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Video Data Modeling Using Sequential Correspondence
Hierarchical Dirichlet Processes
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SUMMARY Video data mining based on topic models as an emerging
technique recently has become a very popular research topic. In this paper,
we present a novel topic model named sequential correspondence hierar-
chical Dirichlet processes (Seq-cHDP) to learn the hidden structure within
video data. The Seq-cHDP model can be deemed as an extended hierar-
chical Dirichlet processes (HDP) model containing two important features:
one is the time-dependency mechanism that connects neighboring video
frames on the basis of a time dependent Markovian assumption, and the
other is the correspondence mechanism that provides a solution for dealing
with the multimodal data such as the mixture of visual words and speech
words extracted from video files. A cascaded Gibbs sampling method is
applied for implementing the inference task of Seq-cHDP. We present a
comprehensive evaluation for Seq-cHDP through experimentation and fi-
nally demonstrate that Seq-cHDP outperforms other baseline models.
key words: bayesian nonparametric methods, multimedia machine learn-
ing, hierarchical Dirichlet processes, topic models

1. Introduction

With the advances in information and communication tech-
nology, nowadays multimedia services have been playing
an ever more important role on the Internet. Meanwhile,
these contents and services are becoming increasingly var-
ied. For instance, now we can share any video clips through
a video website such as YouTube while attaching descrip-
tions to let viewers easily find clips that interest them. How-
ever, an anonymous video file without any descriptions can
also be uploaded to the video website without being sorted
into a specific genre. As the matter of fact, these anony-
mous videos need to be analyzed properly, since they may
contain very useful and important information. To analyze
a video from the perspective of content, the core issue is
how to learn and summarize the latent semantic information
from multimedia data within the video, which is also the
main purpose of this paper.

Image and video data mining combined with topic
modeling methods such as Latent Dirichlet Allocation
(LDA) [1] and hierarchical Dirichlet processes (HDP) [2]
has recently been attracting more and more focus in this
field. Generally, topic models are based on the hypothe-
sis that text words in each document are generated from a
mixture distribution of latent topics, where each latent topic
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is represented as a word distribution. Therefore, some fea-
tures or information extracted from an image or a video file
can also be considered as visual words corresponding to the
topic models. However, straightforwardly applying LDA or
HDP to deal with video data is not a proper solution, since
video data has a more complicated structure (multimodal
data) than text data.

A video file can be deemed as a type of multi-
modal data, which generally contains image information
and speech information. To be more specific, the image
information stands for a sequence of video frames, while
the speech information stands for speech transcript. To
cope with this kind of video data, in this paper, we pro-
pose a sequential correspondence hierarchical Dirichlet pro-
cesses (Seq-cHDP) model, which is a kind of modified HDP
model involving two important aspects. One is the time-
dependency mechanism that shows the time relativity be-
tween neighboring video frames, and the other is the data
correspondence mechanism that provides two correspond-
ing generative processes for the multimodal data within the
model. Then, a cascaded Gibbs sampler is employed for
inferring the Seq-cHDP model. In the experimental phase,
genre classification is performed to evaluate the Seq-cHDP
model. We demonstrate that our model outperforms the
other baselines by showing the experimental results of the
topic trend estimation and classification accuracy.

2. Related Work

As one of the key topic models, the HDP model was firstly
proposed by Teh et al. [2]. They provided a new theory that
models multiple correlated data corpora as multiple infinite
Dirichlet processes (DP) [3], and connects them via sharing
mixing components among all corpora. On the basis of this
theory, various of applications have been widely developed
for data mining. In this paper, we also employ HDP as the
basic model to extend it for video data analysis.

Many recent works have addressed image or video data
mining by using topic models [4]–[10]. In previous work
on video data mining, Souvannavong et al. developed an
efficient framework on the basis of probabilistic latent se-
mantic analysis (PLSA) for video shot indexing and re-
trieval [7]. However, only visual information is consid-
ered in their work. Wang et al. presented a novel unsuper-
vised learning method on the basis of both the LDA and
HDP models to detect activities and interactions that oc-
cur in videos [8]. However, the drawback of their work is
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that they ignored the time-dependency feature within video
data. Hospedales et al. proposed a novel Markov cluster-
ing topic model (MCTM) for unsupervised learning of scene
characteristics, dynamically screening and identifying irreg-
ular spatiotemporal patterns in video [9]. However, their
model is extended from LDA, which lacks flexibility com-
pared with HDP, since the initial number of the topics set in
LDA affects the final performance. Kuettel et al. presented a
cascaded topic model called dependent Dirichlet processes
and hidden Markov models (DDP-HMM) to jointly learn
spatio-temporal dependencies of moving agents in com-
plex dynamic scenes [10]. However, it is difficult to find
a way to carry out multimodal data modelling based on the
structure of DDP-HMM. Yang et al. exploited a new topic
model called correspondence Dirichlet compound multino-
mial LDA (Corr-DCMLDA), which incorporates Dirich-
let compound multinomial LDA (DCMLDA) [11] into cor-
respondence LDA (CorrLDA) [4] to tackle the burstiness
problem of the local features for video data mining. How-
ever, they did not consider the time-dependency issue either.
Moreover, the concerns about the Corr-DCMLDA model
lacking flexibility still exist.

3. Model

The features of video data are distinguished from those of
general text data. However, we can borrow the idea of pro-
cessing the text data by applying the HDP model. According
to the features of video data, a video file consists of amounts
of sequential video frames, which can be considered as a se-
quence of images. For these frames, not only can visual
information be observed but also speech information can be
extracted by speech recognition techniques. From the per-
spective of topic models, we can consider that a video file
consists of visual words and speech words, which are filled
in every frame of a video file.

In this section, we first develop a unimodal sequential
HDP (Seq-HDP) model to deal with the time-dependency is-
sue about neighboring video frames. Next, a stick-breaking
construction for Seq-HDP is described. Then, the Seq-
cHDP model incorporated with the idea of correspondence
method is proposed for multimodal data. Finally, we present
a posterior representation scheme for inferring the Seq-
cHDP.

3.1 Sequential HDP

Borrowing the idea from [12] utilized for modeling the
time-varying activities, here we present a simple three-layer
HDP model named Seq-HDP to show the time dependen-
cies among neighboring frames within each video file. Fig-
ure 1 shows a graphical representation of Seq-HDP. We de-
fine base measure G placed in the top of the model structure
as an overall measure, which is simultaneously shared by
all the HDPs. Similarly, on the second layer, G f

0 denotes the
global measure of the f -th video file, and on the third layer,
G f

j denotes the local measure in the j-th frame of the f -th

Fig. 1 Graphical representation for Seq-HDP.

video file.
However, according to the features of a video file,

video frames belonging to the same video file are sequential
and time related. To deal with this issue, we set up a depen-
dent relationship between two adjacent local measures G f

j−1

and G f
j in the Seq-HDP model, and we consider this depen-

dency is on the basis of a Markovian assumption. Therefore,
as shown in the graphical representation of Seq-HDP, we
use transfer weight wf

j for balancing the generative process

of G f
j , which is specified in the following paragraphs.
Then, the generative process of Seq-HDP is described

as follows.
1. The overall measure G recording all the components

within the whole model is drawn from G ∼ DP(ξ,H). Here,
H is a base measure, and ξ is a concentration parameter. DP
stands for a Dirichlet process [13].

2. Each video file contains a global measure G f
0 , which

is drawn from G f
0 ∼ DP(γ f ,G). Here, f is the index of the

video file, and γ f is a concentration parameter for generating
the G f

0 .

3. Then, we use G f
j to represent each local measure,

and the local measures are time dependent. Therefore, the
generation of G f

j can be affected by both the upper global

measure G f
0 and previous local measure G f

j−1.

G f
j ∼ DP(α f

0 ,w
f
j−1G f

j−1 + (1 − wf
j−1)G f

0) (1)

Note that α f
0 is a concentration parameter for generating G f

j ,

and wf
j−1 is the weight parameter.

4. Finally, the data sample x f
ji can be extracted after

drawing the parameters of the component densities θ f
ji, it

can be obtained as below:

θ
f
ji ∼ G f

j , x f
ji ∼ F(x|θ f

ji) (2)

where i denotes the index of the data sample, and F(x|θ f
ji) is

a distribution with parameter θ f
ji.
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Fig. 2 Graphical representation for stick-breaking construction of Seq-
HDP.

3.2 The Stick-Breaking Construction for Seq-HDP

To better understand the processes of generating samples
and allocating components through the whole Seq-HDP, we
introduce the stick-breaking construction [2] to provide an-
other description of the model from another perspective.

Figure 2 depicts the stick-breaking construction of Seq-
HDP. According to Sethuraman’s theory [14] about stick-
breaking construction for HDP, the overall measure G can
be constructed as below:

G =
∞∑

k=1

νkδφk , ν ∼ GEM(ξ) (3)

where we use infinite vector ν to collect overall component
weight νk by ν = {ν1, ν2, . . .}. Moreover, ν can be obtained
through a GEM distribution [2], which is specified by such
a process: ν̂k ∼ Beta(1, ξ), νk = ν̂kΠk−1

i=1 (1 − ν̂i). δφk is a
probability measure on component φk.

Similarly, the global measure G f
0 is formed with:

G f
0 =

∞∑
k=1

β
f
k δφk , β

f ∼ DP(γ f , ν) (4)

where β f
k is the global component weight corresponding to

G f
0 and β f = {β f

1 , β
f
2 , . . .}.

Then, on the basis of Eq. (1), we give the form of local
measure G f

j :

G f
j =

∞∑
k=1

π
f
jkδφk , π

f
j
∼ DP(α f

0 ,π
′ f

j
) (5)

where π f
jk is the local component weight corresponding to

G f
j and π f

j
= {π f

j1, π
f
j2, . . .}, because of the effect of depen-

dency, π′ f
j

can be expressed as π′ f
j
= wf

j−1π
f

j−1
+(1−wf

j−1)β f .

Fig. 3 Graphical representation for stick-breaking construction of Seq-
cHDP.

Through this approach, we can obtain the stick-
breaking construction for Seq-HDP. Note that z f

ji drawn

from π f
jk is the index of the component, which determines

the generation of sample x f
ji.

3.3 Correspondence Method

As we mentioned in the beginning of this section, some-
times, the video file involves some text information such as
speech transcript, which can be considered as additional fea-
tured information depending on the video data. To cope with
this complex situation, we incorporate the LDA-based cor-
respondence method proposed by Blei and Jordan [4] into
our task and name our new model the sequential correspon-
dence hierarchical Dirichlet processes (Seq-cHDP).

Figure 3 depicts the stick-breaking construction of Seq-
cHDP. According to the perspective of topic model, the
components shared in the model indicate latent topics of the
words. The data sample generative process is clearly sepa-
rated into two different blocks, which respectively represent
the generative methods of visual words and speech words.
The generative process of Seq-cHDP is the same as that of
Seq-HDP until generating the parameter π f

j
. The rest of the

generation process of Seq-cHDP is given below.
1. For each frame j, draw a topic z f

ji for a visual word

from π f
j
. Then in accordance with the sampled topic z f

ji, a

specific visual word x f
ji can be drawn from f (x f

ji|φk, k = z f
ji).

2. In the same frame, draw a topic ẑ f
ji for a speech word

from Uni f orm(z f
j1, . . . , z

f

jN f
j

). Then in accordance with the

sampled topic ẑ f
ji, a specific speech word x̂ f

ji can be drawn

from f (x̂ f
ji|φ̂k, k = ẑ f

ji).
Note that the process of drawing a topic of a speech

word is uncorrelated with topic weight π f
j
, and that it only

depends on the sampled topic counts of visual words in the
same frame. N f

j and N̂ f
j denotes the number of visual words
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and speech words, respectively. f (·|·) denotes a conditional
distribution. In fact, there are two different overall topic den-
sity parameters φk and φ̂k that are respectively drawn from
two different base measure H and Ĥ in this model and re-
spectively belong to visual words and speech words. How-
ever, they share the same K topics.

3.4 Posterior Representation for Seq-cHDP

In this section, we employ a cascaded Gibbs sampling
method for Seq-cHDP inference. This inference scheme is
based on a posterior representation sampler of the original
HDP [15].

3.4.1 A Chinese Restaurant Metaphor

In the original HDP, the Chinese restaurant franchise (CRF)
was developed for understanding the HDP from another per-
spective. According to the scenario of CRF, there are several
Chinese restaurants serving customers dishes from the same
menu. Here, a customer indicates a single word, a dish in-
dicates a latent topic, and the menu stands for the collection
of topics. We assume that each Chinese restaurant has infi-
nite tables at which customers can sit, each table can serve
only one dish for customers, and multiple tables in the same
or different restaurants can serve the same dish. When the
first customer comes to the restaurant, he chooses a table at
which to sit and then orders a dish from the global menu
or asks the waiter for a new dish not included on the global
menu. Then, the next customer comes to the restaurant. She
can sit at the same table if she is willing to eat the same dish
as the previous customer. Otherwise, she can sit at another
table and order any dish she wants. Note that the dish can
also be a new dish if she is not interested in the dishes writ-
ten on the global menu. Following these steps, the whole
process of the CRF can be deemed as a sort of generative
process of HDP.

However, in the situation of three-layer Seq-cHDP, the
generative process is more complicated. According to the
theory in paper [12], metatables (tables of the tables) are in-
troduced for constructing the Dirichlet process of the over-
all measure G. In the Seq-cHDP model, it has a similar
structure to CRF. Therefore, based on the method men-
tioned in paper [12], the extracted counts of metatables, ta-
bles and customers can be utilized for estimating the com-
ponent weighting parameter ν, β f and π f

j
. Figure 4 shows

the brief generation mechanism of stick-breaking construc-
tion for Seq-cHDP associated with the extracted counts of
CRF. M f

k denotes the number of the metatables in the area
(file) f serving dish k which is drawn from the overall menu
ν. T f

( j+1)k denotes the number of the tables in the restaurant
j+1 of area (file) f serving dish k. However, this dish can be
selected from the previous local menu π f

j
or the global menu

β f due to time dependency. Therefore, we divide T f
( j+1)k into

two types by T f
( j+1)k = T j→ j+1

f k + T 0→ j+1
f k , where T j→ j+1

f k rep-

Fig. 4 Generation mechanism of Seq-cHDP on stick-breaking construc-
tion associated with the extracted counts of CRF.

resents the counts of tables whose dishes are drawn from π f
j
,

and T 0→ j+1
f k represents the counts of tables whose dishes are

drawn from β f . Then, n f
jk denotes the number of the cus-

tomers eating dish k in the restaurant j of area (file) f , and
the dishes they ordered are from the local menu π f

j
. Note

that all the topic index parameters k on counts are marginal-
ized with dots in Fig. 4.

3.4.2 Variables Sampling

In this section, we will describe the way to sample the vari-
ables mentioned in the stick-breaking construction for Seq-
cHDP.

According to the scheme of the posterior representation
sampler [15], the overall measure G can be formed by:

G =
K∑

k=1

νkδφk + νuGu, Gu ∼ DP(ξ,H) (6)

and the vector ν can be estimated by:

ν = (ν1, . . . , νK , νu) ∼ Dir(M·1, . . . ,M
·
K , ξ) (7)

where Dir denotes Dirichlet distribution. As described in
Sect. 3.4.1, M·k is the marginal form of M f

k , hence M·k =∑
f M f

k . In this procedure, the original infinite vector ν has
an augmentable form filled with finite K components and a
promising component u.

Similarly, the global measure G f
0 can be formed by:

G f
0 =

K∑
k=1

β
f
k δφk + β

f
uGu, Gu ∼ DP(ξ,H) (8)

and the vector β f can be estimated by:

β f = (β f
1 , . . . , β

f
K , β

f
u ) ∼ Dir(β̃ f

1 , . . . , β̃
f
K , β̃

f
u ) (9)

where β̃ f
k = γ

f νk + T 0→·
f k and β̃ f

u = γ
f νu. According to the

CRF of Seq-cHDP, only some of the tables T 0→·
f k assigned

with dish k among all the restaurants are associated with β f
k .



XUE and EGUCHI: VIDEO DATA MODELING USING SEQUENTIAL CORRESPONDENCE HIERARCHICAL DIRICHLET PROCESSES
37

Here, T 0→·
f k =

∑
j T 0→ j

f k .

Then, the local measure G f
j is expressed as follows:

G f
j =

K∑
k=1

π
f
jkδφk + π

f
juGu, Gu ∼ DP(ξ,H) (10)

and the vector π f
j

can be estimated by:

π
f
j
= (π f

j1, . . . , π
f
jK , π

f
ju) ∼ Dir(π̃ f

j1, . . . , π̃
f
jK , π̃

f
ju) (11)

as can be seen in Fig. 4, the parameter π f
j

has two generating

paths that respectively generate nf
j· and T j→ j+1

f · . Hence, the

estimator π̃ f
jk and π̃ f

ju can be expressed as follows:

π̃
f
jk = α

f
0wf

j−1π
f
( j−1)k+α

f
0(1−wf

j−1)β f
k +n f

jk+T j→ j+1
f k (12)

π̃
f
ju = α

f
0wf

j−1π
f
( j−1)u + α

f
0 (1 − wf

j−1)β f
u (13)

where the weight wf
j is a controlling parameter ranging from

0 to 1.
In addition, the concentration parameters ξ, γ f and α f

0
corresponding to the different layers can be sampled by set-
ting a gamma prior on them:

ξ ∼ Ga(aξ, bξ); γ
f ∼ Ga(aγ, bγ); α

f
0 ∼ Ga(aα0 , bα0 )

(14)

where all the shaping parameters a· and scaling parameters
b· are given before sampling. This method is also specified
in [12].

In the following, we will introduce the sampling ap-
proach of table counts T f

jk and metatable counts M f
k , which

are very necessary parameters for sampling component
weights as mentioned above.

Referring to paper [16], Porteous proposes a Bernoulli
trial method for replacing the Chinese restaurant process
(CRP) to estimate the table counts. On the basis of his ap-
proach, we give the estimation of T f

jk:

p(T f
jkr = 1) =

α
f
0[wf

j−1π
f
( j−1)k + (1 − wf

j−1)β f
k ]

α
f
0 [wf

j−1π
f
( j−1)k + (1 − wf

j−1)β f
k ] + r − 1

(15)

where r is the index of the customers and r ∈ [1, nf
jk],

p(T f
jkr = 1) denotes the probability of that the r-th customer

chooses a new table at which to eat dish k in the restaurant
j of the area f . Hence we can sample every T jkr from this
Bernoulli distribution on the basis of Eq. (15), then the T f

jk

can be computed by T f
jk =
∑

r T f
jkr, and T f

·k =
∑

j T f
jk.

By following this strategy, the M f
k can be estimated

with:

p(M f
kt = 1) =

γ f vk

γ f vk + t − 1
(16)

where t is the index of the tables and t ∈ [1,T f
·k]. Then the

M·k can be computed by M·k =
∑

f
∑

t M f
kt after all the M f

kt
have been sampled.

Then, we apply a simple multinomial distribution to es-
timate T j→ j+1

f k and T 0→ j+1
f k within T f

( j+1)k. The steps is given
below:

(T j→ j+1
f k ,T 0→ j+1

f k ) ∼ Multinomial(T f
( j+1)k, [p, 1 − p])

(17)

p =
wf

jπ
f
jk

(1 − wf
j )β

f
k + wf

jπ
f
jk

(18)

note that the probability p is affected by the component
weighting parameters β f

k and π f
jk.

Next, we will discuss how to sample the topic of visual
words and speech words. According to the theory of HDP-
LDA, first, the topic of visual word z f

ji can be drawn from
the following steps:

p(z f
ji = k|x f

ji, . . .) ∝ p(z f
ji = k|π f

j
)p(x f

ji|z f
ji = k, . . .)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π

f
jk f
−x f

ji

k (x f
ji) if k is used

π
f
ju f
−x f

ji

knew (x f
ji) if k is new

(19)

if the topic k has been previously used, the f
−x f

ji

k (x f
ji) can be

expressed with:

f
−x f

ji

k (x f
ji = v) =

∫
f (x f

ji = v|φk)p(φk |X− f, ji

k
,H) dφk

=
n− ji

kv + τ

n− ji
k· + Vτ

(20)

and if k is a newborn topic, the f
−x f

ji

knew (x f
ji) can be expressed

with:

f
−x f

ji

knew (x f
ji = v) =

∫
f (x f

ji = v|φk)p(φk |H) dφk

=
1
V

(21)

where v denotes the index of visual words in terms of the
vocabulary, X− f, ji

k
denotes the set of all the visual words as-

signed to topic k except for x f
ji, n− ji

kv denotes the counts of
the v-th visual word assigned to topic k except for the cur-
rent one and n− ji

k· =
∑

v n− ji
kv , and V is the total number of

visual words in the vocabulary. In addition, τ is a control-
ling parameter for visual words and we define H = Dir(τ).

Then, depending on the topic collection of visual words
Z f

j
, the topic of speech word ẑ f

jî
can be sampled by:

p(ẑ f

jî
= k|x̂ f

jî
, . . .) ∝ p(ẑ f

jî
= k|Z f

j
)p(x̂ f

jî
|ẑ f

jî
= k, . . .)

=
n f

jk

n f
j·

f̂
−x̂ f

jî

k (x̂ f

jî
) (22)
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Algorithm 1: Cascaded Gibbs Sampling
Initialization;
for ( f = 1; f ≤ F; f++) do

for ( j = J f ; j ≥ 1; j − −) do
Sample visual words Z f

j
;

Sample speech words Ẑ f

j
;

Sample T f
jk, T j−1→ j

f k and T 0→ j
f k ;

end
Sample M f

k ;
end
Sample concentration parameters ξ, γ f and α f

0 ;
Sample ν;
for ( f = 1; f ≤ F; f++) do

Sample β f ;
for ( j = 1; j ≤ J f ; j++) do

Sample π f

j
;

end
end

and the f̂
−x̂ f

jî

k (x̂ f

jî
) can be expressed with:

f̂
−x̂ f

jî

k (x̂ f

jî
= v̂) =

∫
f̂ (x̂ f

jî
= v̂|φ̂k)p(φ̂k |X̂− f, jî

k
, Ĥ) dφ̂k

=
n̂− jî

kv̂ + τ̂

n̂− jî
k· + V̂ τ̂

(23)

where v̂ denotes the index of speech words in terms of the
vocabulary, and n f

j· is the marginal form for the counts of

visual words as n f
j· =

∑
k n f

jk. Similarly, n̂− jî
kv denotes the

counts of the v-th speech word assigned to topic k except for

the current one and n̂− jî
k· =

∑
v̂ n̂− jî

kv̂ , V̂ is the total number of
speech words in the vocabulary. In addition, τ̂ is a control-
ling parameter for speech words and we define Ĥ = Dir(τ̂).

3.4.3 Gibbs Sampling Implementation

Here, we employ a cascaded Gibbs sampler for imple-
menting the posterior inference of Seq-cHDP. On the ba-
sis of the sampling procedures of the variables described in
Sect. 3.4.2, we provide the pseudo-code for this cascaded
Gibbs sampling task in Algorithm 1.

In this algorithm, we need to pay attention because the
number of topics k may increase if a new topic is selected
during the sampling task. For this situation, all the compo-
nent weights need to update their atoms to instantiate this
new topic in the sampler. The updating method is specified
in [15]. In fact, we just show only one iteration of the whole
Gibbs sampling task. It may operate thousands of iterations
to obtain all the variables converged depending on the ex-
perimental data.

4. Experiments on Video Data

In this section, we will describe the experimental setup and

data features in detail and analyze parameter tuning for the
experimental system. Finally, the performances for the pro-
posed and baseline models will be evaluated and compared.

4.1 Experiment Description

The source video documents utilized in this experiment
were originally collected from the “blip.tv” video hosting
service [17], and processed by MediaEval-2011 Genre Tag-
ging Task†. In their task, they extracted a series of key
frames for each video file, and tagged each key frame with a
number of speech transcript words by the automatic speech
recognition (ASR) method [17].

Next, we use SIFT descriptor [18] to extract visual
words from each key frame [5]. The SIFT descriptor for
every 10 × 10 pixel grid in each key frame is computed
conditioning in which the patch size is randomly sampled
between scales of 10 to 30 pixels. By using a k-means algo-
rithm, all the obtained SIFT descriptors are clustered into k
clusters, which are treated as visual words with a vocabulary
size of k.

Table 1 shows quantitative descriptions for experimen-
tal video data. Each video file has a genre label attached.
We set the vocabulary size of visual words to 1000. For the
original speech transcript words, 418 types of standard stop
words [19] and the speech words appearing in fewer than
five video files are removed, and then the other 6291 types
of common words are utilized for the simulation.

We perform genre classification to evaluate the target
model. In this process, a nested cross-validation mechanism
is employed in our experiment, where the video datasets
are evenly divided into five subsets for the use of cross-
validation. One subset is treated as the test set while the re-
maining four subsets are used for four-fold cross-validation.
This procedure is totally repeated five times. During the test-
ing phase, the system estimates the genre tag for each video
file in the test set based on the training results by employ-
ing support vector machines (SVM)††. We apply accuracy
(micro-F1) and macro-F1 as performance metrics for evalu-
ating our model.

Table 1 Quantitative description for experimental video data

the number of video files 247
the number of genre labels 26
the number of key frames 9330

the vocabulary size of visual words 1000
the vocabulary size of speech words 6291

†http://www.multimediaeval.org/mediaeval2011/
††We used LIBSVM available at https://www.csie.ntu.edu.tw/

cjlin/libsvm/. The procedure of genre prediction is described as
follows: (1) We estimate topic distributions by Seq-cHDP for both
training and test video datasets. (2) We then learn SVM using the
topic distributions for training video dataset and the corresponding
genre labels. (3) We finally predict a genre label for each test video
using the SVM trained at step (2).
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4.2 Parameter Tuning

As mentioned in Sect. 3.4, the controlling parameters wf
j , τ

and τ̂ existing in the Seq-cHDP model play a very important
role in modeling optimization. Before evaluating the perfor-
mance of the target model, we need to determine the most
optimal values for these controlling parameters through a
parameter tuning approach. For simplicity, we consider all
the weights wf

j are equal to the same parameter w. In addi-
tion, we also assume τ = τ̂ = τ′.

The parameter tuning task is conducted by using the
validation dataset, which is separated from the training
dataset. According to a nested cross-validation experiment,
in each round of the four-fold cross validation, we can draw
one of the four subsets as the validation set, which indicates
we can conduct four different experiments by testing four
individual validation sets separately. Hence, throughout all
the five rounds in this cross-validation experiment, we can
collect 5 × 4 sets of experimental results.

Then, we respectively sweep the parameter w and τ′
in {0.1, 0.3, 0.5, 0.7, 0.9} and {0.1, 0.5, 1.0, 1.5, 2.0} in the
experimental stage. All the concentration parameters are
drawn from a gamma prior Ga(1.0, 1.0). The cascaded
Gibbs sampling system will cease the iteration when it
reaches convergence. The parameter tuning results are illus-
trated in Fig. 5. We can see that both accuracy and macro-F1
results are sensitive for varying the parameter w and τ′. The
Seq-cHDP model achieves the best performance when we
initialize w = 0.5 and τ′ = 1.0.

Fig. 5 Result for parameter tuning on Seq-cHDP.

Fig. 6 Area graph for topic distribution, superimposed with speech words.

4.3 Evaluation

In this section, we present a comprehensive evaluation on
Seq-cHDP. For comparison, three types of topic models are
taken as baseline models: the first one is a CorrHDP model
that is equivalent to the Seq-cHDP model under the condi-
tion of wf

j = 0, the second one is a Seq-HDP model that
is mentioned in Sec.3.1, and the third one is CorrLDA [4]
whose number of topics must be initialized with a fixed
positive integer. For parameter settings, we refer to the pa-
rameter tuning task given in Sect. 4.2, and set w = 0.5 and
τ′ = 1.0.

4.3.1 Trend Estimation for Latent Topics

Similar to other time dependent topic models [12], [20], one
of the advantages of Seq-cHDP is that it can learn and track
the trend of the latent topics. However, some of the other
baseline topic models fail to learn the varying trend on topic
distribution, since they do not have the time-dependency
mechanism.

To demonstrate the performance of topic trend esti-
mation, we plot a frame-based area graph of topic distri-
bution on three different examples that occurred in three
corresponding video files, shown in Fig. 6. In this figure,
each colored stripe represents a topic superimposed with as-
signed speech words, and the width of these stripes on the
y-axis indicates the topic distribution based on visual words.
The x-axis represents the sequential key frames. Consider-
ing the space limitation, only some key speech words are
shown on the area graph. Moreover the font size of these
key speech words is proportional to their appearance fre-
quencies in each key frame.

According to all these three examples, we see that
the topic distribution smoothly varies along with key frame
evolving due to the time-dependency mechanism incorpo-
rated in Seq-cHDP. Furthermore, the speech words that have
close meanings or belong to a similar class are effectively
clustered into a specific topic. For example, according to
Fig. 6 (a), the real video content is a US presidential can-
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Table 2 Performance of genre classification
��������

Accuracy Macro-F1
Mean STDEV Mean STDEV

Seq-cHDP 0.2515 0.0365 0.0558 0.0122
CorrHDP 0.1903 0.0219 0.0367 0.0106

Seq-HDP(Visual) 0.2012 0.0134 0.0388 0.0066
Seq-HDP(Speech) 0.1826 0.0221 0.0349 0.0121
CorrLDA(K=10) 0.1831 0.0197 0.0358 0.0059
CorrLDA(K=20) 0.1873 0.0258 0.0379 0.0112
CorrLDA(K=40) 0.1791 0.0313 0.0355 0.0128

didate debate on the question “Can we trust you with our
money?” In this scenario, we can find that the major topic
colored in pink gathers a large number of similar semantic
words such as finance, spending, dollars, tax, which sug-
gest this topic is probably related to the key word “money”.
Similarly, for Fig. 6 (b), the video introduced four signature
lighting techniques. This explains why the key words white,
flash, shadow, light often appear in the major topic colored
in yellow.

However, the phenomenon of topic fission and fusion
for speech words may occur when the topic border of these
speech words is not very distinct. For instance in Fig. 6 (c),
the speech words previous, board, center, committee are sep-
arated from the topic colored in pink at Frame #113 and as-
signed to a new topic colored in orange at Frame #114, since
the topic for these speech words is ambiguous.

Through this task, we can have a clear insight into the
evolving process of the latent topics within a video file, and
this is of benefit to the video data analysis.

4.3.2 The Performance of Genre Classification

We present the performance of genre classification for Seq-
cHDP, CorrHDP, Seq-HDP and CorrLDA in this section.
For the CorrHDP model, the controlling parameter τ′ is also
set to 1. For the Seq-HDP model, the controlling parame-
ter w is also set to 0.5, and the model is respectively evalu-
ated by using single visual data and single speech data. For
the CorrLDA model, we respectively conduct three sets of
the experiments with different number of topics K = 10,
K = 20 and K = 40. As mentioned in Sect. 4.1, all the mod-
els are evaluated through a five-fold cross validation four
times (with four different systematic random seeds).

The results are shown in Table 2. As we can see,
the accuracy and Macro-F1 results of Seq-cHDP achieve
0.2515 and 0.0558 respectively, which outperform those of
the other baselines listed in the table. In these results, we
can see that the performance measured by accuracy is more
significant than the performance measured by Macro-F1 for
all the models, probably because the ground-truth genre dis-
tribution on experimental video files is imbalanced. In ad-
dition, CorrHDP performs at almost the same level as Cor-
rLDA initialized with the best fitting K, hence we infer that
incorporating the time-dependency mechanism can make
the model work more effectively. Seq-HDP no matter with
single visual data or single speech data shows poorer per-
formance than Seq-cHDP under the same condition, which

proves the effectiveness of the correspondence method for
multimodal data in Seq-cHDP.

5. Conclusions

This paper presents a sequential correspondence hierarchi-
cal Dirichlet processes (Seq-cHDP) model to deal with the
multimodal data mining issue for video files. Seq-cHDP
can be deemed as an extension of HDP that incorporates a
time-dependency mechanism and a correspondence method.
In experimentation, we evaluated our model by showing
the trend estimation for latent topics within a single video
file and the performance of genre classification, and finally
demonstrated that Seq-cHDP outperforms other baselines in
terms of both accuracy and macro-F1.

In future work, we will consider more sophisticated
time-dependency mechanism like HMM [10] to enhance the
flexibility of our model, and improve our model to achieve
higher accuracy. In addition, some supervised topic model-
ing approaches [21] can also be extended in our model for
video classification.
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