35)
n35 = ({w3,1 = w13 + w15},G36)
n36 = ({w3,2 = w14 + w16},G37)
n37 = ({w3,3 = w12 + w17},G38)

[Accumulator]
n2 = ({z = w0 + w1 + w2 + w3},G3)

[GFA0] n7 = ({w4 = w0 + w1},G8)
n38+i = ({w4,i = w0,i + w1,i},G39+i), (0 ≤ i ≤ 3)

[GFA1] n8 = ({w5 = w2 + w3},G9)
n42+i = ({w5,i = w2,i + w3,i},G43+i), (0 ≤ i ≤ 3)

[GFA2] n9 = ({z = w4 + w5},G10)
n46+i = ({zi = w4,i + w5,i},G47+i), (0 ≤ i ≤ 3)

Galois field

GF(34) = ((β3, β2, β1, β0),
({0, 1, 2}, {0, 1, 2}, {0, 1, 2}, {0, 1, 2}), β4 + β + 2)

GF(3) = ((β0), ({0, 1, 2}), nil)

Galois field variables

x, y, z = (GF(34), (3, 0))
xi, yi, zi = (GF(3), (0, 0)), (0 ≤ i ≤ 3)
yi,i = (GF(3), (0, 0)), (0 ≤ i ≤ 3)
w j = (GF(34), (3, 0)), (0 ≤ j ≤ 5)
w j,k = (GF(3), (0, 0)), (0 ≤ j ≤ 5, 0 ≤ k ≤ 3)

of “PPGi”. Similarly, “Accumulator” is generated from the
3rd-level GF-ACGs of “GFAi” consisting of d GF-ACGs of
GF(p) adders. In “Accumulator”, d − 1 “GFAi” expressions
are placed as a tree. Finally, the function “GenerateMulti-
plier” in Line 26 generates a GF-ACG for the GF(pm) mul-
tiplier from the 2nd-level GF-ACG.

The HDL code generated for GF(pm) multipliers may
be applied in not only a binary implementation but also an

1608
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

Table 6 Generation times of multipliers over GF(pm) (sec).

Extended degree m 8 16 32
Characteristic p 2 3 5 7 11 2 3 5 7 11 2 3 5 7 11

GF-ACG synthesis 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.12 0.14 0.14 0.15 0.15
Formal verification 2.59 2.78 2.77 2.78 2.77 4.06 4.26 4.24 4.25 4.24 7.40 7.70 7.62 7.70 7.66

ACG-to-HDL 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.10 0.11 0.11 0.11 0.11

Total 2.66 2.86 2.84 2.86 2.85 4.17 4.37 4.35 4.36 4.36 7.62 7.95 7.87 7.96 7.92

Extended degree m 64 128 256
Characteristic p 2 3 5 7 11 2 3 5 7 11 2 3 5 7 11

GF-ACG synthesis 0.29 0.35 0.44 0.37 0.39 0.99 1.23 1.30 1.33 1.39 3.90 4.99 5.18 5.32 5.58
Formal verification 16.39 17.26 18.37 17.25 17.26 48.25 54.14 54.09 54.08 54.22 235.62 289.79 293.42 292.79 292.34

ACG-to-HDL 0.58 0.66 0.81 0.66 0.67 3.63 4.63 4.33 4.56 4.40 27.57 33.05 32.88 33.34 33.33

Total 17.26 18.27 19.62 18.28 18.32 52.87 60.00 59.72 59.97 60.01 267.09 327.83 331.48 331.45 331.24

Algorithm 2 Synthesize GF-ACG
Input: Irreducible Polynomial IP, Logic L
Output: GF-ACG G = (N, E)
1: function FullTree(IP, Logic)
2: d := Degree(IP); str eq;
3: for i = 0 to d − 1 do
4: eq := GetEquation(i, IP);
5: l := CountSubOperator(eq);
6: m := CountAddOperator(eq);
7: for j = 0 to d − 1 do
8: Gd+ j := GenerateGFpMultiplier(L); � 4th-level
9: end for

10: for j = 0 to l − 1 do
11: G2d+ j := GenerateGFpAdditiveInv(L); � 4th-level
12: end for
13: for j = 0 to m − 1 do
14: G2d+l+ j := GenerateGFpAdder(L); � 4th-level
15: end for
16: Gi := GeneratePPGi(eq,Gd , . . . ,G2d+l+m−1); � 3rd-level
17: end for
18: G

′
:= GeneratePPG(G0, . . . ,Gd−1); � 2nd-level

19: for i = 0 to d − 2 do
20: for j = 0 to d − 1 do
21: Gd+ j−1 := GenerateGFpAdder(L); � 4th-level
22: end for
23: Gi = GenerateGFAi(Gd−1, . . . ,G2d−2); � 3rd-level
24: end for
25: G

′′
= GenerateACC(G0, . . . ,Gd−2); � 2nd-level

26: G = GenerateMultiplier(G
′
,G
′′

); � top-level
27: return G
28: end function

L-valued implementation. [GF(2m) multipliers, by contrast,
are implemented only in binary logic.] For a binary im-
plementation, we can apply the HDL code to the standard
back-end design flow including logic synthesis and place-
ment and routing (P&R) with the standard cell library. For
an L-valued implementation, we would implement the HDL
code by a technology mapping with a custom-made library
in an L-valued logic. Thus, we see that GF-AMG gener-
ates verified HDL codes for both multiple-valued logic and
binary logic.

As an example, Fig. 5 shows a schematic of a GF(38)
multiplier generated by GF-AMG, where the lowest level
component indicates an arithmetic circuit over GF(3). We
can implement this multiplier in ternary logic by applying a
ternary logic circuit to the component.

Fig. 5 Schematic of GF(38) multiplier obtained from GF-AMG.

3.3 Experimental Generation

The performance of our system was evaluated through the
experimental generation of GF(pm) parallel multipliers. We
first generated a set of GF(pm) parallel multipliers of typical
degrees. The generation was conducted with an open-source
computer algebra software Risa/Asir [14] under Linux on a
PC (an Intel Xeon E5450 with a 3.00-GHz processor and 32
GB of RAM).

Table 6 shows the generation times, consisting of GF-
ACG synthesis, verification, and GF-ACG-to-HDL transla-
tion times, for each of the degrees investigated. Using our
method, we achieved complete verification even for a 1024-
bit multiplier over GF(11256). Note here that the verifica-
tion time decreases even in the case of a larger p because
the computation time of algebraic operation with the soft-
ware used in the experiment is sometimes dependent on the
machine condition such as parallel-executed processes. As a
comparison to evaluate the advantage of the verifier, we also
performed the Verilog-XL simulation using the correspond-
ing HDL descriptions. With this method, we were not able
to complete the simulation of GF(310) or larger multipliers
because the simulation time increases exponentially as the
extension degree increases. As described above, GFs with
at most characteristic seven are used for pairing-based cryp-
tography so far. Thus, the experimental result suggests that
our system is sufficient and available for such applications.

We then generated a set of GF(2m) parallel multipliers
for three types of multiplication algorithm in order to assess

UENO et al.: AUTOMATIC GENERATION SYSTEM FOR MULTIPLE-VALUED GALOIS-FIELD PARALLEL MULTIPLIERS
1609

Table 7 Performance of GF(pm) multipliers for different characteristics and degrees.

Area (KGates) Delay (ns)
Degree m 4 8 16 32 64 128 4 8 16 32 64 128

p = 3 0.6 2.3 9.7 39.3 158.1 685.8 1.48 2.36 2.81 3.25 3.68 4.13
p = 5 2.22 9.67 40.28 164.34 663.78 2,667.98 2.83 3.74 4.63 5.54 6.43 7.34
p = 7 5.26 23.02 96.71 399.90 1,572.58 N/A 5.28 6.58 9.09 9.24 11.78 N/A

p = 11 14.06 61.99 259.32 1,043.41 4,247.72 N/A 9.95 12.44 17.09 19.43 21.88 N/A

Fig. 6 Comparison of three types of GF(2m) multiplier for different
extension degrees.

the performance variation. The performance was evaluated
with the Synopsys Design Compiler and the TSMC 65-nm
cell library.

Figure 6 shows the area and delay of the three types of
GF(2m) multiplier for different value of m, where the verti-
cal axis indicates the (a) area or (b) delay, and the horizontal
axis indicates the extension degree. We can confirm here
that Mastrovito and Full-Tree have the advantage in area
and delay, respectively. Massey-Omura, which is a typical
multiplication algorithm using a normal basis (NB), did not
demonstrate any advantage in area or delay over the other
two algorithms. However, Massey-Omura is useful for more
sophisticated arithmetic NB circuits; for example, we can
design efficient exponential circuits based on an NB since
the squaring operation is performed only by wiring.

Table 7 shows the performance of GF(pm) multipliers
implemented in a binary logic, for different characteristics
and degrees. For GF(pm) multipliers with p = 5, 7, and
11, we implemented GF(p) arithmetic circuits (i.e., adder,
multiplier, and constant multipliers over GF(p)) using the
corresponding lookup-table. The Synopsys Design Com-
piler could not synthesize the GF(7128) and GF(11128) mul-
tipliers under our experimental condition due to the mem-
ory overflow. This would be because the circuit area (i.e.,

Fig. 7 GF-AMG Website: (a) request page and (b) download page.

the number of logic gates) for the multipliers are too large
(∼ 6 M gates). However, the results suggest that designers
can generate a variety of practical GF multipliers from given
design specifications by the proposed GF-AMG system.

4. Conclusion

In this paper, we have presented a system named GF-AMG
for the automatic generation of GF parallel multipliers that
uses a graph-based circuit description called GF-ACG. We
first extended the GF-ACG for GF(pm) (p ≥ 2) arithmetic
and R-valued (R ≥ 2) implementation. We then showed
the system framework of GF-AMG, wherein the generated
HDL codes are completely verified by a formal verification
method. We also evaluated the performance of GF-AMG by
the experimental generation of GF(pm) multipliers. In par-
ticular, we demonstrated that the extended GF-ACG allows
us to generate GF(pm) multipliers that can be implemented
in multiple-valued logic.

The system described here will be available at our web-
site [15], as depicted in Fig. 7. Designers can submit their
specification on the request page [Fig. 7 (a)] and then re-
ceive the generated HDL code from the download page
[Fig. 7 (b)].

Acknowledgments

We would like to show our greatest appreciation to Mr.
Yukihiro Sugawara and Mr. Kotaro Okamoto for their valu-
able and insightful comments. This work has been sup-
ported by JSPS KAKENHI Grant No. 25240006.

References

[1] Y. Sugawara, R. Ueno, N. Homma, and T. Aoki, “System for au-
tomatic generation of parallel multipliers over Galois field,” IEEE

http://dx.doi.org/10.1109/ismvl.2015.15

1610
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.8 AUGUST 2017

45th International Symposium on Multiple-Valued Logic (ISMVL
2015), pp.54–59, 2015.

[2] E. Savas and C. Koc, “Finite field arithmetic for cryptography,”
IEEE Circuits Syst. Mag., vol.10, no.2, pp.40–56, Aug. 2010.

[3] I. Duursma and H.-S. Lee, “Tate pairing implementation for hy-
perelliptic curves y2 = xp − x + d,” Advances in Cryptology—
ASIACRYPT 2003, Lecture Notes in Computer Science, vol.2894,
pp.111–123, Springer, 2003.

[4] P.S.L.M. Barreto, B. Lynn, and M. Scott, “Efficient implementa-
tion of pairing-based cryptosystems,” Journal of Cryptology, vol.17,
no.4, pp.321–334, 2004.

[5] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang,
“High-speed high-security signatures,” Journal of Cryptographic
Engineering, vol.2, no.2, pp.77–89, 2012.

[6] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
Weil pairing,” Journal of Cryptology, vol.17, no.4, pp.297–319,
2004.

[7] I. Duursma and K. Sakurai, “Efficient algorithms for the Jacobian
variety of hyperelliptic curves y2 = xp − x + 1 over a finite field
of odd characteristic p,” Coding Theory, Cryptography and Related
Areas, pp.73–89, Springer, 1998.

[8] E. Lee, H.-S. Lee, and Y. Lee, “Eta pairing computation on gen-
eral divisors over hyperelliptic curves y2 = xp − x + d,” Journal of
Symbolic Computation, vol.43, no.6-7, pp.452–474, 2008.

[9] N. Homma, K. Saito, and T. Aoki, “A formal approach to design-
ing cryptographic processors based on GF(2m) arithmetic circuits,”
IEEE Trans. Inf. Forensics and Security, vol.7, no.1, pp.3–13, Feb.
2012.

[10] D. Page and N.P. Smart, “Hardware implementation of finite fields
of characteristic three,” CHES 2002, Lecture Notes in Computer Sci-
ence, vol.2523, pp.529–539, 2002.

[11] K. Okamoto, N. Homma, and T. Aoki, “A graph-based approach
to designing parallel multipliers over Galois fields based on normal
basis representations,” Proc. 43th IEEE Int. Symp. Multiple-Valued
Logic, pp.158–163, May 2013.

[12] A. Halbutogullari and C. Koc, “Mastrovito multiplier for gen-
eral irreducible polynomials,” IEEE Trans. Comput., vol.49, no.5,
pp.503–518, May 2000.

[13] J. Massey and J. Omura, “Computational method and apparatus for
finite field arithmetic,” 1986. US Patent.

[14] “Risa/Asir (Kobe distribution) download page,”
http://www.math.kobe-u.ac.jp/Asir/asir.html

[15] “Arithmetic module generator for GF parallel multipliers,”
http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg/

Rei Ueno received a B.E. degree in In-
formation Engineering, and the M.S. degree in
Information Sciences from Tohoku University,
Sendai, Japan, in 2013 and 2015, respectively.
He is currently enrolled in a doctorial course at
Tohoku University. Since 2016, he has been a
JSPS (The Japan Society for the Promotion of
Science) research fellow. His research interests
include arithmetic circuits, cryptographic imple-
mentations, formal verification, and hardware
security.

Naofumi Homma received the B.E. de-
gree in information engineering, and the M.S.
and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Japan, in 1997, 1999
and 2001, respectively. He is currently a Profes-
sor of the Research Institute of Electrical Com-
munication at Tohoku University. For 2002–
2006, he also joined the Japan Science and Tech-
nology Agency (JST) as a researcher for the
PRESTO project. His research interests include
computer arithmetic, EDA methodology, high

performance/secure VLSI computing, and hardware security. Dr. Homma
received the IP Award at the 2005 LSI IP Design Award, the Best Paper
Award at the Workshop on Synthesis And System Integration of Mixed
Information Technologies in 2007, the Best Symposium Paper Award at
the 2013 IEEE International Symposium on Electromagnetic Compatibil-
ity, and the Best Paper Award at the Workshop on Cryptographic Hardware
and Embedded Systems 2014 (CHES 2014).

Takafumi Aoki received the B.E., and
M.E., and D.E. degrees in electronic engineer-
ing from Tohoku University, Sendai, Japan, in
1988, 1990, and 1992, respectively. He is
currently a Professor of the Graduate School
of Information Sciences at Tohoku University.
For 1997–1999, he also joined the PRESTO
project, Japan Science and Technology Corp.
(JST). His research interests include theoretical
aspects of computation, VLSI computing struc-
tures for signal and image processing, multiple-

valued logic, and biomolecular computing. Dr. Aoki received the Outstand-
ing Paper Award at the 1990, 2000, 2001 and 2006 IEEE International
Symposia on Multiple-Valued Logic, the Outstanding Transactions Paper
Award form the Institute of Electronics, Information and Communication
Engineers (IEICE) of Japan in 1989 and 1997, the IEE Mountbatten Pre-
mium Award in 1999 IEEE International Symposium on Intelligent Signal
Processing and Communication Systems, the IP Award at the Seventh LSI
IP Design Award in 2005, the Best Paper Award at the 14th Workshop on
Synthesis and System Integration of Mixed Information Technologies, and
the Best Paper Award at the Workshop on Cryptographic Hardware and
Embedded Systems 2014 (CHES 2014).

http://dx.doi.org/10.1109/ismvl.2015.15
http://dx.doi.org/10.1109/mcas.2010.936785
http://dx.doi.org/10.1007/978-3-540-40061-5_7
http://dx.doi.org/10.1007/s00145-004-0311-z
http://dx.doi.org/10.1007/s13389-012-0027-1
http://dx.doi.org/10.1007/s00145-004-0314-9
http://dx.doi.org/10.1007/978-3-642-57189-3_6
http://dx.doi.org/10.1016/j.jsc.2007.07.010
http://dx.doi.org/10.1109/tifs.2011.2157687
http://dx.doi.org/10.1007/3-540-36400-5_38
http://dx.doi.org/10.1109/ismvl.2013.5
http://dx.doi.org/10.1109/12.859542

