
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016
2901

PAPER Special Section on Parallel and Distributed Computing and Networking

An FPGA Implementation for a Flexible-Length-Arithmetic
Processor Employing the FDFM Processor Core Approach∗

Tatsuya KAWAMOTO†, Nonmember, Xin ZHOU†, Student Member, Jacir L. BORDIM††, Yasuaki ITO†a),
and Koji NAKANO†, Members

SUMMARY Algorithms requiring fast manipulation of multiple-length
numbers are usually implemented in hardware. However, hardware imple-
mentation, using HDL (Hardware Description Language) for instance, is a
laborious task and the quality of the solution relies heavily on the designer
expertise. The main contribution of this work is to present a flexible-length-
arithmetic processor based on FDFM (Few DSP slices and Few Memory
blocks) approach that supports arithmetic operations on multiple-length
numbers using FPGAs (Field Programmable Gate Array). The proposed
processor has been implement on the Xilinx Virtex-6 FPGA. Arithmetic in-
structions of the proposed processor architecture include addition, subtrac-
tion, and multiplication of integer numbers exceeding 64-bits. To reduce
the burden of implementing algorithm directly on the FPGA, applications
requiring multiple-length arithmetic operations are written in a C-like lan-
guage and translated into a machine program. The machine program is then
transferred and executed on the proposed architecture. A 2048-bit RSA en-
cryption/decryption implementation has been used to assess the goodness
of the proposed approach. Experimental results shows that the computing
time, using the proposed architecture, of a 2048-bit RSA encryption takes
only 2.2 times longer than a direct FPGA implementation. Furthermore,
by employing multiple FDFM cores for the same task, the computing time
reduces considerably.
key words: multiple-length-numbers, multiple-length-arithmetic, FPGA,
RSA, montgomery modular multiplication

1. Introduction

An FPGA (Field Programmable Gate Array) is a pro-
grammable logic device designed to be configured via
HDL (Hardware Description Language) after manufactur-
ing. Owing to its programmable features and affordable
prices, FPGAs devices gained considerable attention in re-
cent years [2]. FPGAs can implement hundreds of cir-
cuits that work in parallel and can be explored to accel-
erate useful computations. The most common FPGA ar-
chitecture consists of an array of logic blocks, I/O pads,
block RAMs and routing channels. Furthermore, embed-
ding DSP (Digital Signal Processor) slices into an FPGA
device is reported to provide higher performance and, con-
sequently, providing a broader range of applications [3].

Manuscript received January 8, 2016.
Manuscript revised May 9, 2016.
Manuscript publicized August 24, 2016.
†The authors are with the Department of Information Engineer-

ing, Hiroshima University, Higashihiroshima-shi, 739–8527 Japan.
††The author is with the Department of Computer Science, Uni-

versity of Brasilia, Brasilia-DF, Brazil.
∗A preliminary version of this paper has been presented at

the Third International Symposium on Computing and Network-
ing (CANDAR 2015) [1].

a) E-mail: yasuaki@cs.hiroshima-u.ac.jp
DOI: 10.1587/transinf.2016PAP0029

Fig. 1 FPGA (Field Programmable Gate Array).

Figure 1 (a) depicts the internal configuration of a common
FPGA board [2]. The figure shows the CLB (Configurable
Logic Blocks) used on a Virtex-6, which consists of 2 sub-
logic blocks, called “slice”. The use of LUTs (Look Up
Tables) and flip-flops in the slices allows the implementa-
tion of a number of combinatorial and sequential circuits.
The Virtex-6 FPGA incorporates the DSP48E1 slices, which
are equipped with a multiplier, adders, logic operators, etc.
As illustrated in Fig. 1 (b), the DSP48E1 slice has a two in-
put multiplier followed by multiplexers and a three-input
adder/subtractor/accumulator. The DSP48E1 multiplier can
perform multiplication of an 18-bit and 25-bit 2’s comple-
ment numbers yielding a 48-bit 2’s complement produc-
tion. Programmable pipelining of input operands, interme-
diate products, and accumulator outputs enhances through-
put and improves clock frequency. The DSP48E1 uses a
pipeline registers between operators to reduce the delay. The
block RAM in the Virtex-6 FPGA is an embedded mem-

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers



2902
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

ory supporting synchronized read and write operations [4].
The block RAM can be configured as a 36k-bits dual-port
block RAMs, FIFOs, or two 18k-bits dual-port RAMs. In
this work, the latter configuration is used (i.e., 2k × 18-bit
dual-port RAM).

Integer numbers exceeding two of more computer
words are called multiple-length numbers [5]. Similarly,
arithmetic operations on multiple-length numbers is called
multiple-length arithmetic. Thus, an application involving
integer arithmetic operations on multiple-length numbers
exceeding 64-bits cannot be performed directly by a con-
ventional 64-bit CPUs as its instruction set support integers
of at most 64-bits in length. When dealing with multiple-
length arithmetic, the CPU needs to repeat arithmetic oper-
ations on fixed 64-bits. Such procedure, however, increases
the execution time significantly.

An alternative to speed up computation of multiple-
length numbers is to employ algorithms implemented in FP-
GAs. On the other hand, the implementation of an algorithm
in hardware is a cumbersome procedure where the resulting
speed up gain also depends on the designer expertise. That
is, to implement an algorithm in hardware using HDL, such
as Verilog, users should have sufficient knowledge of dig-
ital circuit design. Furthermore, low level, binary instruc-
tions make the task of coding and debugging a non-trivial
one. Thus, the implementation of an algorithm using HDL
is usually a difficult task for non-expert or beginners to ac-
complish. By contrast, higher-level languages, such as C
programming language, allows the programmer to concen-
trate on the logic of the problem to be solved rather than
the intricacies of the hardware architecture required by low-
level languages such as assembly.

The main contribution of this paper is to present an in-
termediate approach of software and hardware using FPGAs
to support arithmetic operations on multiple-length numbers
where the developing and debugging tasks can be easily ac-
complished even by non-experts. More specifically, this pa-
per proposes a flexible-length-arithmetic processor based on
the FDFM (Few DSP slices and Few Memory blocks) ap-
proach that supports applications involving arithmetic op-
erations on multiple-length numbers. To achieve this, a
compiler consisting of lexical scanner Flex [6] and a context
parser Bison [7] are used to convert a C-like language pro-
gram into an assembly language program. Since the assem-
bly program cannot be executed directly on the proposed
processor, a translator is proposed for converting the assem-
bly program into a machine-executable program. The above
steps allows converting a program written in a C-like lan-
guage into a machine program that is executed on the pro-
posed processor. Hence, in the proposed approach, coding
and debugging tasks are simplified, allowing non-experts to
take the advantage of the FPGAs to perform arithmetic op-
erations on multiple-length numbers. The contributions of
this paper can be summarized as follows:

(i) A flexible-length arithmetic processor based on FDFM
approach for computing multiple-length number ex-

Fig. 2 FDFM approach over conventional one to compute the FIR

ceeding 64-bits and even longer than 2048-bits using
a single machine instruction;

(ii) An intermediate approach of software and hardware
that simplifies the tasks of coding and debugging ap-
plications requiring multiple-length arithmetic opera-
tions;

(iii) The task of computing multiple-length integer numbers
of 64-bits, 128-bits, even longer than 2048-bits can be
accomplished without modification of hardware design
of the processor;

Next, a simple example of the FDFM approach is pre-
sented. Figure 2 (a) illustrates a hardware algorithm to
compute the output of the FIR (Finite Impulse Response)
yi = a0 · xi + a1 · xi−1 + a2 · xi−2 + a3 · xi−3. A conventional
approach for implementing the FIR is to use four DSP slices
as illustrated in Fig. 2 (b) [3]. In such case, the hardware im-
plementation requires the number of DSP slices to match the
number of multipliers. However, the FDFM approach uses
one or few DSP slices and one or few block RAMs to imple-
ment the FIR. Figure 2 (c) depicts the FDFM approach using
one DSP slice and one block RAM to implement the FIR
where the coefficients a0, a1, . . . , an are stored in the block
RAM. For further details on the FDFM approach, the inter-
ested reader may refer to [8]–[11] and the references within.
The work in [12] presents a comparison of a soft-core pro-
cessor implementation and a direct implementation on FP-
GAs employing the FDFM approach.

As mentioned above, the FDFM approach allows the
designer to take advantage of the available hardware re-
sources. As illustrated in Fig. 3 (a), the FDFM can be im-
plemented using as few as a single DSP and a block RAM.
This is particularly useful for the case where the main circuit
uses most of the FPGA hardware resources. However, when



KAWAMOTO et al.: AN FPGA IMPLEMENTATION FOR A FLEXIBLE-LENGTH-ARITHMETIC PROCESSOR EMPLOYING THE FDFM PROCESSOR CORE APPROACH
2903

Fig. 3 Adapting the FDFM approach to the available hardware re-
sources.

hardware resources are less constrained, multiple FDFM
processor cores working in parallel can be implemented as
shown in Fig. 3 (b). This work explores the aforementioned
strategies. Indeed, the proposed flexible-length-arithmetic
processor based on the FDFM approach can be implemented
using a single DSP slice and two block RAMs. The pro-
posed FDFM processor supports 38 assembly instructions.
The experimental results on a Virtex-6 FPGA shows that the
computing time of a 2048-bits RSA encryption takes only
2.2 times longer than a direct FPGA implementation.

Thus, there are two points of the advantage for the
proposed processor; (i) our processor is compact and high-
performance by the FDFM approach and (ii) users can im-
plement high-performance software programs with flexible-
length-arithmetic instructions on the proposed processor
easily. The proposed processor is compactly designed and
uses very few FPGA resources. We use only one DSP
slice, two block RAMs, and a few CLBs to implement the
processor. The processor directly supports flexible-length-
arithmetic instructions by the DSP slice. Therefore, these
instructions can be executed without any overheads caused
by flexible-length-arithmetic. The performance of the pro-
posed processor is a little lower than hardware implementa-
tions that are designed for a specific computation. However,
considering that users can program by software, our pro-
cessor has enough performance and high versatility. On the
other hand, flexible-length-arithmetic computations are used
in many applications such as data encryption/decryption,
scientific computation, etc. It is generally difficult for non-
experts to implement them not only in hardware circuits but
also in software programs. However, on the proposed pro-
cessor, users can utilize flexible-length-arithmetic instruc-
tions. Furthermore, a software program using C-like lan-
guage can be easily written for a specific application requir-
ing multiple-length-arithmetic operations with the compiler
and assembler. As shown in the above, although the pro-

gram is executed as software implementation, the perfor-
mance is close to that of the specific hardware circuit.

There are several existing FPGA implementations pro-
posed for performing arithmetic operations of multi-length
numbers [13], [14]. Kalathungal [13] proposed an ALU
(Arithmetic Logic Unit) that supports addition, subtraction,
multiplication and division for multi-length integer num-
bers. Since the straightforward methods are used to perform
these arithmetic operations and the proposed ALU does not
use any DSP slice and block RAM, the implementation of
the ALU for up to 96-bit integers in an Altera CYCLONE
V FPGA, is clocked at only 20MHz. In other words, the
proposed ALU is not suitable to perform arithmetic oper-
ations for large numbers. Pfander et al. [14] proposed a
configurable block for performing only multi-length mul-
tiplication with a word-length that can be changed at run-
time. The proposed configurable block consists of 1-bit full
adders, and performs multiplication based on addition and
shift operation. If the length of input number increases,
the path of carry propagation and the usage of FPGA re-
sources increase. Hence, the proposed block is also not suit-
able to perform multiplication for large numbers. There are
also some existing soft processors proposed for overcoming
the problem of designing hardware with FPGAs [15], [16].
LaForest [15] proposed a soft-processor that is clocked at a
high frequency, and implemented it in an Altera Stratix IV
FPGA EP4SE230F29C2. However, the proposed soft pro-
cessor does not support the arithmetic operation for large
numbers. McGettrick et al. [16] used FPGA as reconfig-
urable digital signal Processor accelerators for digital signal
processing to obtain short reconfiguration time. However,
the arithmetic operations for multi-length numbers are also
not supported by this work.

The rest of this paper is organized as follows: Section 2
briefly describes the multiple-length-arithmetic operation.
Section 3 describes the proposed processor architecture for
multiple-length-arithmetic operations. Section 4 details the
implementation of the RSA algorithm on the proposed ar-
chitecture. In addition, the C-like language compilation and
assembly process are discussed in this section. Section 5
shows the experimental results for a single DSP slice using
the FDFM approach while Sect. 6 presents a multicore DSP
slice system and evaluates its performance. Finally, Sect. 7
concludes this work.

2. Multiple-Length-Arithmetic Operation

The main purpose of this section is to describe the multiple-
length-arithmetic operations. For this purpose, consider a
multiple-length number represented as an array of r-bits
block. In general, r = 32 or 64 in conventional CPUs. In the
proposed processor r is fixed in 17-bits which matches the
bit-length manipulated by the DSP slice. Let R denote the
length of the multiple-length number and d be the number
of r-bit blocks. Clearly, d = �R

r � blocks. For example, a
1024-bit integer consists of 61 blocks.

An example of two multiple-length number are pre-



2904
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 4 Comba method for computing the product of two multiple-length
numbers

sented next. Suppose that A and B represent two multi-
length numbers. Also, let their product be stored in C,
that is C = A · B. In this work, the method proposed by
Comba [17], hereafter denoted as “Comba method”, is used
to compute the product of multiple-length numbers. For
simplicity, the multiplicand and the multiplier are assumed
to have the same length. Algorithm 1 presents the details
of the Comba method. In the algorithm, {x, y, z} denotes
the concatenation of x, y, and z. In the Comba method,
each block of results of the multiplication is computed from
lower blocks to upper blocks, one by one, as shown in Fig. 4.
The multiplication using the Comba method can be com-
puted by the function multiplication and accumulation of
one DSP slice [3]. The result is stored in data memory, block
by block.

Algorithm 1: Comba method
Input: A = (ad−1, . . . , a0), B = (bd−1, . . . , b0)
Output: Product C = A · B = (c2d−1, . . . , c0)
s, t, u: r-bit integers
1. s← 0, t ← 0, u← 0
2. for i = 0 to d − 1 do
3. for j = 0 to i do
4. {s, t, u} ← {s, t, u} + aj × bi− j

5. end for
6. ci ← u
7. u← t, t ← s, s← 0
8. end for
9. for i = d to 2d − 2 do
10. for j = i − d + 1 to d − 1 do
11. {s, t, u} ← {s, t, u} + aj × bi− j

12. end for
13. ci ← u
14. u← t, t ← s, s← 0
15. end for
16. p2d−1 ← u

3. Proposed Processor Architecture

This section presents the proposed processor architecture for
handling multiple-length-arithmetic operations. As shown
in Fig. 5, the designed processor consists of a Program
Counter, Instruction memory, Data memory, DSP, flag reg-

Fig. 5 Proposed processor architecture for handling multiple-length-
arithmetic operations.

Fig. 6 Multiple-length instruction format.

isters, and control unit. The processor is based on the Har-
vard architecture where the instruction and data memories
are separated [18]. The proposed processor executes the in-
structions one by one in a pipeline fashion. More precisely,
a single DSP slice is responsible for computing all arith-
metic operations. The proposed processor supports 38 in-
structions, not only multiple-length arithmetic operations,
but also single-block arithmetic operations. Table 1 shows
the list of the main instructions of the proposed processor
and the respective amount of clock cycles to compute them.
For the reader’s benefit, the main elements of the proposed
processor, such as instruction memory, data memory, and
DSP are described next.

Control units: The proposed architecture consists of two
control units: (i) the Main control unit; and (ii) the Data
control unit. The Main control unit controls the behavior of
the whole processor, including the Program counter, Data
control unit, and Instruction memory. Data control unit,
on the other hand, is responsible for handing each opera-
tion. More specifically, conditional and unconditional jump
instructions such as JMP, JZ, JNZ, JC, and JNC are exe-
cuted by the Main control unit of the proposed processor,
where the jump instructions are executed by the Main con-
trol unit and the JMP control unit in our previous work [11].
By merging the Main control unit and JMP control unit, we
simplified the circuit and decreased the clock cycles com-
pared with the previous work. On the other hand, the pro-
posed processor executes the arithmetic instructions using
the Main control unit and the Data control unit, where an
ALU control unit is also used in the previous work.

Instruction memory: Array of memory composed of block
RAMs which are used to store program instructions. In
the proposed architecture, the instruction memory is used to
store multiple-length arithmetic instructions, each of which
consists of 54-bits as depicted in Fig. 6.



KAWAMOTO et al.: AN FPGA IMPLEMENTATION FOR A FLEXIBLE-LENGTH-ARITHMETIC PROCESSOR EMPLOYING THE FDFM PROCESSOR CORE APPROACH
2905

Table 1 The list of main instructions of the proposed processor and their respective clock cycles

Mnemonic Operation
The size of operands [bits]

64 128 256 512 1024 2048
ADD A, B,C A← B +C 17 25 41 70 130 250
SUB A, B,C A← B −C 14 21 38 69 129 249
MUL A, B,C A← B ·C 32 88 296 1031 3851 14891
MULV A, B, C A0 ← B0 ·C0, A1 ← B1 ·C1, . . . , Bd−1 ·Cd−1 22 38 70 130 250 490
INC A A← A + 1 15 19 27 42 72 132
DEC A A← A − 1 14 18 26 41 71 131
CMP A, B A − B 14 18 26 41 71 131
SHL A, B, x A← B << x 15 19 27 42 72 132
SHR A, B, x A← B >> x 15 19 27 42 72 132
MOV A, B A← B 10 14 22 37 67 127
MOVP A, Bx, By A← Bx, . . . , By y − x + 7
JMP A PC ← A 3
JC A PC ← A if carry 3
JNC A PC ← A if not carry 3
JZ A PC ← A if zero 3
JNZ A PC ← A if not zero 3

Fig. 7 Multiple-length numbers stored in data memory

Data memory: Array of memory composed of block RAMs
where data, including multiple-length numbers, is stored.
Figure 7 shows how a 1024-bits data is stored into the data
memory. Every 17-bits block data, together with a 1-bit flag,
represents a bit-block of 18-bits. The flag bit, stored in the
most significant bit of each block, is used to find the sec-
ond last 17-bits block data. If a 17-bits block is the sec-
ond last block of a multiple-length number, the flag bit is
set to 1, otherwise it is set to 0. As the multiple-length-
arithmetic operations are performed in pipelined fashion, the
flag bit is used to identify the end of a data block in ad-
vance, that is, before the last data block is read. In Fig. 7, a
multiple-length number A consisting of 1024-bits is divided
into � 1024

17 � = 61 blocks of 17-bits each, represented as a0,
a1, . . ., a60. In this example, the flag bit is set to 1 in block
a59. Using the above architecture, the designed processor
allows for flexible-length arithmetic capable of computing
multiple-length integer numbers, such as 64-bits, 128-bits,
and even longer than 2048-bits without further modification.

DSP and flag registers: The DSP is an arithmetic and log-
ical unit. Given two inputs from Data memory, arithmetic
operations, such as addition and multiplication, can be per-
formed with their result being stored to the Data memory.
DSP corresponds to one DSP slice in the FPGA and it is con-

trolled by Data control unit. The appropriate function of the
DSP slice is selected according to the operation begin exe-
cuted. These operations are performed in a pipeline fashion.
Two flag registers, zero flag and carry flag, are used to hold
the state of the operations. These registers are 1-bit registers
and are used for conditional jump instructions, such as JNZ
(jump if not zero) and JC (jump if carry). The result of the
previous instruction determines the value of these registers.
For instance, the zero flag holds 1 if the result of the previ-
ous instruction is zero (otherwise, it holds 0). Conversely,
the carry flag holds 1 if the result of the previous instruction
overflows or becomes negative (otherwise, it holds 0).

4. Coding and Porting Applications to the Proposed
Architecture

This section presents the C-like language and the steps nec-
essary to compile, translate and execute an application on an
FPGA device using the approach proposed in this work. For
this purpose, the well-known RSA algorithm, which uses
multiple-length numbers has been selected [19]. By using
the proposed architecture and tools presented in this sec-
tion, the computation on multiple-length numbers can be
performed effortlessly. Indeed, as in traditional high-level
languages, the user centers on coding the algorithm in a C-
like language and uses the provided tools to translate the
code into a machine language. This process is straightfor-
ward and can be accomplished by users without solid knowl-
edge on FPGA or circuit design. Next, a brief overview of
the RSA algorithm is presented following by the necessary
steps for porting and executing it on an FPGA device.

In the RSA, the modular exponentiation C = PE mod
M or P = CD mod M are computed, where P and C are
plain and cypher text, respectively; (E,M) and (D,M) are,
respectively, the encryption and decryption keys. Usually,
the bit length in P, E, D, and M is 512 or longer. Also, the
modular exponentiation is repeatedly computed for fixed E,
D, and M, and various P and C. Since modulo operation
is very costly in terms of the computing time and hardware



2906
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

resources, Montgomery modular multiplication [20] is used,
which does not directly compute the modulo operation.

The proposed C-like language comprises a large set of
instructions, including if, if-else, while, do, goto, etc.
Also, it includes basic arithmetic operations such as addi-
tion (+), subtraction (−), multiplication (∗), negation (−), bit
shifts (>>, <<), comparisons (==, ! =, >, >=, <, <=), where
the operands can be configured as multiple-length numbers.
Due to space limitation, in this paper we restrict our at-
tention to those instructions necessary for coding the R-bit
Montgomery modular multiplication C = A ·B ·2−R mod M.
The C-like code for the Montgomery modular multiplication
is shown in Code 1. In the C-like code, the multiple-length
variables A, B, M, invM, C, R1, R2, and R3 are declared as
multi (d) var = value var. That is, the prefix multi
denotes that this variable is a multiple-length number con-
sisting of d 17-bits blocks value var. The value var de-
notes the initial value of the variable, which is configured
by the programmer. When the initial value is not set, the
variable is set to a default value of 0. In the C-like code
of Montgomery modular multiplication, the multiple-length
numbers A, B, M, and invM are given as input and the result
is stored to C. Although the code comprises of multiple-
length-arithmetic operations, the coding task is straightfor-
ward. Note that the bit-length of the variables can hold 64-
bits, 128-bits, even longer than 2048-bits without any mod-
ification to the code. For example, the data in register R1
is divided into d blocks of 17-bits each and these are stored
in several block registers such as R10, R11, . . . R1d−1. For
the case of other registers, R2 = [R10,R1d−1] denotes that
R10,R11, . . .R1d−1 of R1 are copied to R2, block by block.
The number of duplicated blocks can be specified by the
programmer.

The next task is to translate the code written in the C-
like language to a machine program that can be executed in
the proposed architecture. A brief description of the com-
piler and assembler used to port the C-like code into a ma-
chine program is provided next.

Compiler: Converts a program written in C-like language
into an assembler program using the lexical scanner Flex [6]
and the context parser Bison [7]. Flex is a tool for gener-
ating a scanner to recognize lexical patterns in a text file
while Bison is a tool for generating parsers to analyze in-
put text based on rules defined by a context-free grammar.
Flex and Bison are combined as a compiler for translating
a program coded in C-like language into an assembly lan-
guage program. The assembly code generated from Code 1
is shown in Code 2. Although the assembly code includes
multiple-length-arithmetic operations, it consists of only 12
instructions.

Assembler: Converts an assembly language program into a
machine program. This task is performed by a two-pass as-
sembler. The assembly Code 2 is converted into the machine
program shown in Code 3 using the two-pass assembly. Be-
sides, the resulting machine program is written into the in-

Code 1: C-like code for R-bit Montgomery modular multiplication C =
A · B · 2−R mod M

multi (d) A = value A ; Definition of A
multi (d) B = value B ; Definition of B
multi (d) M = value M ; Definition of M
multi (d) invM = value invM ; Definition of invM
multi (d) C ; Definition of C
multi (2d) R1 ; Definition of R1
multi (d) R2 ; Definition of R2
multi (2d + 1) R3 ; Definition of R3

R1 = A ∗ B ; A · B is stored to R1
R2 = [R10,R1d−1] ; R10, . . . ,R1d−1 is copied to R2
R3 = R2 ∗ invM ; R2 · (−M−1) is stored to R3
R2 = [R30,R3d−1] ; R30, . . . ,R3d−1 is copied to R2
R3 = R2 ∗ M ; R2 · M is stored to R3
R3 = R1 + R3 ; R1 + R3 is stored to R3
R2 = [R3d ,R32d−1] ; R3d , . . . ,R32d−1 is copied to R2
if (R2 >= M) { R2 is compared with M

R2 = R2 − M ; if (R2 ≥ M), R2 − M is stored to R2
}
C = R2 ; R2 is copied to C
halt ; program is terminated

Code 2: Assembly code for R-bit Montgomery modular multiplication C =
A · B · 2−R mod M

A, d : value A ; Definition of A
B, d : value B ; Definition of B
M, d : value M ; Definition of M
invM, d : value invM ; Definition of invM
C, d : 0 ; Definition of C
R1, 2d : 0 ; Definition of R1
R2, d : 0 ; Definition of R2
R3, 2d + 1 : 0 ; Definition of R3

MUL R1, A, B ; A · B is stored to R1
MOVP R2,R10,R1d−1 ; R10, . . . ,R1d−1 is copied to R2
MUL R3,R2, invM ; R2 · (−M−1) is stored to R3
MOVP R2,R3,0,R3d−1 ; R30, . . . ,R3d−1 is copied to R2
MUL R3,R2,M ; R2 · M is stored to R3
ADD R3,R1,R3 ; R1 + R3 is stored to R3
MOVP R2,R3d ,R32d−1 ; R3d , . . . ,R32d−1 is copied to R2
CMP R2,M ; R2 is compared with M
JC 001F ; if carry (R2 < M), jump to label 001F
SUB R2,R2,M ; R2 − M is stored to R2

001F: ; the label
MOV C,R2 ; R2 is copied to C
HALT ; program is terminated

struction memory of proposed processor into the FPGA de-
vice. Also, in the proposed architecture, the data is stored
into the data memory and the instructions are stored into the
instruction memory. Thus, the assembler also generates a
list of data, which consists of the initialized values of the
declared variables. This list is stored into the data memory,
block by block, where the size of each block is 17-bits in
length. All instructions of a machine program are read out
from the instruction memory and executed, one by one, us-
ing the data stored into the data memory.

From the above, one can verify that the task of writ-
ing multiple-length arithmetic programs and porting them
to an FPGA device can be easily accomplished. Indeed, in
the proposed approach, the coding and debugging tasks are
simplified, allowing non-experts to take the advantage of the



KAWAMOTO et al.: AN FPGA IMPLEMENTATION FOR A FLEXIBLE-LENGTH-ARITHMETIC PROCESSOR EMPLOYING THE FDFM PROCESSOR CORE APPROACH
2907

Table 2 Synthesized results and performance evaluation of the direct FPGA implementation and the
proposed processor for a 2048-bits RSA encryption

Direct implementation [9] Single Core Multi Cores (306 cores)
Device XC6VLX240T-1 XC6VLX240T-3

CLBs(Slices) 180 167 51535
Block RAMs 1 2 383

DSP48E1 slices 1 1 306
Clock frequency[MHz] 447.02 310.07 240.20

Multiplication School method Comba method
Supported instructions 1 (RSA only) 38

RSA implementation
Hardware Software

(Verilog HDL) (C-like language and assembly language)
Computing time[ms] 277.26 613.71 792.23

Throughput [1/s] 3.61 1.63 386.25

Code 3: The Translated machine code for R-bit Montgomery modular mul-
tiplication C = A · B · 2−R mod M

∗ ∗ ∗ VARIABLE LIST ∗ ∗ ∗
000: A ; variable A
03D: B ; variable B
07A: M ; variable M
0B7: invM ; variable invM
0F4: C ; variable C
131: R1 ; variable R1
1AB: R2 ; variable R2
1E8: R3 ; variable R3

∗ ∗ ∗ LABEL LIST ∗ ∗ ∗
001F 00A

∗ ∗ ∗MACHINE PROGRAM ∗ ∗ ∗
000: 0D003D00000131 MUL R1, A, B
001: 1B013101AB016D MOVP R2, R10, R1d−1

002: 0D00B701AB01E8 MUL R3, R2, invM
003: 1B01E801AB0224 MOVP R2, R30, R3d−1

004: 0D007A01AB01E8 MUL R3, R2, M
005: 0501E8013101E8 ADD R3, R1, R3
006: 1B022501AB0261 MOVP R2, R3d , R32d−1

007: 14007A01AB0000 CMP R2, M
008: 23000A00000000 JC 001F
009: 08007A01AB01AB SUB R2, R2, M

001F:
00A: 1A01AB00F40000 MOV C, R2
00B: 00000000000000 HALT

FPGAs to perform arithmetic operations on multiple-length
numbers. Once the program is written in the C-like lan-
guage, the compiler and assembler are used to translate the
code into machine language. The assembler also assists in
the task of transferring the machine program to be executed
by the proposed processor in an FPGA.

The next section evaluates the performance of
multiple-length arithmetic programs executed by the pro-
posed processor against a direct FPGA implementation.

5. Evaluation of a Single-Core Processor System

The proposed flexible-length-arithmetic processor architec-
ture is used to implement the modular multiplication algo-
rithm presented in the previous section. The performance
evaluation is carried on a Xilinx Virtex-6 XC6VLX240T-
3 [2], programmed by software and synthesis with Xilinx
ISE Foundation 14.7. To assess the performance of the

proposed processor implementation, a direct hardware im-
plementation is used. For this purpose, the hardware im-
plementation proposed by Bo et al. [9], evaluated on Xil-
inx Virtex-6 FPGA XC6VLX240T-1 and programmed us-
ing Verilog HDL, is used. The circuit for the direct hard-
ware implementation for computing the RSA encryption
also employs the FDFM approach. The implementation pro-
posed in [9] is reported to attain high-performance. On the
other hand, it uses a specialized circuit, designed and imple-
mented by an expert. The developing and debugging tasks
as well as eventual modifications to this circuit are not eas-
ily achieved by an apprentice and, in certain cases, it is a
difficult task even for an experienced user. The architecture
proposed in this work, on the other hand, can be employed to
a variety of applications requiring flexible-length-arithmetic
operations.

Table 2 presents the synthesized results for a 2048-bits
RSA computation using the direct hardware implementa-
tion and the proposed architecture. We note that the syn-
thesized results, that do not include the result of the place
and route, were obtained by the built-in synthesizer of Xil-
inx ISE Foundation 14.7. As can be observed, the proposed
processor uses fewer CLBs slices than the direct implemen-
tation. As the proposed architecture uses only one DSP slice
and two block RAMs, it does not require additional circuits
consisting of CLBs, such as barrel shifter. Recall that the
proposed processor supports 38 instructions in a compact
architecture. In contract, the direct implementation supports
a single instruction. Since the proposed processor uses very
few resources of the FPGA, it can be applied to scenarios in
which FPGA resources are scarce. As shown in Fig. 3, the
proposed processor can be adapted to better use the available
resources. The synthesized results show that the maximum
clock frequency of the proposed processor is 310.07MHz.
We use the built-in ISE Simulator of Xilinx ISE Foundation
14.7 to evaluate the computing time of the proposed proces-
sor. The simulated results show that the proposed proces-
sor takes 190293088 clock cycles to compute a 2048-bits
RSA encryption. Hence, the proposed processor computes
a 2048-bit RSA encryption in expected 613.71ms. The re-
sults show that the proposed processor takes only 2.2 times
longer than the time required by the direct implementation
to compute a 2048-bits RSA encryption.



2908
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 8 Multicore processor system using proposed flexible-length-arithmetic processors

Table 3 Synthesized results and performance evaluation of implementa-
tion of rsa 512 and the proposed processor for a 512-bits RSA encryption

rsa 512 [21] Proposed processor
Device XC6VLX240T-1 XC6VLX240T-1

CLBs(Slices) 7319 167
Block RAMs 5 2

DSP48E1 slices 50 1
Clock frequency[MHz] 125.14 310.07

Clock cycles 195335 3780563
Computing time[ms] 1.56 12.19

We also compare the proposed processor with an exist-
ing implementation rsa 512 [21] that computes 512-bit RSA
encryption available in OpenCores [22]. We implemented
the rsa 512 on the FPGA Xilinx FPGA XC6VLX240T-1
that is the same FPGA used in our implementation. The
synthesis results of the proposed processor and rsa 512 are
shown in Table 3. The execution time for a 512-bit RSA
encryption of rsa 512 is 1.56ms, that is 7.8 times faster than
the proposed processor. However, rsa 512 uses much more
FPGA resources than the proposed processor. For example,
as shown in Table 3, the implementation of rsa 512 uses
7319 CLBs (Slices). It is 48.3 times more than that of our
proposed processor. The implementation of rsa 512 uses 50
DSP slices to perform Montgomery modular multiplication,
where the proposed processor uses only one DSP slice to
perform Montgomery modular multiplication taking more
clock cycles than rsa 512. Since the number of DSP slices
in the FPGA utilized in this paper is 768, at most 15 pro-
cessors of rsa 512 can be arranged in the FPGA. On the
other hand, we can implement 306 proposed processors in
the FPGA as shown in the next section, that is approximately
6.1 times more processors. Therefore, considering the bal-
ance between performance and size, both of them are almost
the same. However, our processor can be used not only for
512-bit RSA encryption, but also for larger RSA encryp-

tion and any other computations without modification of the
hardware. Therefore, our processor is more versatile than
rsa 512.

6. Evaluation of a Multicore Processor System

This section presents and evaluates a multicore-processor
system. As shown in Fig. 3 (b), the multicore system com-
prises of several processor cores of the FDFM approach
that work in parallel. Figure 8 illustrates the architecture
of the multicore-processor system. The “Data I/O con-
troller”, shown in the figure, allows to verify the compu-
tation status from outside of the multicore-processor. That
is, the controller has access to data memory in each proces-
sor and indicates whether the computation has completed.
The implemented multicore-processor uses 306 processor
cores on a Virtex-6 family FPGA XC6VLX240T. The im-
plementation uses 51735 CLBs, 383 block RAMs, and 306
DSP slices. The synthesized results obtained by the built-
in synthesizer reported that the multicore implementation
runs at 240.20MHz. As can be observed in Table 2, the
clock frequency is approximately 30% lower than that of
single processor due to increased circuit delay. Since this
implementation consists of 306 processor cores and con-
sidering the total performance of the multicore-processor,
the effect of the performance derived from the decrease of
clock frequency is not large. Recall that single proces-
sor computes a 2048-bits RSA encryption in 190293088
clock cycles, thus, each processor of multicore processor
system computes a 2048-bits RSA encryption in expected
190293088/240.20MHz = 792.23ms. Calculated simply,
the computing time for a 2048-bits RSA encryption of the
multicore-processor system is 792.23/306 = 2.59ms. In
other words, the multicore-processor system presented in
this section computes a 2048-bits RSA encryption at rate



KAWAMOTO et al.: AN FPGA IMPLEMENTATION FOR A FLEXIBLE-LENGTH-ARITHMETIC PROCESSOR EMPLOYING THE FDFM PROCESSOR CORE APPROACH
2909

of 386 times per second.
To compare the performance of our processor with

the software implementation, we implemented a software
that computes 2048-bit RSA encryption in Intel Core i7-
4790 (3.6GHz) CPU using GNU Multi-Precision (GMP) li-
brary [23]. According to the performance evaluation, the ex-
ecution time for a 2048-bit RSA encryption on the CPU is
5.66ms. On the other hand, the computing time for a 2048-
bits RSA encryption of the multicore-processor system is
2.59ms. Thus, the total performance of our approach is 2.19
times higher than that of the implementation in CPU using
GMP library.

7. Conclusions

This work presented an intermediate approach of software
and hardware using FPGAs to support arithmetic operations
on multiple-length numbers. More specifically, a flexible-
length-arithmetic processor, based on the FDFM approach,
is proposed. In the proposed approach, an application re-
quiring multiple-length arithmetic operations is written in
a C-like language and translated into a machine program.
The machine program is then transferred and executed on
the proposed processor on the FPGA. Hence, the coding
and debugging tasks are simplified, allowing non-experts
to take the advantage of FPGAs devices to perform arith-
metic operations on multiple-length numbers. Experimen-
tal results showed that a single processor system, compris-
ing of a single FDFM processor core, takes at most 2.2
times longer than the time required by a tailored-designed
FPGA implementation to compute a 2048-bits RSA encryp-
tion. This paper also presents a multicore processor system
that uses 306 FDFM processor cores. The multicore pro-
cessor system computes a 2048-bits RSA encryption at a
rate of 386 times per second. These results confirm that the
proposed flexible-length-arithmetic processor attains a fair
performance while furnishing the designer with the neces-
sary tools for writing and porting applications that require
multiple-length-arithmetic operations to be executed on FP-
GAs devices. That is, the proposed processor simplifies the
coding, debugging and porting tasks without sacrificing per-
formance.

References

[1] T. Kawamoto, Y. Ito, and K. Nakano, “A flexible-length-arithmetic
processor based on FDFM approach in FPGAs,” Proc. of Inter-
national Symposium on Computing and Networking, pp.364–370,
2015.

[2] Xilinx Inc., Virtex-6 FPGA Configuration User Guide (v3.8), 2014.
[3] Xilinx Inc., Virtex-6 FPGA DSP48E1 Slice User Guide (v1.3),

2011.
[4] Xilinx Inc., Virtex-6 FPGA Memory Resources (v1.8), 2014.
[5] G. Novak, “Artificial intelligence,” in Academic Press Dictionary of

Science and Technology, p.160, Academic Press, San Diego, CA,
1992.

[6] G.T. Nicol, Flex: The Lexical Scanner Generator, Free Software
Foundation, 1993.

[7] C. Donnelly and R. Stallman, Bison: The YACC-compatible Parser

Generator, Free Software Foundation, 1995.
[8] Y. Ago, A. Inoue, K. Nakano, and Y. Ito, “The parallel FDFM pro-

cessor core approach for neural networks,” Proc. of International
Conference on Networking and Computing, pp.113–119, 2011.

[9] S. Bo, K. Kawakami, K. Nakano, and Y. Ito, “An RSA encryption
hardware algorithm using a single DSP block and single block RAM
on the FPGA,” International Journal of Networking and Computing,
vol.1, no.2, pp.277–289, 2011.

[10] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor core
approach for CRT-based RSA decryption,” Int. J. Networking and
Computing, vol.2, pp.56–78, 2012.

[11] M.N.I. Mondal, K. Sai, K. Nakano, and Y. Ito, “A flexible-length-
arithmetic processor using embedded DSP slices and block RAMs
in FPGAs,” Proc. of International Symposium on Computing and
Networking, pp.75–84, 2013.

[12] K. Sai, A design of a flexible-length-arithmetic system using em-
bedded DSP slices in FPGAs, Master’s thesis, Hiroshima University,
2012 (in Japanese).

[13] A. Kalathungal, An Arbitrary Precision Integer Arithmetic Library
for FPGA s, Ph.D. Thesis, University of Cincinnati, 2013.

[14] O.A. Pfänder, R. Nopper, H.-J. Pfleiderer, S. Zhou, and A. Bermak,
“Configurable blocks for multi-precision multiplication,” IEEE In-
ternational Symposium on Electronic Design, Test and Applications,
pp.478–481, 2008.

[15] C.E. LaForest, High-Speed Soft-Processor Architecture for FPGA
Overlays, Ph.D. Thesis, University of Toronto, 2015.

[16] S. McGettrick, K. Patel, and C. Bleakley, “High performance pro-
grammable FPGA overlay for digital signal processing,” in Re-
configurable Computing: Architectures, Tools and Applications,
vol.6578, pp.375–384, Springer, 2011.

[17] P.G. Comba, “Exponentiation cryptosystems on the IBM PC,” IBM
Systems Journal, vol.29, no.4, pp.526–538, 1990.

[18] J.L. Hennessy and D.A. Patterson, Computer Architecture, Fourth
Edition: A Quantitative Approach, Morgan Kaufmann Publishers,
2006.

[19] R.L. Rivest, A. Shamir, and L.M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol.21, no.2, pp.120–126, 1978.

[20] P.L. Montgomery, “Modular multiplication without trial division,”
Math. of Comput., vol.44, no.170, pp.519–521, 1985.

[21] E.C. Villar and J.C. Villar, “High performance RSA 512 bit IPCore.”
http://opencores.org/project,rsa 512, 2012.

[22] “OpenCores.” http://opencores.org/
[23] T. Granlund, “GNU MP: The GNU Multiple Precision arithmetic

library.” http://gmplib.org/

Tatsuya Kawamoto received the B.E. de-
gree from Hiroshima University, Japan in 2014.
He is currently working towards a M.E. degree
at Hiroshima University.

http://dx.doi.org/10.1109/candar.2015.12
http://dx.doi.org/10.1109/icnc.2011.24
http://dx.doi.org/10.1109/candar.2013.19
http://dx.doi.org/10.1109/delta.2008.109
http://dx.doi.org/10.1007/978-3-642-19475-7_39
http://dx.doi.org/10.1147/sj.294.0526
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1090/s0025-5718-1985-0777282-x


2910
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Xin Zhou received the B.E. degree from
Jiangxi Science & Technology Normal Univer-
sity (China), in 2006, and the M.E. degree from
Hiroshima University (Japan), in 2013. He is
currently working towards a D.E. degree at the
Department of Information Engineering, Hiro-
shima University.

Jacir Luiz Bordim received B.Sc. and
M.Sc. degrees in Computer Science in 1994 and
2000, respectively. Received the Ph.D. degree
in Information Science from Japan Advanced
Institute Of Science And Technology in 2003,
with honors. He worked as a researcher at ATR-
Japan from 2003 to 2005. Since 2005 he is
an Associate Professor with the Department of
Computer Science at University of Brasilia. Dr.
Bordim has published and served in many inter-
national conferences and journal. His interest

includes mobile computing, collaborative computing, trust computing, dis-
tributed systems, opportunistic spectrum allocation, MAC, routing proto-
cols and reconfigurable computing.

Yasuaki Ito received the B.E. degree from
Nagoya Institute of Technology (Japan) in 2001,
the M.S. degree from Japan Advanced Institute
of Science and Technology in 2003, and the D.E.
degree from Hiroshima University (Japan), in
2010. He was a Research Associate in 2004–
2007 and an Assistant Professor in 2007–2013
at Hiroshima University. Since 2013, Dr. Ito has
been with the School of Engineering, at Hiro-
shima University, where he is working as an As-
sociate Professor. His research interests include

reconfigurable architectures, GPU computing, parallel computing, compu-
tational complexity and image processing.

Koji Nakano received the B.E., M.E. and
Ph.D. degrees from Department of Computer
Science, Osaka University, Japan in 1987, 1989,
and 1992 respectively. In 1992-1995, he was a
Research Scientist at Advanced Research Lab-
oratory. Hitachi Ltd. In 1995, he joined De-
partment of Electrical and Computer Engineer-
ing, Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. He has also guest-edited several special issues in-
cluding IEEE TPDS Special issue on Wireless Networks and Mobile Com-
puting, IJFCS special issue on Graph Algorithms and Applications, and
IEICE Transactions special issue on Foundations of Computer Science.
He has organized conferences and workshops including International Con-
ference on Networking and Computing, International Conference on Par-
allel and Distributed Computing, Applications and Technologies, IPDPS
Workshop on Advances in Parallel and Distributed Computational Models,
and ICPP Workshop on Wireless Networks and Mobile Computing. His
research interests includes image processing, hardware algorithms, GPU-
based computing, FPGA-based reconfigurable computing, parallel comput-
ing, algorithms and architectures.


