
2986
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

PAPER Special Section on Parallel and Distributed Computing and Networking

Fully Parallelized LZW Decompression for CUDA-Enabled GPUs∗

Shunji FUNASAKA†, Student Member, Koji NAKANO†a), and Yasuaki ITO†, Members

SUMMARY The main contribution of this paper is to present a work-
optimal parallel algorithm for LZW decompression and to implement it in a
CUDA-enabled GPU. Since sequential LZW decompression creates a dic-
tionary table by reading codes in a compressed file one by one, it is not easy
to parallelize it. We first present a work-optimal parallel LZW decompres-
sion algorithm on the CREW-PRAM (Concurrent-Read Exclusive-Write
Parallel Random Access Machine), which is a standard theoretical parallel
computing model with a shared memory. We then go on to present an effi-
cient implementation of this parallel algorithm on a GPU. The experimental
results show that our GPU implementation performs LZW decompression
in 1.15 milliseconds for a gray scale TIFF image with 4096 × 3072 pixels
stored in the global memory of GeForce GTX 980. On the other hand, se-
quential LZW decompression for the same image stored in the main mem-
ory of Intel Core i7 CPU takes 50.1 milliseconds. Thus, our parallel LZW
decompression on the global memory of the GPU is 43.6 times faster than
a sequential LZW decompression on the main memory of the CPU for this
image. To show the applicability of our GPU implementation for LZW
decompression, we evaluated the SSD-GPU data loading time for three
scenarios. The experimental results show that the scenario using our LZW
decompression on the GPU is faster than the others.
key words: data compression, big data, parallel algorithm, GPU, CUDA

1. Introduction

A GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [1]–[3]. Latest GPUs are designed for gen-
eral purpose computing and can perform computation in ap-
plications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application
developers [4], [5]. NVIDIA provides a parallel comput-
ing architecture called CUDA (Compute Unified Device Ar-
chitecture) (Compute Unified Device Architecture) [6], the
computing engine for NVIDIA GPUs. CUDA gives devel-
opers access to the virtual instruction set and memory of
the parallel computational elements in NVIDIA GPUs. In
many cases, GPUs are more efficient than multicore proces-
sors [7], Since they have thousands of processor cores and
very high memory bandwidth.

There is no doubt that data compression is one of the
most important tasks in the area of computer engineering. In

Manuscript received January 6, 2016.
Manuscript revised May 6, 2016.
Manuscript publicized August 25, 2016.
†The authors are with Department of Information Engineering,

Hiroshima University, Higashihiroshima-shi, 739–8527 Japan.
∗The preliminary version of this paper has been presented at

the 11th International Conference on Parallel Processing and Ap-
plied Mathematics (PPAM 2015).

a) E-mail: nakano@hiroshima-u.ac.jp
DOI: 10.1587/transinf.2016PAP0011

particular, almost all image data are stored in files as com-
pressed data formats. There are basically two types of image
compression methods: lossy and lossless [8]. Lossy com-
pression can generate smaller files, but some information in
original files are discarded. Hence, decompression of lossy
compressed images does not generate files identical to the
original images. On the other hand, lossless compression
creates compressed files, from which we can obtain the ex-
actly same original files by decompression. Hence, lossless
compression can be used for more than images. In this pa-
per, we focus on LZW (Lempel-Ziv-Welch) compression,
which is the most well known patented lossless compres-
sion method [9] used in Unix file compression utility “com-
press” and in GIF image format. Also, LZW compression
option is included in TIFF (Tagged Image File Format) file
format standard [10], which is commonly used in the area
of commercial digital printing. The LZW compression con-
verts an input string of 8-bit numbers into a string of codes
with 9-12 bits. The idea of LZW compression is to create a
dictionary to map a substring of 8-bit numbers into a code.
The dictionary is created by reading the input string from
the beginning. The LZW compression need to check if a
current substring is in the dictionary. Thus, implementation
of the dictionary is not trivial. Usually, it is implemented
using a hash table. On the other hand, LZW decompres-
sion checks if a current code is in the dictionary and its im-
plementation is not difficult. Actually, it is easy to write a
sequential program for LZW decompression running linear
time. On the other hand, LZW compression and decom-
pression are hard to parallelize, because they use dictionary
tables created by reading input data one by one. Parallel
algorithms for LZW compression and decompression have
been presented [11], [12]. However, processors perform
compression and decompression in block-wise in the sense
that the input data is partitioned into blocks of size several
Kbytes each and each block is processed sequentially using
a single processor. In other words, multiple processors are
used but each processor performs sequential LZW compres-
sion/decompression independently. Hence, such block-wise
parallel algorithms have low parallelism, and they achieved
a speed up factor of no more than 3. In [13], a CUDA im-
plementation of LZW compression has been presented. But,
it achieved only a speedup factor less than 2 over the CPU
implementation using MATLAB. Also, several GPU imple-
mentations of dictionary based compression methods have
been presented [14], [15], but they are not LZW compres-
sion. As far as we know, no parallel LZW decompression

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

FUNASAKA et al.: FULLY PARALLELIZED LZW DECOMPRESSION FOR CUDA-ENABLED GPUS
2987

using GPUs has not been presented. In this paper, we fo-
cus on LZW decompression. LZW decompression may be
executed more frequently than compression, because each
image/data is compressed and written in a file once, but it
is decompressed whenever the original image/data is used.
Hence, LZW decompression may be used more frequently
and more important than LZW compression.

The main contribution of this paper is to present a par-
allel algorithm for LZW decompression and the GPU im-
plementation. For the purpose of revealing parallelism of
LZW decompression, we use the PRAM (Parallel Random
Access Machine) [16]–[18], the most popular abstract par-
allel computer for designing parallel algorithms. It is well
known that the RAM (Random Access Machine) [19] is
used to evaluate the performance such as time complexity
and space complexity of sequential algorithms. Similarly,
the PRAM has been used as a standard theoretical paral-
lel computing model to evaluate the performance of parallel
algorithms. Thus, many researchers have been devoted to
design parallel algorithms on the PRAM. The PRAM has
a set of processors and a shared memory. Every proces-
sor works synchronously and can access any address of the
shared memory. So, it is possible that two or more proces-
sors can access the same address at the same time. We as-
sume that the PRAM is CREW (Concurrent Read Exclusive
Write), in which multiple processors can read from the same
address at the same time but cannot write a same address
simultaneously. The CREW-PRAM is the most popular as-
sumption in terms of limitation of simultaneous access to the
shared memory. Since a lot of parallel algorithms have been
developed on the CREW-PRAM, we can use these parallel
algorithms as sub-algorithms. For example, our LZW de-
compression parallel algorithm uses a parallel algorithm for
computing the prefix-sums of m numbers in O(log m) time
using m

log m processors on the CREW-PRAM.
Quite surprisingly, our LZW decompression is fully

parallelized in the sense that each processor is assigned to
an input code in the compressed string of codes and con-
verts the assigned code into the corresponding original in-
put string of characters in parallel. The idea of our LZW
decompression is to generate a pointer-character table from
the input code sequence. We first show that a parallel algo-
rithm for LZW decompression on the CREW-PRAM. More
specifically, we show that LZW decompression of a string
with m codes can be done in O(Lmax + log m) time using m
processors on the CREW-PRAM, where Lmax is the maxi-
mum length of characters assigned to a code. We also eval-
uate the work of this parallel algorithm, which is the total
number of operations performed by processors. We prove
that our parallel LZW decompression performs O(n) work,
where n is the length of decompressed string, k is the num-
ber of characters in the alphabet, and the work is the to-
tal number of instructions executed by all processors on the
CREW-PRAM. Since optimal sequential LZW decompres-
sion takes at least O(n) time, our parallel LZW decompres-
sion algorithm is work-optimal.

We then go on to show an implementation of this par-
allel algorithm in CUDA architecture. The experimental re-
sults using GeForce GTX 980 GPU and Intel Core i7-4790
(3.66GHz) CPU show that our implementation on a GPU
achieves a speedup factor of 13.8-43.6 over a single CPU.
For example, LZW-compressed TIFF (Tagged Image File
Format) image “Flowers” with 4096 × 3072 pixels stored
in the global memory of the GPU can be decompressed in
1.15 milliseconds. Note that the data transfer time to the
global memory is not included. On the other hand, sequen-
tial LZW decompression for the same TIFF image stored
in the main memory of the CPU takes 50.1 milliseconds.
Thus, our LZW decompression on the GPU is 43.6 times
faster than that on the CPU for this image.

We focus on applications that perform some operations
for images/data stored in the SSD (Solid State Drive) us-
ing the GPU. For example, in the learning process of a deep
neural network using the GPU, a lot of images must be trans-
ferred to the global memory of the GPU. For this purpose,
we should minimize the time to load images stored in the
SSD into the global memory of the GPU. We define the
SSD-GPU data loading time as the time necessary to load
images stored in the SSD into the global memory, and eval-
uate this time for three scenarios as follows:
Scenario A: A non-compressed image is stored in the SSD.
They are transferred to the GPU via the host computer
(CPU).
Scenario B: An LZW-compressed image is stored in the
SSD. They are transferred to the host computer, and decom-
pressed in it. After that, the resulting non-compressed im-
ages are transferred to the GPU.
Scenario C: An LZW-compressed images is stored in the
SSD. They are transferred to the GPU through the host com-
puter, and decompressed in the GPU.

Our experimental results of the SSD-GPU data load-
ing time for these scenarios show that Scenario C is the best
among the three. Hence, our experiment results imply a very
strong fact: Even if the SSD is enough large and compres-
sion is not necessary to store all images/data in the SSD, we
should LZW-compress them and store in the SSD for the
purpose of leaning process on the GPU.

This paper is organized as follows. We first review
LZW compression/decompression algorithms in Sect. 2. We
also clarify the running time of LZW decompression algo-
rithm. We then go on to show a parallel algorithm for LZW
decompression on the CREW-PRAM and prove that it is
work optimal in Sect. 3. In Sect. 4, we present a GPU im-
plementation of this parallel decompression algorithm for
LZW-compressed TIFF images. Section 5 shows exper-
imental results using five LZW-compressed TIFF images.
Section 6 concludes our work.

2. LZW Compression and Decompression

The main purpose of this section is to review LZW compres-
sion/decompression algorithms, which are shown in Sect. 13
in [10]. In addition, we prove several important properties

2988
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Table 1 String stored in Ω, code table C, and output string Y for X = cbcbcbcda

i 0 1 2 3 4 5 6 7 8 -
xi c b c b c b c d a
Ω - c b c cb c cb cbc d a
C - 4 : cb 5 : bc - 6 : cbc - - 7 : cbcd 8 : da -
Y - 2 1 - 4 - - 6 3 0

Table 2 Code table C and the output string for 214630

i 0 1 2 3 4 5
yi 2 1 4 6 3 0
C - 4 : cb 5 : bc 6 : cbc 7 : cbcd 8 : da
X c b cb cbc d a

and evaluate the running time of LZW decompression algo-
rithm.

The LZW (Lempel-Ziv & Welch) [20] compression al-
gorithm converts an input string of characters into a string
of codes using a code table that maps strings into codes.
If the input is an image, characters may be 8-bit integers
representing intensity levels of pixels. The algorithm reads
characters in an input string one by one and adds an entry
in a code table (or a dictionary). At the same time, it writes
codes by looking up the code table. Let X = x0x1 · · · xn−1

be an input string of characters and Y = y0y1 · · · ym−1 be an
output string of codes, where n and m are the length of input
and output strings. Also, let k be the number of characters
in the input alphabet. If 8-bit integers used as characters,
then k = 28 = 256. We will explain the details of the al-
gorithm using an example, in which an input is a string of
k = 4 characters a, b, c, and d. Let C be a code table, which
determines a mapping of a code to a string, where a code
is a non-negative integer. Initially, C(0) = a, C(1) = b,
C(2) = d, and C(3) = d. By procedure Add, a new code
is assigned to a string. For example, if Add(cb) is executed
after initialization of C, we have C(4) = cb. The LZW com-
pression algorithm is described as follows:

[LZW compression algorithm]
1 Ω←NULL string (i.e. string of length 0);
2 for i← 0 to n − 1 do
3 if(Ω · xi is in C) Ω← Ω · xi;
4 else Output(C−1(Ω)); Add(Ω · xi); Ω← xi;
5 Output(C−1(Ω));

In this algorithm, Ω is a variable to store a string and C−1 is
the inverse of C. For example, C−1(a) = 0 because C(0) =
a. Also, “·” denotes the concatenation of strings/characters.
Further, “Ω · xi is in C” is true if there exists j such that
C(j) = Ω · xi.

Table 1 shows how an input string cbcbcbcda is com-
pressed by LZW compression algorithm. First, sinceΩ·x0 =

c is in S , Ω ← c is performed. Next, since Ω · x1 = cb is
not in S , Output(C−1(c)) and Add(cb) are performed. In
other words, C−1(c) = 2 is output and we have C(4) = cb.
Also, Ω← x1 = b is performed. It should have no difficulty
to confirm that string 214630 is output by this algorithm.

Next, we will show LZW decompression algorithm.
Again, we use a code table C and initialize it as the same

as LZW compression. Let C1(i) denote the first character
of code i. For example C1(4) = c if C(4) = cb. Similarly
to LZW compression, the LZW decompression algorithm
reads a string Y of codes one by one and adds an entry of
the code table. At the same time, it writes a string X of char-
acters. The LZW decompression algorithm is described as
follows:

[LZW decompression algorithm]
1 Output(C(y0));
2 for i← 1 to m − 1 do
3 if(C(yi) has been registered)
4 Output(C(yi)); Add(C(yi−1) ·C1(yi));
5 else
6 Output(C(yi−1) ·C1(yi−1)); Add(C(yi−1) ·C1(yi−1));

Table 2 shows the decompression process for a code
string 214630. First, C(2) = c is output. Since y1 = 1 is
in C, C(1) = b is output and Add(cb) is performed. Hence,
C(4) = cb holds. Next, since y2 = 4 is in C, C(4) = cb is
output and Add(bc) is performed. Thus, C(5) = bc holds.
Since y3 = 6 is not in C, C(y2) · C1(y2) = cbc is output and
Add(cbc) is performed. The reader should have no difficulty
to confirm that cbcbcbcda is output by this algorithm, and
the generated code table is the same as that generated by
LZW compression.

For later reference, we will prove the following lemma
for LZW compression and decompression:

Lemma 1: Let k, n, m be the number of characters in input
alphabet, the length of input/output string of characters, and
the length of output/input string of codes for LZW compres-
sion/decompression, respectively. We have: (1) Add is per-
formed m−1 times, (2) m ≤ n always holds, and (3) the total
length L(k) + L(k + 1) + · · · + L(k + m − 2) of strings added
in code table C is equal to n + m − 2.

We will prove this lemma for the LZW compression. The
readers should have no difficulty to prove for the LZW de-
compression.
Proof: When Output in line 4 is executed, Add is also per-
formed. Further, Output in line 5 is executed once. Since
Output is executed m times, Add is performed m − 1 times.

When i = 0 in for-loop of line 2, Ω · xi (= x0) in line
3 must be in C. Also, each Output outputs one code in Y .
Hence, line 4 is executed at most n − 1 times. Since Add in

FUNASAKA et al.: FULLY PARALLELIZED LZW DECOMPRESSION FOR CUDA-ENABLED GPUS
2989

Table 3 The values of p, p∗, l, Cl, and C for Y = 214630

i 0 1 2 3 4 5 6 7 8 9
p(i) NULL NULL NULL NULL 2 1 4 6 3 0
p∗(i) - - - - 2 1 2 2 3 0
L(i) 1 1 1 1 2 2 3 4 2 1
Cl(i) a b c d b c c d a -
C(i) a b c d cb bc cbc cbcd da -

line 4 is performed m − 1 times, we have m ≤ n.
LZW compression algorithm performs Output(C−1(Ω))

and Add(Ω · xi) in line 4 at the same time. Hence, when yi

(0 ≤ i ≤ m − 2) is output by Output(C−1(Ω)), Ω = C(yi)
and the length of Ω · xi is L(yi) + 1. Thus, a string of length
L(yi) + 1 is added to code table C by Add(Ω · xi). Also,
when Output(C−1(Ω)) in line 5 is performed, Ω = xn−1 and
L(ym−1) = 1. Thus, we have,

k+m−2∑
i=k

L(i) =
m−2∑
i=0

(L(yi) + 1)

= (
m−1∑
i=0

L(yi)) − L(ym−1) + m − 1=n + m − 2.

�
We will prove that sequential LZW decompression can

be done in O(n) time. We assume that code table C is imple-
mented as an array of linked lists. The array has k + m − 1
elements, each of which is a pointer to a linked lists. For
example, if C(7) = cbcd then the 7-th element of the ar-
ray stores a pointer to a linked list storing cbcd. Recall that
C(i) = i for all i (0 ≤ i ≤ k − 1). Hence, it is not neces-
sary to initialize the first k elements in C. If the value of
C(i) (0 ≤ i ≤ k − 1) is necessary, we can return i without
accessing C(i). Thus, we can omit the initializing the first
k elements of C. Using the array of linked list for C, “yi

is in C” in line 3 can be determined in O(1) time. Further,
Output totally outputs n characters, and totally n + m − 2
characters are registered to C by Add. Therefore, the run-
ning time is O(n + m − 2) = O(n), and we have,

Lemma 2: LZW decompression algorithm runs O(n) time.

Since at least Ω(n) time is necessary to output n characters,
this LZW decompression algorithm is optimal in the sense
that no algorithm can perform LZW decompression faster
than O(n).

Implementation of LZW compression is not trivial. It
is difficult to determine if “Ω · xi is in C” in O(1) time. The
implementation of code table C must be a hash table, and
we need to take care of conflicts. Hence, LZW compres-
sion, which is out of scope of this paper, is harder than LZW
decompression. Further, parallelizing LZW compression is
very hard. So for, the speedup factor of GPU LZW com-
pression over the sequential algorithm can be only 3 [12].

3. Parallel LZW Decompression

This section shows our parallel algorithm for LZW decom-
pression.

Again, let X = x0x1 · · · xn−1 be a string of characters.
We assume that characters are selected from an alphabet (or
a set) with k characters α(0), α(1), . . ., α(k − 1). We use
k = 4 characters α(0) = a, α(1) = b, α(2) = c, and α(3) = d,
when we show examples as before. Let Y = y0y1 · · · ym−1

denote the compressed string of codes obtained by the LZW
compression algorithm. In the LZW compression algorithm,
each of the first m − 1 codes y0, y1, . . . , ym−2 has a corre-
sponding Add operation. Hence, the argument of code table
C takes an integer from 0 to k + m − 2.

Before showing the parallel LZW compression algo-
rithm, we define several notations. We define pointer table
p using input string Y of codes as follows:

p(i) =

{
NULL if 0 ≤ i ≤ k − 1
yi−k if k ≤ i ≤ k + m − 1

(1)

We can traverse pointer table p until we reach NULL. Let
p0(i) = i and p j+1(i) = p(p j(i)) for all j ≥ 0 and i. In
other words, p j(i) is the code where we reach from code
i in j pointer traversing operations. Let L(i) be an integer
satisfying pL(i)(i) = NULL and pL(i)−1(i) � NULL. Also, let
p∗(i) = pL(i)−1(i). Intuitively, p∗(i) corresponds to the dead
end from code i along pointers. Further, let Cl(i) (0 ≤ i ≤
k + m − 2) be a character defined as follows:

Cl(i) =

{
α(i) if 0 ≤ i ≤ k − 1
α(p∗(i + 1)) if k ≤ k + m − 2

(2)

It should have no difficulty to confirm that Cl(i) is the last
character of C(i), and L(i) is the length of C(i). Using Cl

and p, we can define the value of C(i) as follows:

C(i) = Cl(pL(i)−1(i)) ·Cl(pL(i)−2(i)) · · ·Cl(p0(i)). (3)

Table 3 shows the values of p, p∗, L, Cl, and C for Y =
214630.

We are now in a position to show parallel LZW de-
compression on the CREW-PRAM. Parallel LZW decom-
pression can be done in two steps as follows:

Step 1 Compute L, p∗, and Cl from code string Y .
Step 2 Compute X using p, Cl and L.

In Step 1, we use k processors to initialize the values
of p(i),Cl(i), and L(i) for each i (0 ≤ i ≤ k − 1). Also, we
use m processors and assign one processor to each i (k ≤ i ≤
k +m− 1), which is responsible for computing the values of
L(i), p∗(i), and Cl(i). The details of Step 1 of parallel LZW
decompression algorithm are spelled out as follows:

[Step 1 of the parallel LZW decompression algorithm]
1 for i← 0 to k − 1 do in parallel

2990
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

2 p(i)← NULL; L(i) = 1; Cl(i)← α(i);
3 for i← k to k + m − 1 do in parallel
4 p(i)← yi−k; p∗(i)← yi−k;
5 while(p(p∗(i)) � NULL)
6 L(i)← L(i) + 1; p∗(i)← p(p∗(i));
7 for i← k to k + m − 2 do in parallel
8 Cl(i)← α(p∗(i + 1));

Step 2 of the parallel LZW decompression algorithm uses
m processors to compute C(y0) · C(y1) · · ·C(ym−1), which is
equal to X = x0x1 · · · xn−1 as follows:
[Step 2 of the parallel LZW decompression algorithm]
Step 2-A: Compute the prefix-sums s(0), s(1), . . . , s(m − 1)
of L(y0), L(y1), . . . , L(ym−1) using m processors by the opti-
mal prefix-sums algorithm on the CREW-PRAM [16].
Step 2-B: Using one processor for each i (0 ≤ i ≤ m − 1),
L(yi) characters Cl(pL(yi)−1(yi)) ·Cl(pL(yi)−2(yi)) · · ·Cl(p0(yi))
(= C(yi)) are copied from xs(i−1) to xs(i)−1 as follows:

1 for i← 0 to m − 1 do in parallel
2 y(i)← yi;
3 for j← 1 to L(yi) do
4 xs(i)− j ← Cl(y(i));
5 y(i)← p(y(i));

Table 4 shows the values of L(yi), s(i), and C(yi) for
Y = 214630. By concatenating C(y0),C(y1), . . . ,C(y5), we
can confirm that X = cbcbcbcda is obtained.

We can omit for-loop in line 1, which initializes p(i),
L(i), Cl(i) for all i (0 ≤ i ≤ k − 1), because p(i) = NULL,
L(i) = 1 and Cl(i) = i. If these elements are accessed, we
can return the value without accessing these elements in an
obvious way. For example, when Cl(i) (0 ≤ i ≤ k − 1) is
read, we return i without accessing Cl(i).

Next, we will evaluate the computing time on the
CREW-PRAM. Let Lmax = max{L(i) | 0 ≤ i ≤ k + m − 2}.
Also, while-loop in line 5 is repeated at most L(i) ≤ Lmax

times for each i. Hence, for-loop in line 3 can be done in
O(Lmax) time using m processors. Also, processor working
for value i of for-loop in line 3 repeats while-loop in line 5
L(i) times. Thus, the work for this task is O(L(k)+L(k+1)+
· · ·+L(k+m−2)) = O(n+m−2) = O(n) from Lemma 1. It is
well known that the prefix-sums of m numbers can be com-
puted in O(log m) time with O(m) work using m/ log m pro-
cessors [16]. Hence, every s(i) is computed in O(log m) time
using m/ log m processors. After that, every C(yi) with L(yi)
characters is copied from xs(i)−1 down to xs(i−1) in O(Lmax)
time and O(n) work using m processors. Therefore, we have

Theorem 3: Parallel LZW decompression runs O(Lmax +

log m) time with total O(n) work using m processors on the

Table 4 The values of L(yi), s(i), and C(yi) for Y = 214630

i 0 1 2 3 4 5
yi 2 1 4 6 3 0

L(yi) 1 1 2 3 1 1
s(i) 1 2 4 7 8 9

C(yi) c b cb cbc d a

CREW-PRAM.

From Lemma 2, the work of our parallel LZW decom-
pression is equal to the running time of optimal sequential
LZW decompression, and our parallel LZW decompression
is work optimal.

4. GPU Implementation of LZW Decompression for
TIFF Images

The main purpose of this section is to describe a GPU im-
plementation of our parallel LZW decompression algorithm.
We focus on the decompression of TIFF image file com-
pressed by LZW compression.

4.1 TIFF Images

We assume that a TIFF image file contains a gray scale im-
age with 8-bit depth, that is, each pixel has intensity rep-
resented by an 8-bit unsigned integer. Since each of RGB
or CMYK color planes can be handled as a gray scale im-
age, it is obvious to modify gray scale TIFF image decom-
pression for color image decompression. As illustrated in
Fig. 1, a TIFF file has an image header containing miscel-
laneous information such as ImageLength (the number of
rows), ImageWidth (the number of columns), compression
method, depth of pixels, etc [10]. It also has an image di-
rectory containing pointers to the actual image data. For
LZW compression, an original 8-bit gray-scale image is par-
titioned into strips, each of which has one or several consec-
utive rows. The number of rows per strip is stored in the
image file header with tag RowsPerStrip. Each strip is com-
pressed independently, and stored as the image data. The
image directory has pointers to the image data for all strips.

Next, we will show how each strip is compressed.
Since every pixel has an 8-bit intensity level, we can think
that each strip is a string of integers in the range [0, 255].
Hence, codes from 0 to 255 are assigned to these integers.
Codes 256 (ClearCode) and 257 (EndOfInformation) are re-
served to clear the code table and to specify the end of the
data. Codes from 256 to 4094 are used to store strings. As
soon as entry for Code 4094 is added, ClearCode is output
the code table is re-initialized. The same procedure is re-
peated until all pixels in a strip are converted into codes.

Fig. 1 An image and TIFF image file

FUNASAKA et al.: FULLY PARALLELIZED LZW DECOMPRESSION FOR CUDA-ENABLED GPUS
2991

After the code for the last pixel in a strip is output, End-
OfInformation is written out. We can think that a code
string for a particular strip is separated by ClearCode. We
call each of them a code segment. Except the last one,
each code segment has 4094 − 257 = 3837 codes with
254 × 9 + 512 × 10 + 1024 × 11 + 2047 × 12 = 43234 total
bits.

We also assume that Differencing Predictor is used in
the TIFF images to get better compression rate. If Pre-
dictor is used, every pixel value is replaced by the differ-
ence with the left neighbor. More specifically, if pixel val-
ues of a row are x0, x1, x2, . . ., then they are replaced by
x0, x1 − x0, x2 − x1, . . . to obtain better compression rate.
Clearly, to obtain the original values, we need to compute
the prefix sums x′0, x

′
0 + x′1, x

′
0 + x′1 + x′2, . . . of decompressed

pixel values x′0, x
′
1, x
′
2, . . . obtained by LZW decompression.

Note that the subtraction and the addition is done for mod-
ulo 256. To compute the prefix-sums of 8-bit numbers ef-
ficiently, we store three 8-bit numbers in 32-bit unsigned
integers, and compute the prefix sums of three lines at the
same time. More specifically, suppose that we have three se-
quences X′ = x′0, x

′
1, . . ., Y ′ = y′0, y

′
1, . . ., and Z′ = z′0, z

′
1, . . .

of 8-bit numbers. Each x′i , y
′
i , and z′i are stored in one 32-bit

unsigned integers such that each of them uses 9 bits. Addi-
tional 1 bit is used to handle the carry of addition. We can
compute the pairwise sums x′i+x′i+1, y′i+y

′
i+1, and z′i+z′i+1, by

computing the addition of two 32-bit numbers and masking
out the carry bits using the bitwise AND operation. Using
this idea, we can obtain the original pixel values by comput-
ing the prefix-sums of 8 bits efficiently.

4.2 GPU Implementation of Parallel LZW Decompression

We assume that an LZW-compressed TIFF image is stored
in the global memory of the GPU. We have implemented our
parallel LZW decompression algorithm shown in Sect. 3 to
decompress this image stored in the global memory.

Figure 2 illustrates of the outline of our GPU imple-
mentation. Recall that each strip consists of one or more
code segments. Each block copies the first code segment of
the assigned strip in the global memory to the shared mem-
ory. After that, it decompresses the code segment by our
parallel LZW decompression algorithm. The resulting pixel
values are copied to the global memory. The same proce-
dure is repeated for all code segments in the assigned strip.

We will show that how a CUDA block with 1024
threads decompresses a code segment by our parallel LZW
decompression algorithm. Steps 1 and 2 of it are imple-
mented in the GPU as follows:
Step 1: Each CUDA block copies a code segment in the
global memory to the shared memory by an obvious way.
After that, it computes the values of each p(i), p∗(i), L(i),
and Cl(i). Since the table has less than 4096 entries, 1024
threads compute them in four iterations. In each iteration,
1024 entries of the tables are computed by 1024 threads.
For example, in the first iteration, L(i), p∗(i), and Cl(i) for
every i (0 ≤ i ≤ 1023) are computed. After that, these

Fig. 2 GPU implementation of parallel LZW decompression

values for every i (1024 ≤ i ≤ 2047) are computed. Note
that, in the second iteration, it is not necessary to execute
the while-loop in line 5 until p(p∗(i)) � NULL is satisfied.
Once the value of p∗(i) is less than 1024, the final resulting
values of L(i) and p∗(i) are computed using those of L(p∗(i))
and p(p∗(i)). Thus, we can terminate the while-loop as soon
aSs p∗(i) < 1024 is satisfied.
Step 2-A: Each CUDA block of 1024 threads computes the
prefix sums of L(y0), L(y1), . . . , L(ym−2) by parallel prefix-
sums algorithm for GPUs shown in [21], [22].
Step 2-B: Each thread writes out L(yi) characters
Cl(pL(yi)−1(yi)) · Cl(pL(yi)−2(yi)) · · ·Cl(p0(yi)) in the global
memory.

Next we will show that our implementation for
GeForce GTX 980 can achieve 100% occupancy of a
streaming multiprocessor. The Compute Capability of
GeForce GTX 980 is 5.2, in which each streaming multi-
processor can have up to 2048 resident threads, 32 CUDA
blocks, a shared memory of size 96Kbytes, and 64K 32-bit
registers [6]. Since our implementation uses CUDA blocks
of 1024 threads each, it is sufficient to show that two CUDA
blocks of 2048 threads uses no more than 96Kbytes in
a shared memory and 64K registers. The tables for p(i)
and L(i) use 2 bytes each and p∗(i) and Cl(i) use 1 byte
each. Since each table has 4096 elements, the tables occupy
4096 × 6 = 24K bytes in the shared memory. The prefix-
sum computation by a CUDA block uses 32 4-byte integers
in the shared memory. Hence, two CUDA blocks uses less
than 49K bytes. Also, a thread in a CUDA block uses 28
registers and two CUDA blocks of 2048 threads uses 56K
registers. Thus, two CUDA blocks of 2048 threads can be
active in a streaming multiprocessor and the occupancy can
be 100%.

2992
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 3 Three gray scale image with 4096 × 3072 pixels used for experiments

5. Experimental Results

We have used GeForce GTX 980, which has 16 streaming
multiprocessors with 128 processor cores each to implement
parallel LZW decompression algorithm. We also use Intel
Core i7-4790 (3.66GHz) to evaluate the running time of se-
quential LZW decompression.

We have used gray scale images, Crafts, Flowers, and
Graph with 4096 × 3072 pixels in Fig. 3, which are con-
verted from JIS X 9204-2004 standard color image data.
We also use two gray scale images, Random and Black with
the same size. The intensity level of each pixel of Random
is selected from [0, 255] independently at random. Every
pixel in Black takes value 0. Thus, the size of compressed
image of Random is larger than the original, and that of
Black is very small. The figure also shows the compres-
sion ratio S C

S O
, where S O and S C are the sizes of the original

and the compressed images, respectively. They are stored
in TIFF format with LZW compression option. We set
RowsPerStrip= 16, and so each image has 3072

16 = 192 strips
with 16 × 4096 = 64k pixels each. We invoked a CUDA
kernel with 192 CUDA blocks, each of which decompresses
a strip with 64k pixels.

We first evaluated the running time of GPU decompres-
sion using Core i7 CPU and GeForce GTX 980 GPU. Ta-
ble 5 summarizes the running time of LZW decompression.
Recall that Step 1 computes the values of L(i), p∗(i), and
Cl(i). Step 2A corresponds to the prefix-sums computation
for s. Step 2B writes out string of characters to the global
memory. Clearly, the running time of Step 1 and Step 2A is
small if an input LZW compressed image is small, because
the total number of operations is proportional to the total
number of codes, that is, the size of input LZW-compressed
image. On the other hand, Step 2B takes more time for im-
ages with high compression ratio, because each thread need
to write out more characters. From the table, the speedup
factor of GPU implementation over CPU implementation is
43.6 for image Flower.

Suppose that we have a lot of images are stored in the
SSD, and we want to perform some computation such as
neural network learning for each of the these images using
the GPU. For this purpose, we need to transfer each image in
the SSD to the global memory of the GPU as a preprocess-
ing step. We call the time of this processing step SSD-GPU
loading time. We evaluate the GPU data loading time for
three scenarios as follows:

Table 5 The running time (milliseconds) of LZW decompression

Images GPU CPU Speedup
Step 1 Step 2A Step 2B Total

Crafts 0.66 0.80 0.41 1.87 61.0 32.6
Flowers 0.38 0.59 0.18 1.15 50.1 43.6
Graph 0.167 0.067 1.59 1.82 25.1 13.8

Random 1.23 1.59 0.76 3.58 76.9 21.5
Black 0.176 0.034 1.66 1.87 26.0 13.9

Fig. 4 Scenarios A, B, and C

Scenario A: Non-compressed images are stored in the SSD.
They are transferred to the GPU via the host computer
(CPU). The time for SSD→CPU and CPU→GPU is eval-
uated.
Scenario B: LZW compressed images are stored in the stor-
age. They are transferred to the host computer, and decom-
pressed in it. After that, the resulting non-compressed im-
ages are transferred to the GPU. The time for SSD→CPU,
CPU decompression, and CPU→GPU is evaluated.
Scenario C: LZW compressed images are stored in the stor-
age. They are transferred to the GPU through the host
computer, and decompressed in the GPU. The time for
SSD→CPU, CPU→GPU, and GPU decompression is evalu-
ated. We also evaluated the time for “predictor”, which com-
putes the prefix-sums to obtain pixel values of original im-
ages LZW-compressed with Differencing Predictor option.

The reader should refer to Fig. 4 illustrating the three
scenarios.

Table 6 shows the running time of three scenarios.
From Table 6 (1), we can see that it takes about 10 millisec-
onds to copy a non-compressed image in the SSD to the
global memory of the GPU. If the size of image stored in

FUNASAKA et al.: FULLY PARALLELIZED LZW DECOMPRESSION FOR CUDA-ENABLED GPUS
2993

Table 6 The running time (milliseconds) of each Scenario for three im-
ages

(1) Scenario A
Images SSD→CPU CPU→GPU Total
Crafts 6.38 3.53 9.91

Flowers 6.43 3.52 9.95
Graph 6.55 3.50 10.05

Random 6.44 3.50 9.94
Black 6.39 3.50 9.89

(2) Scenario B (Our implementation)
Images SSD CPU CPU CPU Total

→CPU decompression predictor →GPU
Crafts 3.72 61.0 7.00 3.58 75.3

Flowers 2.55 50.1 6.99 3.56 63.2
Graph 0.19 25.1 7.00 3.56 35.8

Random 8.47 76.9 6.99 3.57 95.9
Black 0.16 26.0 7.00 3.54 36.7

(3) Scenario B (libTIFF)
Images SSD→CPU CPU→GPU Total

LZW decode+predictor
Crafts 82.0 3.55 85.6

Flowers 71.0 3.53 74.5
Graph 41.1 3.60 44.7

Random 91.0 3.59 94.6
Black 41.1 3.54 44.6

(4) Scenario C
Images SSD CPU GPU GPU Total

→CPU →GPU decompression predictor
Crafts 3.79 2.56 1.86 0.079 8.29

Flowers 2.47 1.75 1.13 0.080 5.43
Graph 0.17 0.16 1.83 0.080 2.24

Random 8.43 5.01 3.57 0.080 17.1
Black 0.15 0.099 1.87 0.079 2.20

the SSD is not a big issue, and if our main goal is to acceler-
ate the time for load a non-compressed image in the global
memory of the GPU, then other scenarios make sense only
if the running time is less than 10 milliseconds.

Unfortunately, from Tables 6 (2) and (3), the time nec-
essary to load a non-compressed image is much larger than
10 milliseconds. Table 6 (2) shows the running time using
our LZW decompression sequential algorithm. Table 6 (3)
uses libTIFF library, a set of C functions that support the ma-
nipulation of TIFF images. We have used a libTIFF function
to read a LZW-compressed TIFF image stored in SSD write
decompressed data in the memory of the CPU. From these
tables, we can see that our sequential LZW decompression
is not slower than libTIFF. Hence, it makes sense to com-
pare our GPU implementation and our sequential LZW de-
compression. Since the running time of Scenario A is much
larger than Scenario B, Scenario B makes sense only if we
want to reduce the total size of images stored in the SSD.

We can see that, from the Table 6 (4), the running time
of Scenario C is smaller than 10 milliseconds except for im-
age Random. Since the LZW-compressed image of Random
is larger than the original image, Scenario C for it cannot
be faster than 10 milliseconds. The time for image transfer
from the SSD to the GPU is more than 10 milliseconds. It

is quite surprising for us that Scenario C can be faster than
Scenario A, and it makes sense to use our parallel LZW de-
compression algorithm.

6. Conclusion

In this paper, we have presented a work-optimal parallel
LZW decompression algorithm on the CREW-PRAM and
implemented in the GPU. The experimental results show
that, it achieves a speedup factor up to 43.6. Also, our paral-
lel LZW decompression in the GPU can minimize the SSD-
GPU data loading time, when images stored in the SSD must
be loaded in the global memory of the GPU.

References

[1] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan
Kaufmann, 2011.

[2] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of
computing Euclidean distance map with efficient memory access,”
Proc. of International Conference on Networking and Computing,
pp.68–76, Dec. 2011.

[3] Y. Takeuchi, D. Takafuji, Y. Ito, and K. Nakano, “ASCII art gen-
eration using the local exhaustive search on the GPU,” Proc. Inter-
national Symposium on Computing and Networking, pp.194–200,
Dec. 2013.

[4] A. Kasagi, K. Nakano, and Y. Ito, “Parallel algorithms for the
summed area table on the asynchronous hierarchical memory ma-
chine, with GPU implementations,” Proc. International Conference
on Parallel Processing (ICPP), pp.251–250, Sept. 2014.

[5] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-
gramming for the matrix chain product on the GPU,” Proc. Interna-
tional Conference on Networking and Computing, pp.320–326, Dec.
2011.

[6] NVIDIA Corporation, “NVIDIA CUDA C programming guide ver-
sion 7.0,” March 2015.

[7] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-
tions of a parallel algorithm for computing Euclidean distance map
in multicore processors and GPUs,” Int. J. Networking and Comput-
ing, vol.1, no.2, pp.260–276, July 2011.

[8] K. Sayood, Introduction to Data Compression, Fourth Edition,
Morgan Kaufmann, 2012.

[9] T. Welch, “High speed data compression and decompression appa-
ratus and method,” US patent 4558302, Dec. 1985.

[10] Adobe Developers Association, TIFF Revision 6.0, June 1992.
[11] S.T. Klein and Y. Wiseman, “Parallel Lempel Ziv coding,” Discrete

Applied Mathematics, vol.146, pp.180–191, 2005.
[12] S. Funasaka, K. Nakano, and Y. Ito, “Fast LZW compression using a

GPU,” Proc. International Symposium on Computing and Network-
ing, pp.303–308, Dec. 2015.

[13] K. Shyni and K.V.M. Kumar, “Lossless LZW data compression al-
gorithm on CUDA,” IOSR Journal of Computer Engineering, vol.13,
no.1, pp.122–127, 2013.

[14] A.L.V. Nicolaisen, Algorithms for Compression on GPUs, Ph.D.
thesis, Technical University of Denmark, Aug. 2015.

[15] A. Ozsoy and M. Swany, “CULZSS: LZSS lossless data compres-
sion on CUDA,” Proc. International Conference on Cluster Comput-
ing, pp.403–411, Sept. 2011.

[16] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge
University Press, 1988.

[17] V. Kumar, A. Grama, A. Gupta, and G. Karyapis, Introduction
to Parallel Computing: Design and Analysis of Algorithms, The
Benjamin/Cumming Publishing, 1994.

[18] M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-
Hill, 1994.

http://dx.doi.org/10.1109/icnc.2011.19
http://dx.doi.org/10.1109/candar.2013.35
http://dx.doi.org/10.1109/icpp.2014.34
http://dx.doi.org/10.1109/icnc.2011.62
http://dx.doi.org/10.1016/j.dam.2004.04.013
http://dx.doi.org/10.1109/candar.2015.20
http://dx.doi.org/10.9790/0661-131122127
http://dx.doi.org/10.1109/cluster.2011.52

2994
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

[19] A.V. Aho, J.D. Ullman, and J.E. Hopcroft, Data Structures and Al-
gorithms, Addison Wesley, 1983.

[20] T.A. Welch, “A technique for high-performance data compression,”
IEEE Computer, vol.17, no.6, pp.8–19, June 1984.

[21] M. Harris, S. Sengupta, and J.D. Owens, “Chapter 39. parallel prefix
sum (scan) with CUDA,” in GPU Gems 3, Addison-Wesley, 2007.

[22] K. Nakano, “Simple memory machine models for GPUs,” Proc. In-
ternational Parallel and Distributed Processing Symposium Work-
shops, pp.794–803, May 2012.

Shunji Funasaka received the BE from the
Department of Information Engineering, Hiro-
shima University in 2013. Currently, he is a
master student at the Department of Information
Engineering, Hiroshima University.

Koji Nakano received the BE, ME and Ph.D
degrees from Department of Computer Science,
Osaka University, Japan in 1987, 1989, and
1992 respectively. In 1992-1995, he was a Re-
search Scientist at Advanced Research Labora-
tory. Hitachi Ltd. In 1995, he joined Depart-
ment of Electrical and Computer Engineering,
Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. His research interests includes image processing,
hardware algorithms, GPU-based computing, FPGA-based reconfigurable
computing, parallel computing, algorithms and architectures.

Yasuaki Ito received B.E. degree from Na-
goya Institute of Technology (Japan), M.S. de-
gree from Japan Advanced Institute of Science
and Technology in 2003, and D.E. degree from
Hiroshima University (Japan), in 2010. From
2004 to 2007 he was a Research Associate at
Hiroshima University. Since 2007, Dr. Ito has
been with the School of Engineering, at Hiro-
shima University, where he is working as an
Associate Professor. His research interests in-
clude reconfigurable architectures, parallel com-

puting, computational complexity and image processing.

http://dx.doi.org/10.1109/mc.1984.1659158
http://dx.doi.org/10.1109/ipdpsw.2012.98

