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A Mobile Agent Based Distributed Variational Bayesian Algorithm
for Flow and Speed Estimation in a Traffic System

Mohiyeddin MOZAFFARI†a), Student Member and Behrouz SAFARINEJADIAN†b), Nonmember

SUMMARY This paper provides a mobile agent based distributed vari-
ational Bayesian (MABDVB) algorithm for density estimation in sensor
networks. It has been assumed that sensor measurements can be statisti-
cally modeled by a common Gaussian mixture model. In the proposed algo-
rithm, mobile agents move through the routes of the network and compute
the local sufficient statistics using local measurements. Afterwards, the
global sufficient statistics will be updated using these local sufficient statis-
tics. This procedure will be repeated until convergence is reached. Conse-
quently, using this global sufficient statistics the parameters of the density
function will be approximated. Convergence of the proposed method will
be also analytically studied, and it will be shown that the estimated param-
eters will eventually converge to their true values. Finally, the proposed
algorithm will be applied to one-dimensional and two dimensional data
sets to show its promising performance.
key words: density estimation, Gaussian mixture model, mobile agent,
sensor networks, variational Bayesian

1. Introduction

Sensor networks are composed of several intelligent sensor
nodes, which are distributed over an environment and col-
lect the required information. This kind of networks has
a wide range of application in various fields such as in-
dustrial productions, environmental monitoring, automatic
transportation systems, and traffic control [1]. Parameter es-
timation in a sensor network using local computation and
information exchange between neighbor nodes is called dis-
tributed estimation. Unlike the centralized estimation, in
distributed estimation it is not necessary to send local ob-
servations collected by all the sensors to a powerful central
node. As a result the complexity and resource consump-
tion will be reduced, and distributed estimation is more flex-
ible and robust to node and/or link failure [2], [3]. Recently,
many distributed estimation algorithms have been proposed,
such as distributed recursive least square (RLS) [4], dis-
tributed least-mean square (LMS) [5], distributed sparse es-
timation [6], [7], distributed expectation maximization (EM)
algorithm [8], distributed Gaussian process regression [9],
and distributed variational Bayesian (VB) algorithm [10].

The EM algorithm is a powerful method for density
estimation and data clustering in sensor networks [11]. Dis-
tributed EM (DEM) algorithm for data clustering and den-
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sity estimation assuming Gaussian mixture model and finite
mixture of component for measurements can be found in
[12]–[16]. In addition, convergence analysis of DEM algo-
rithm has been done in [14]. Computation of maximum-
likelihood estimate in presence of incomplete observation
using EM algorithm has been studied in [17]. Diffusion
based EM algorithm for distributed density estimation in
sensor networks using noisy observations has been found
in [18], [19]. The parameters of a Gaussian mixture model
can be estimated using the EM algorithm, while in the Vari-
ational Bayesian algorithm, a probability density function
can be obtained for each of the parameters. In EM algo-
rithm, not only the number of components of the Gaussian
mixture model cannot be estimated but also when the model
order is greater than the real order of the observed data in
EM algorithm, singularity in the estimated parameters may
be happened, which is not desired. On the other hand, using
the VB algorithm the order of the mixture model can be also
estimated. Therefore, the VB algorithm provides complete
information for each parameter.

Recently, variational methods have been used in pa-
rameter estimation especially in finite mixture models. As
it mentioned, one of the advantages of the variational based
method is the ability to estimate the order of mixture model.
A distributed variational Bayesian algorithm (DVBA) for
data clustering and density estimation in sensor networks
was proposed in [20], [21]. Measurements of the sensors in
these references are modeled by a common Gaussian mix-
ture model. The convergence analysis of the mentioned
DVBA was also investigated using variational free energy.
A variational Bayesian estimate for normal mixture model
using an iterative approach was studied in [22]. In addition,
it was shown that the variational Bayesian estimator con-
verged to the maximum likelihood estimator in especial con-
ditions at rate O(1/N) as the sample size N goes to infinity.
The aforementioned DVBA require that the global summary
quantities be transmitted through the entire network. Fur-
thermore, since the algorithm needs to access all nodes in
each updating step, its fault tolerance is poor. In traditional
client/server based scheme in sensor networks, all the clients
should send their observation to the server for data fusion,
which results in a high network traffic. In this scheme if
any fault happens in the server, the network will not work
properly. To solve this problem in sensor networks, mobile
agents have been proposed [23], [24].

Intelligent transport systems have been attracting in-
creasing research interest. This is evidenced by recent de-
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velopments from both automobile industry and the wireless
communication that make the vehicles more and more in-
telligent. Road traffic density estimation provides important
information in intelligent transport systems for road plan-
ning, intelligent road routing, and road traffic control. Traf-
fic data estimation as a part of intelligent transportation sys-
tems (ITS) provides a better traffic handling. The perfor-
mance of ITS technology is strongly related to the acces-
sibility of exact and on-time estimates of traffic informa-
tion [25]. Traffic sensor networks consist of distributed de-
vices which monitor traffic system environment, track vehi-
cles and do a broad range of applications such as collabo-
rative processing of information, and gathering data from
distributed sources. The mentioned networks have some
limited sensing, processing and communication capabilities.
For example, Real-time traffic data including mean speed,
traffic density and traffic flow are usually gathered by such
distributed sensor networks in distributed transportation sys-
tems. Assume that the data set distributed over a traffic
sensor network is modeled by a Gaussian mixture model.
Here, a mobile-agent-based distributed variational Bayesian
(MABDVB) algorithm will be proposed for density estima-
tion and data clustering in mentioned sensor network. In
MABDVB algorithm, agents move in different routes and
execute the DVB algorithm. These agents then carry the
required information to the fusion center to be combined.
Then, the agents carry the resulted fusion data to sensor
nodes to be updated. This procedure will be repeated until
a convergence criterion is met. At this moment, the infor-
mation of each node can be clustered based on the resulting
GMM. Decrease in Computational load and required mem-
ory of the fusion center is one of the main advantages of the
proposed algorithm. Another advantage is decrease in iter-
ations of the VB algorithm and increase in the convergence
rate.

The rest of the paper is organized as follows. In Sect. 2,
the main problem formulation is given. Section 3 introduces
the variational Bayesian algorithm for mixture density esti-
mation, and a distributed algorithm for its implementation
is presented. Section 4 develops MABDVB algorithm. Sec-
tion 5 is devoted to convergence analysis of MABDVB al-
gorithm. The results of simulated and real data sets are pre-
sented in Sect. 6. Finally, Sect. 7 concludes the paper.

2. Problem Formulation

Consider a network of M sensors and a d-dimensional ran-
dom vector Ym with probability density function f (ym)
which corresponds to sensor node m. Each data (measure-
ment) ym,i of node m is a realization of the random vector
Ym. The environment is assumed to be a finite mixture set-
ting with J mixture probabilities αm, j, ( j = 1, . . . , J).

f (ym;αm, ψ) =
J∑

j=1

αm, j f j

(
ym;ψ j

)
(1)

where
{
αm, j

}J

j=1
, ψ j, and J are the mixture probabilities at

node m, the set of parameters defining the j’th compo-
nent, and the number of mixture components, respectively.
The mixture probabilities

{
αm, j

}
may be changed at differ-

ent nodes while the parameters ψ j are the same throughout
the network. The set of data points of the m’th node is rep-
resented by Ym =

{
ym,i

}Nm

i=1 where Nm is the number of ob-
servations at node m. it is worth noting that measurements
of each node are assumed to be independent and identically
distributed.

Consider set of missing variables is shown by Zm ={
zm,i

}
corresponding to Ym =

{
ym,i

}
. Each component of

zm,i =
[
z1

m,i, . . . , z
J
m,i

]
represents a binary vector indicating

by which component the data ym,i is produced. In another
words, ym,i is produced by the j’th component of the mixture
if zr

m,i = 0 for all r � j and z j
m,i = 1. The pair xm,i =(

ym,i, zm,i
)

is called the complete data and we write Xm =

{Ym,Zm} where Xm =
{
xm,i

}
.

While our approach can be applied to arbitrary models,
for simplicity we consider here Gaussian component distri-
butions f j

(
ym;ψ j

)
= N

(
ym; μ j,T j

)
where μ j is the mean

and T j the precision (inverse covariance) matrix. In this
paper, a distributed variational Bayesian algorithm is devel-
oped to estimate the Gaussian mixture model parameters us-
ing the data set Y = {Ym}Mm=1.

3. The Variational Bayesian Algorithm

Suppose we have observed the data set Y = {yi}. Here, it
is assumed that there is a parametric model with parame-
ters ψ, and some missing or unobserved values are denoted
by Z = {zi}. For a given Y , the posterior distribution of ψ
conditioned to Y will be of interest. The main idea of the
variational approximation is to approximate the joint con-
ditional density of ψ and Z, by a more tractable distribu-
tion f̂ (z, ψ), by minimizing the Kullback-Leibler (KL) di-
vergence between the approximating density f̂ (z, ψ) and the
true joint conditional density f (z, ψ|y). The variational ap-
proximation will tend to a tight lower bound on the log like-
lihood L = log f (y). A lower bound for L can be written as
follows:

log f (y) = log
∫ ∑

z

f (y, z, ψ) dψ

= log
∫ ∑

z

f̂ (z, ψ)
f (y, z, ψ)

f̂ (z, ψ)
dψ

≥
∫ ∑

z

f̂ (z, ψ) log
f (y, z, ψ)

f̂ (z, ψ)
dψ (2)

The last term was obtained by Jensen’s inequality. This
lower bound is denoted by F , that represents the variational
free energy.

3.1 Variational Method for Mixtures of Gaussian Distribu-
tions

In this section the variational Bayesian method will be ap-
plied to estimate the density of a Gaussian mixture model.
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Consider a mixture of J Gaussian distributions with un-
known means, variances and mixing weights as:

f (y;α, ψ) =
J∑

j=i

α jN
(
y; μ j,T j

)
(3)

The mixing weights are assigned a Dirichlet prior distribu-
tion

fα (α) = Dir
(
α; a0

1, . . . , a
0
J

)
(4)

where

Dir
(
α; a0

1, . . . , a
0
J

)
=

1
B

(
a0

)
J∏

i=1

α
a0

i −1
i (5)

In the right hand side of the above equation the multinomial
beta function can be expressed in terms of the gamma func-
tion as follows

B (a) =

∏J
i=1 Γ (ai)

Γ
(∑J

i=1 ai

) , a = (a1, . . . , aJ) (6)

Distribution of the means are based on independent multi-
variate normal conjugate priors, conditional to the covari-
ance matrices, as follows

fμ|T (μ|T ) =
J∏

j=1

N
(
μ j; m0

j ,
(
b0

jT j

)−1
)

(7)

where μ = (μ1, . . . , μJ) and T = (T1, . . . ,TJ). And distribu-
tion of the precision matrices are given using independent
Wishart prior distributions,

fT (T ) =
J∏

j=1

W
(
T j; υ

0
j ,Σ

0
j

)
(8)

where

W
(
T j; υ

0
j ,Σ

0
j

)

=

∣∣∣T j

∣∣∣ 1
2

(
υ0

j−d−1
)
exp tr

{
− 1

2Σ
0
jT j

}

2
υ0

j d

2 π
d(d−1)

4

∣∣∣∣Σ0
j

∣∣∣∣−
n
2 ∏d

i=1 Γ
(

1
2

(
υ0

j + 1 − i
)) (9)

As a result, the joint distribution of all of the random vari-
ables is given by

f (y, z, ψ) = f (y, z|ψ) f (α) f (μ|T ) f (T ) (10)

The quantities a0
j , m0

j , b0
j , υ

0
j and Σ0

j are called hyperparam-
eters. Using the variational approximations, the posterior
distributions are

f̂α (α) = Dir
(
α; a1, . . . , a j

)
(11)

f̂μ|T (μ|T ) =
J∏

j=1

N
(
μ j; mj,

(
b jT j

)−1
)

(12)

f̂T (T ) =
J∏

j=1

W
(
T j; υ j,Σ j

)
(13)

where the hyperparameters given by

a j = a(0)
j +

N∑
i=1

Φi, j (14)

b j = b(0)
j +

N∑
i=1

Φi, j (15)

mj =

b(0)
j m(0)

j +
N∑

i=1
Φi, jyi

b j
(16)

Σ j = Σ
(0)
j +

N∑
i=1

Φi, jyiy
T
i + b(0)

j m(0)
j m(0)T

j − b jmjm
T
j (17)

υ j = υ
(0)
j +

N∑
i=1

Φi, j (18)

where

Φi, j =
ϕi, j∑J
j=1 ϕi, j

(19)

ϕi, j = α̃ jT̃
1/2
j e

− 1
2 (yi−mj)T

E[T j](yi−mj)− d

(2b j) (20)

α̃ j = exp

[∫
f̂ (α) logα jdα

]
(21)

T̃ j = exp

[∫
f̂
(
T j

)
log

∣∣∣T j

∣∣∣ dT j

]
(22)

E
[
T j

]
= υ jΣ

−1
j (23)

It is worth noting that if the previous procedure is done us-
ing only the local data (measurements) of a node, the result-
ing method is called a standard VB algorithm. On the other
hand, in a centralized VB algorithm, all of the nodes of the
sensor network send their raw data (measurements) to a cen-
ter node where the VB algorithm (the previous procedure) is
executed.

3.2 Distributed Variational Bayesian Algorithm

In this subsection, observed data is assumed to be distributed
in a network with M nodes using a finite mixture of compo-
nents. Since the observed data is distributed in M different
nodes, first we define a vector of sufficient statistics as:

S t
j =

{
GS S 1t

j,GS S 2t
j,GS S 3t

j

}
(24)

where j and t are the component and iteration number, re-
spectively. The global sufficient statistics are defined as fol-
lows

GS S 1t
j �

M∑
m=1

Nm∑
i=1

S S 1t
m,i, j (25)

GS S 2t
j �

M∑
m=1

Nm∑
i=1

S S 1t
m,i, jym,i (26)
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GS S 3t
j �

M∑
m=1

Nm∑
i=1

S S 1t
m,i, jym,iy

T
m,i (27)

where the S S 1t
m,i, j is the local quantity calculated at node m

and iteration t as follows

S S 1t
m,i, j =

ϕt
m,i, j∑J

j=1 ϕ
t
m,i, j

(28)

ϕt
m,i, j = α̃

t−1
j

(
T̃ t−1

j

)1/2
e
− 1

2

(
ym,i−mt−1

j

)T
E
[
T t−1

j

](
ym,i−mt−1

j

)
− d(

2bt−1
j

)

(29)

At node m, the local summary statistics can be computed
using:

LS S 1t
m, j =

Nm∑
i=1

S S 1t
m,i, j (30)

LS S 2t
m, j =

Nm∑
i=1

S S 1t
m,i, jym,i (31)

LS S 3t
m, j =

Nm∑
i=1

S S 1t
m,i, jym,iy

T
m,i (32)

Then the global sufficient statistics can be updated using the
following equations, and it will be sent to the next node
(node m + 1)

GS S 1t
j = GS S 1t

j + LS S 1t
m, j (33)

GS S 2t
j = GS S 2t

j + LS S 2t
m, j (34)

GS S 3t
j = GS S 3t

j + LS S 3t
m, j (35)

After updating the global sufficient statistics, the hyperpa-
rameters can be updated using the following equations,

at
j = a0

j +GS S 1t
j (36)

bt
j = b0

j +GS S 1t
j (37)

mt
j =

b0
jm

0
j +GS S 2t

j

bt
j

(38)

Σt
j = Σ

0
j +GS S 3t

j + b0
jm

0
jm

0T

j − bt
jm

t
jm

tT

j (39)

υt
j = υ

0
j +GS S 1t

j (40)

It is worth noting that using the vector of sufficient statistics;
each node can compute all of the required parameters based
on the variational Bayesian algorithm. Finally the mean of
the parameters μt

j, T t
j and αt

j can be computed using the fol-
lowing equations,

E
[
μt

j

]
= mt

j (41)

E
[
T t

j

]
= υt

j

(
Σt

j

)−1
(42)

αt
j =

GS S 1t
j

N
(43)

whrere N =
∑M

m=1 Nm. This process iterates until the conver-
gence criteria is met.

4. The Mobile Agent Based Distributed Variational
Bayesian (MABDVB) Algorithm

In this section a novel MABDVB algorithm is proposed for
density estimation and clustering of a finite mixture model
in a distributed sensor network. It is assumed that the nodes
of the network can be organized in a multiring topology.
Consider a distributed sensor network of M nodes, a fusion
center, and K mobile agents. Suppose that the nodes can be
organized in K independent routes. In the proposed algo-
rithm, the agents move throughout the independent routes
and collect the information while executing the VB algo-
rithm in an iterative manner. For example, at iteration t,
the agents migrate through different nodes of the different
routes; execute the VB algorithm at each node. Afterwards,
the agents carry the resulted sufficient statistics to the next
node in each route. Finally, all agents will carry the suf-
ficient statistics of each route to the fusion center, and the
sufficient statistics of all routes will be combined to compute
a new global sufficient statistics. Then, at iteration t + 1, the
mobile agents will carry the updated global sufficient statis-
tics vector to different routes, where it will be updated using
the local measurements. This procedure will be done iter-
atively until convergence is reached. The MABDVB algo-
rithm will be presented in details in the following.

At iteration t+1 of the MABDVB algorithm, the mobile
agents carry the global sufficient statistics values GS S 1t

j,
GS S 2t

j and GS S 3t
j from the node m − 1 to node m in each

route, and the hyperparameters will be calculated using the
Eqs. (36)–(40). Then, the mean of the parameters μt

j and T t
j

will be computed using Eqs. (41) and (42). Using Eq. (28)
the value of S S 1t

m,i, j can be calculated and consequently
from the Eqs. (30)–(32) the local sufficient statistics will be
calculated. Finally, at node m in each route the mixture
probability and the global sufficient statistics will be updated
using the following equations,

αt+1
m, j =

LS S 1t
m, j

Nm
(44)

GS S 1t+1
j = GS S 1t

j + LS S 1t+1
m, j − LS S 1t

m, j (45)

GS S 2t+1
j = GS S 2t

j + LS S 2t+1
m, j − LS S 2t

m, j (46)

GS S 3t+1
j = GS S 3t

j + LS S 3t+1
m, j − LS S 3t

m, j (47)

Then the mobile agents will carry the updated global
sufficient statistics values

{
GS S 1t+1

j , GS S 2t+1
j , GS S 3t+1

j

}
to the next node and the aforementioned process will be iter-
ated. After the last node, mobile agents will carry the global
sufficient statistics vectors to the fusion center. The preced-
ing process will be done by all of mobile agents in different
routes independently. Injection of the mobile agents in dif-
ferent routes at the beginning of each iteration and receive
them and fusion of the global sufficient statistics of all the
routes after the last iteration is done by fusion center. Sup-
pose that the final global sufficient statistics vector of the
k’th route denoted by GS S t

k. After the last iteration, when
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the fusion center receives the global sufficient statistics vec-
tors, they will be averaged using the following equation.

GS S t+1 =

K∑
k=1

Dk .GS S t
k

K∑
k=1

Dk

(48)

where Dk denotes the number of data points in k’th route,
and the total number of routes in the network is denoted by
K. At the next iteration t + 1, the resulting global sufficient
statistics vector (GS S t+1) will be carried to different routes
by the mobile agents, and the preceding procedure will be
repeated until reaching convergence.

In the proposed MABDVB algorithm, the variations of
the log-likelihood function can be used to obtain the conver-
gence criterion. If this variation is less than or equal to a
certain threshold value, the algorithm will stop. In the pro-
posed algorithm, after updating parameters using the local
data of each node, the value of local log-likelihood function
corresponding to each can be calculated using the following
equation,

L
(
θt
)
≡

N∑
i=1

log

⎛⎜⎜⎜⎜⎜⎜⎝
J∑

j=1

αt
jN

(
yi| μt

j,T
t
j

)⎞⎟⎟⎟⎟⎟⎟⎠ (49)

The MABDVB algorithm stops whenever L
(
θt+1

)
− L (

θt)
become less than the convergence threshold value.

The proposed MABDVB algorithm can be represented
in a stepwise procedure as follows,

1. A mobile agent is assigned to each dependent route.
2. Mobile agents move through the assigned routes, and

each agent performs the following,

• Calculates the local sufficient statistics using
(28)–(32) based on local measurements.
• Updates the values of the mixture probability and

global sufficient statistics using (44)–(47).
• Updates the values of hyperparameters using

(36)–(40), and then calculates the mean of the pa-
rameters (41) and (42).

3. Each mobile agent carries the global sufficient statistics
vector of its corresponding route to the fusion center to
be combined using (48).

4. If the convergence criterion is reached, the algorithm
will be stopped; otherwise, the resulting global suffi-
cient statistics vector is sent to different routes using
the mobile agents, and step 2 will be repeated.

5. Convergence Analysis of the Proposed Algorithm

In the variational approximation, the variational free en-
ergy F

(
f̂z, f̂θ

)
provides a lower bound on the log-likelihood

value. At each iteration of the variational Bayesian algo-
rithm, the value of F will be optimized with respect to the
selected posterior distributions f̂z and f̂θ. It should be noted

Fig. 1 Graphical representation of the negative free energy

that f̂θ and f̂z are the density of the parameters vector θ and
missing variable z, respectively. The negative free energy
can be represented as

F
(

f̂Z , f̂θ
)
=

∫ ∑
Z

f̂θ (θ) f̂Z (z) log
f (y, z, θ)

f̂θ (θ) f̂Z (z)
dθ

= log f (y) − KL
(

f̂θ
∥∥∥ fθ

)
= L (y) − KL

(
f̂θ
∥∥∥ fθ

)
(50)

where KL
(

f̂θ
∥∥∥ fθ

)
represents the Kullback-Leibler (KL) di-

vergence criteria between f̂θ and fθ. A graphical representa-
tion of the negative free energy is also illustrated in Fig. 1.
This figure shows that F provide a lower bound on the log-
likelihood function, and the difference between these values
is KL divergence criterion.

In the proposed MABDVB algorithm, it is assumed
that the data sets of different nodes are independent. As a
result we have f̂z =

∏M
m=1 f̂zm and f̂θ =

∏M
m=1 f̂θm . There-

fore, the F function is equal to the sum of local negative
free energy over all of the network nodes as follows,

F
(

f̂θ, f̂Z
)
=

M∑
m=1

Fm

(
f̂θm , f̂Zm

)
(51)

where Fm is the local negative free energy at node m, and it
can be written as

F
(

f̂θ, f̂Z
)
=

M∑
m=1

Fm

(
f̂θm , f̂Zm

)
=

M∑
m=1

⎡⎢⎢⎢⎢⎢⎢⎣
∫ ∑

Zm

f̂θm (θm) f̂Zm (Zm) log
f (Ym,Zm, θm)

f̂θ (θm) f̂Z (Zm)
dθm

⎤⎥⎥⎥⎥⎥⎥⎦
(52)

To improve convergence of the proposed MABDVB al-
gorithm, it should be shown that the value of F increasingly
moves toward its maximum value at each node. In other
words, it should be exposed that F is a non-decreasing func-
tion. In this case, assuming that F̄ is a local maximum value
and that initial values of the parameters are selected appro-
priately, the proposed algorithm will eventually converge to
its fixed point.

In the proposed MABDVB algorithm, at each node m,
first the value of f̂Zm (zm) is calculated such that the value
of Fm is maximized with respect to f̂Zm , then the value of
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f̂θm (θm) is calculated to maximize Fm with respect to f̂θm . In
other words, updating the value of local sufficient statistics
maximizes the value of Fm with respect to f̂Zm , and by cal-
culating the hyperparameters the value of Fm will be maxi-
mized with respect to f̂θm . Therefore, the final value of Fm

in each route will be maximized. At the end of each itera-
tion, the new global sufficient statistic values of all agents
will be calculated using (48) in the fusion center. In fact,
the new global sufficient statistics obtained by averaging the
global sufficient statistics of all the mobile agents that re-
sults in averaging the F values of all of the routes. It is
shown that the F values of all of the routes have increased
(or at least not decreased), thus their average value will not
decrease. Therefore, it can be concluded that MABDVB is a
non-decreasing algorithm, and the proposed algorithm will
be converged to the optimal parameters.

6. Simulation Results

In this section the performance of the proposed MABDVB
algorithm will be illustrated in different one-dimensional
and two-dimensional data cases. The MATLAB software
has been used for the simulations.

6.1 One Dimensional Data

Consider a single-ring sensor network that has 50 nodes and
a fusion center. Each node contains 100 sensor measure-
ments. It is assumed that measurements of each node can
be modeled with a mixture of Gaussians. Consider a 1-D
data set simulated from a three-component Gaussian mix-
ture given by

0.2N( 3 , 0.25 ) + 0.3N( 0 , 0.25 ) + 0.5N(−2 , 0.25 )

The true and estimated parameters obtained from
MABDVB and centralized VB algorithms are presented in
Table 1. The values of the estimated means and variances
of the parameters are presented in this table. As it is shown
in this table, very good estimates of the true values have
been obtained. The estimated values using the MABDVB
algorithm are closer to the true values than those using the
centralized VB algorithm. The true density of the simulated
data set and the density fitted by MABDVBA and central-
ized VBA are also illustrated in Fig. 2. Referring to this
figure, the estimated probability density function using both
algorithms closely approximates the true one; however the
MABDVB algorithm is more accurate than the centralized
one. Figure 3 can be used for comparison between the con-
vergence speed of the proposed algorithm and the central-
ized VB algorithm. In both centralized and MABDVB algo-
rithms using equal number of nodes and data points at each
node of the network, the iteration number of both algorithm
can be seen in Fig. 3. As shown in this figure, the number
of iterations of the MABDVB algorithm is less than that of
the centralized for different number of nodes. Indeed, faster
convergence rate of the proposed MABDVB algorithm is
obvious.

Table 1 True and estimated parameters using the MABDVB and cen-
tralized VB algorithms at node 1

Component 1 2 3

True values
means 3 0 −2
variances 0.25 0.25 0.25

Estimated values means 3.03 −0.132 −1.982
using centralized VB variances 0.267 0.256 0.152
Estimated values means 3.017 −0.008 −1.998
using MABDVB variances 0.238 0.251 0.238

Fig. 2 True and fitted Density function using MABDVBA and central-
ized VBA

Fig. 3 Number of iterations of MABDVB and Centralized VB algo-
rithms for different number of nodes.

6.2 Two Dimensional Data

Traffic modeling, estimation, and prediction can be consid-
ered as a duty of intelligent transportation systems. In this
subsection the proposed MABDVB algorithm will be used
to estimate the density function in a freeway. Traffic flow
and mean traffic speed are the parameters to be estimated. A
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Fig. 4 Data distribution

statistical GMM has been considered, and traffic measure-
ments, are obtained by some inductive loop detectors. The
proposed MABDVB algorithm is used to estimate the pa-
rameters of the GMM in a distributed manner. Consider a
traffic sensor network with 50 nodes (M = 50) for simula-
tion. The sensors are placed in a square 25km × 25km based
on traffic engineering principal and the best geographical
position. Each node has 100 data observations (Nm = 100),
and the observations are generated from three Gaussian
components (J = 3). The data distribution is shown in
Fig. 4. Each of the Gaussian components is a 2D Gaussian
density, which can represent 2D environment data clusters.
In the first 20 nodes (nodes 1 to 20), 40% of observations
come from the second Gaussian component, and the other
60% of observations evenly come from the other two Gaus-
sian components. In the next 15 nodes (nodes 21 to 35), 40%
of observations come from the third component, and in the
last 15 nodes (36 to 50), 40% of observations come from
the first component. Other observations of these 30 nodes
evenly come from the other two Gaussian components.

For comparison, first the standard VB algorithm is ex-
ecuted in each node using only local data. After that, the
proposed MABDVB algorithm will be used to estimate the
parameters in all nodes. True and fitted means and variances
using the standard VBA and the proposed algorithm are pre-
sented in Table 2. The estimated mean values of flow using
standard VB algorithm and proposed algorithm are shown in
Fig. 5, and the estimated speed mean values using the men-
tioned algorithms are represented in Fig. 6.

As shown, the curve of the estimated mean values of
each component using MABDVB algorithm are almost con-
stant and very close to the true values for all nodes. There-
fore, the proposed algorithm provides a more accurate esti-
mate of the parameters than the standard VB algorithm. The
true density of the simulated data set and the density fitted
by MABDVB and centralized VB algorithms are also illus-
trated in Fig. 7. Referring to this figure, the estimated prob-

Table 2 True and estimated parameters using the MABDVB and cen-
tralized VB algorithms.

Component 1, 2, 3

True values
Means

[
26
107

]
,

[
31

101

]
,

[
36
93

]

Covariances

[
5 0
0 1

]
,

[
5 0
0 1

]
,

[
5 0
0 1

]

Estimated values Means

[
26.04
106.98

]
,

[
30.93

100.99

]
,

[
36.01
93.01

]

(centralized VB) Covariances

[
4.9 0.0
0.0 1.0

]
,

[
5.3 0.1
0.1 1.0

]
,

[
5.0 0.1
0.1 0.9

]

Estimated values Means

[
25.98

107.01

]
,

[
30.98

101.00

]
,

[
36.02
92.96

]

(MABDVB) Covariances

[
4.8 0.1
0.1 1

]
,

[
4.9 0.0
0.0 1.0

]
,

[
5.1 0.0
0.0 0.9

]

Fig. 5 Estimated mean values of flow using MABDVB (solid line) and
standard VB (dashed line) algorithms in a network with 50 nodes.

Fig. 6 Estimated mean values of speed using MABDVB (solid line) and
standard VB (dashed line) algorithms in a network with 50 nodes.
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Fig. 7 True density of simulated data (solid ellipses), the fitted Density
using centralized VB (dotted ellipses) and MABDVB (dashed ellipses) al-
gorithms.

ability density function using both algorithms closely ap-
proximates the true one; however the MABDVB algorithm
is more accurate than the centralized one.

7. Conclusion

In this paper, a MABDVB algorithm has been proposed for
distributed density estimation in sensor networks. In the
proposed method, the mobile agents execute the VB algo-
rithm by moving between different nodes and carry the re-
sulting sufficient statistics vector to the fusion center at the
end of iterations to be updated. Convergence of the pro-
posed method has been also studied, and it has been proven
that the estimated parameters will eventually converge to
the true values. Also, the proposed method has been used
for flow and speed density prediction with distributed traffic
sensors. The simulation results illustrate the good perfor-
mance of the proposed algorithm for one-dimensional and
two-dimensional data sets.
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