
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016
2871

PAPER Special Section on Parallel and Distributed Computing and Networking

Novel Chip Stacking Methods to Extend Both Horizontally and
Vertically for Many-Core Architectures with ThrouChip Interface

Hiroshi NAKAHARA†a), Tomoya OZAKI†, Nonmembers, Hiroki MATSUTANI†, Member,
Michihiro KOIBUCHI††, Senior Member, and Hideharu AMANO†, Fellow

SUMMARY The increase of recent non-recurrent engineering cost (de-
sign, mask and test cost) have made large System-on-Chip (SoC) difficult
to develop especially with advanced technology. We radically explore an
approach for cheap and flexible chip stacking by using Inductive coupling
ThruChip Interface (TCI). In order to connect a large number of small chips
for building a large scale system, novel chip stacking methods called the
linear stacking and staggered stacking are proposed. They enable the sys-
tem to be extended to x or/and y dimensions, not only to z dimension.
Here, a novel chip staking layout, and its deadlock-free routing design for
the case using single-core chips and multi-core chips are shown. The net-
work with 256 nodes formed by the proposed stacking improves the latency
of 2D mesh by 13.8% and the performance of NAS Parallel Benchmarks
by 5.4% on average compared to that of 2D mesh.
key words: inductive coupling interconnect, interconnection network, net-
work on chip

1. Introduction

The increase of recent non-recurrent engineering cost have
made large System-on-Chip (SoC) difficult to develop es-
pecially with advanced technology. Alternatively, various
techniques on System-in-Package, which integrates a num-
ber of small chips, have been developed. 2.5D implemen-
tation with Through Silicon Via (TSV) [1], micro bumps,
and a silicon interposer has become a mature technique for
building large-scale FPGAs.

We radically explore a different approach for cheap and
flexible chip stacking. To connect a large number of small
chips for building a large scale system, novel chip stack-
ing methods called the linear stacking and staggered stack-
ing are proposed that enable the system to be extended to x
or/and y dimensions, not only to z dimension [2], [3]. They
interestingly allow to incrementally add chips to existing
stacked chip systems and allows to optimize stacking to a
target application on demand.

For such flexible inter-chip communication, we use in-
ductive coupling ThruChip Interface (TCI) [4]. TCI is yet
another technique to connect multiple chips with high-speed
links. Since links between chips are built with a wireless
interconnect, it is easy to insert or replace chips of the chip-

Manuscript received January 8, 2016.
Manuscript revised April 20, 2016.
Manuscript publicized August 24, 2016.
†The authors are with Dept. of ICS, Keio University,

Yokohama-shi, 223–8522 Japan.
††The author is with National Institute of Informatics, Tokyo,

101–8430 Japan.
a) E-mail: blackbus@am.ics.keio.ac.jp

DOI: 10.1587/transinf.2016PAP0033

stack after fabrication. Since coils for inductor can be built
with metal wires, no special process technology is needed
other than standard CMOS process. It has been used for
memory stacking [5], a dynamically reconfigurable proces-
sor [6], and a heterogeneous multi-core system [7]. In all of
them, straight-forward 3D stacking is used. However, the
number of connected chips is limited to eight considering
the total height of the chip stack.

Our challenges in novel chip stacking methods are (1)
chip staking layout for TCI using z, x or/and y dimensions,
and (2) the routing algorithm for the case using multi-core
chips.

2. Inductive Coupling Through Chip Interface

Inductive-coupling TCI uses square coils implemented with
common layers of the chip. As shown in Fig. 1, by stacking
a transceiver coil on a receiver coil, an inductive coupling
channel is formed between two chips. Two coils, one for
the clock and the other is for data are usually provided for
a channel. A high frequency clock (1GHz to 8GHz) is gen-
erated by a ring oscillator, and data are serially transferred
synchronized with the clock directly through the driver. The
driver and inductor pair for sending data is called the TX
channel, while the receiver and inductor pair is called the
RX channel. Data can be transferred at most 8Gbps with a
low energy dissipation (0.14pJ per bit) and a low bit-error
rate (BER< 10−12) [8].

Data multicast can be used if a TX channel is placed at
the same location of multiple RX channels in different chips.
On the other hand, stacked multiple TX channels at the same
location cannot send the data simultaneously to avoid inter-
ference. Since a coil can be used for both the transmitter and

Fig. 1 3D NoC using TCIs

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

2872
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

receiver, the functionality of TX and RX channels can be
quickly switched, that is, a half-duplex bi-directional chan-
nel can be formed using a single coil.

Although TCI requires a certain amount of logic to
form a link between two chips, it has the following ben-
efits. (1) A number of chips can be stacked if a physical
environment is allowed. (2) Since chips can be tested before
stacking, only known-good-dies can be connected. (3) Since
TCI is electrically contact-less, no electro-static-discharge
(ESD) protection device is needed. (4) Since the coil uses
common wire layers of CMOS process, no extra process is
needed. Although a coil has a large footprint, we can imple-
ment circuits inside the coil.

Here, we roughly compare TCI and TSV, one of the
most common 3D stacking technologies. The paper [4], [8]
show the detail. TSV can transfer data at most 10Gbps with
the 0.6pJ/bit [9], while the TCI can do at most 8Gbps with
the 0.14pJ/bit. The footprint of TCI coil is much larger than
that of the TSV. However, while TSV occupies all layers,
the TCI uses only two metal layers and the other metal layers
and transistors are aveilable for random logic even if they are
inside coils. Although TSV can be used to heat dissipation,
the TCI, which is electrically contact-less, is not used for it.
On the other hand, TCI does not required the ESD device.

Although a number of practical systems have been de-
veloped by using TCI, all use simple 3D chip stacking. Al-
though a case has been reported in which more than 10 chips
were stacked [10], stacking chips with simple 3D stacking,
that is, to z-dimension has certain physical limitations. First,
the chip stacking is sometimes physically unstable when
more than four chips are stacked, since ground chips are
slightly bent because of the difference between the coeffi-
cient of thermal expansion of the silicons and that of the
wires. Second, the package height is limited. From a practi-
cal viewpoint, it is difficult to stack more than eight chips to
z-dimension.

3. Linear Stacking

In order to connect more chips with the limitations of z-
dimension, the straightforward idea is a linear stacking
which extends to only x-dimension. Here, four full-duplex
channels are assumed on each corner of a chip as shown
in Fig. 2. By using each stacked chip as a bridge between
chips, the stacking can be extended to x-dimension as shown
in Fig. 3, resulting in more than 64 chips being connected
within an eight-chip height. We assume only a single core
in a chip first, after that we extend it to multiple cores in a
chip.

Fig. 2 Chip used in linear stacking

3.1 Single Core Chip Stacking

Definition 3.1: Linear Stacking
Let X be the number of chips on the consecutive two layers
and Z be the number of layers, respectively. The position of
chip is defined (x, z) where x means the x th chip from left
to right, and z means a chip is located on z th layer starting
from 0. For layer z, if z is an even number, place the chip on
the grid x, where x is an even number. If z is an odd number,
place the chip on the grid x, where x is an odd number. The
chip on (x, z) is connected with at most four chips (x− 1, z−
1), (x − 1, z + 1), (x + 1, z − 1), and (x + 1, z + 1) when
the following conditions are satisfied : (0 ≤ x < X) and
(0 ≤ z < Z). �

Routing algorithm 1� �
1. Apply XY routing on the equivalent 2D mesh.

2. If it reaches a boundary before arriving at the desti-
nation move the packet a hop to Y direction so that it
goes apart from the wall. Then move X direction again
so that it is close to that of the destination node.

3. When X of the packet is equal to that of the desti-
nation node, then go to Y direction so that it is close to
the destination node.

4. If it counters a boundary, go apart from it a hop
to X direction and then go to Y direction again until it
reaches to the destination node.

� �
The network formed by linear stacking is represented

as S[X,Z]. S[X,Z] is similar to 2D mesh with stairway
boundary, so we call it Stairway Boundary Mesh (SBM).
Here, let coordinate of 2D mesh be (i, j) where i is x-axis
from left to right, j is y-axis from bottom to up. Note that the
coordinate system of linear stacking and 2D mesh is differ-
ent. S[X,Z] is equivalent to the grid in the mesh surrounded
by (� Z

2 �,0)- (� X
2 � + � Z

2 �, � X
2 �)- (� X

2 �, � X
2 � + � Z

2 �)- (0,� Z
2 �). For

example, Fig. 4 shows the S[11,7] with solid lines and 9×9
mesh with broken lines. S[11,7] is equivalent to the grid in
the mesh surrounded by (3,0)-(8,5)-(5,8)-(0,3).

Since SBM is regarded as a mesh partially, Dimension
Ordering Routing (DOR) [11] can be applied except bound-
ary. Modified DOR to apply SBM is represented as Routing
algorithm 1.

In the Routing algorithm 1, the number of hops itself is
the same as that of the XY routing in the mesh with the flat

Fig. 3 Example of stacking seven chips in accordance with linear stack-
ing

NAKAHARA et al.: NOVEL CHIP STACKING METHODS TO EXTEND BOTH HORIZONTALLY AND VERTICALLY FOR MANY-CORE ARCHITECTURES
2873

Fig. 4 Network formed by linear stacking (S[11,7]) with solid line and
9×9 mesh with break line

Fig. 5 Linear stacking with multi-core chips

boundaries.

Theorem 3.1: Routing algorithm 1 is deadlock free.

Proof 3.1: In Routing algorithm 1, illegal turns from Y →
X are only generated at a hop from the boundaries. Since
there is no paths outside the boundaries, cycles never formed
with such illegal turns. Therefore, it is deadlock free same
as XY routing. �

3.2 Multi-Core Chip Stacking

Recent chips have two or more cores even if the chip size
is small. Here we extend the linear stacking for single-core
chips to stack multi-core chips. Any topology can be applied
for inner-chip network if there is deadlock free routing. As-
suming that inner-chip topology is 2×2 Mesh as an exam-
ple. Four routers at each corner of the chip are connected to
a router on the other chip with TCI. A general router in 2D
mesh has five ports: four for neighbors and one for the core.
However, four routers at each corner of the chip use only
three of them, thus, remaining one of two ports can be used
for up-link or down-link of TCI without changing the router
structure. We define the topology formed by linear stacking
with multi-core chips as Sm[X,Z, Xc,Yc] where Xc and Yc are
the size of x-axis and y-axis on a chip, respectively. For ex-
ample, Fig. 5 a) shows the Sm[5,5,2,2]. Inter-chip links form
the S[5,5] and inner-chip links form the 2×2 Mesh.

Routing for linear stacking with multi-core chips is a
little complicated. Routing algorithm 1 can be applied for
inter-chip routing, and DOR can be applied for inner-chip
routing because inner-chip topology is general 2D mesh.

More precisely, routing for the linear stacking with multi-
core represented as Routing algorithm 2 is defined as fol-
lows.

Routing algorithm 2� �
1. Apply Routing algorithm 1 on the inter-chip. Here,
let Cnext be the next chip.

2. If a router with a packet is connected to Cnext, a
packet is sent to the next chip through the inter-chip
link.

3. Otherwise, apply DOR on the inner-chip to a router
connected to Cnext.

� �
The problem is that turns are generated by inter→inner

link and inner→inter link. As a result, deadlock occurs on
the 8 routers as shown in Fig. 5 b). Although the cycle can
be resolved by prohibiting some turns in inter-chip routing
or inner-chip routing, this approach will introduce a pair of
nodes which is difficult to communicate each other. So we
introduce two virtual channels (VC) and a simple rule to use
them as follows.

VC transition for Routing algorithm 2� �
1. Only if a packet is sent from a chip on (x,z) to
the other chip on (x+1,z+1) through inter-chip link, set
next VC to be 1.

2. Otherwise, next VC is the same as current VC.
� �
Theorem 3.2: Routing algorithm 2 using two VCs is
deadlock free

Proof 3.2: The VC control is the same as well-known
method of avoiding deadlock on a ring topology. For ex-
ample, Fig. 5 b) shows the possible deadlock, and it can be
regarded as ring topology with 8 routers. All of cyclic de-
pendencies on the Sm[X,Z, Xc,Yc] are generated on the ring
topology, and all of them contain the inter-chip link from a
chip (x,y) to the other chip (x+1,y+1). Therefore, deadlock
never occurs. �

4. Staggered Stacking

As an extension of the simple linear stacking, another stack-
ing method, called staggered stacking is proposed. The aim
of the stacking is to extend the system to x and y dimensions,
not only z dimension.

4.1 Single Core Chip Stacking

In order to extend chip-stack both to x and y dimensions, we
use four coils (two for TX and two for RX) to make a full
duplex link between stacked chip. A couple of full duplex
links are provided at four corners of a chip instead of the

2874
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 6 32-chip stacking with staggered stacking

Fig. 7 Cross cutting view of Fig. 6 b)

uni-direction links in Fig. 2. Since a chip can be a bridge of
four under-laying or overlaying chips with these coils, we
can extend the chip stack to both x and y directions.

Definition 4.1: Staggered Stacking
Chip is placed on a grid turning by 45 degrees. The grid
size is fixed so that four TCI links of a chip are just on the
under-laying chips and the remaining four TCIs are on the
over-laying chips. For layer k, if k is an even number starting
from 0, place the chip on the grid (i, j), where (i + j) is an
even number. If k is an odd number, place the chip on the
grid (i, j), where (i + j) is an odd number. �

For example, considering the case that stacks 32 chips
with the staggered stacking, first we stack eight chips for
layer 0 and eight chips for layer 1 in accordance with the
definition shown in Fig. 6 a). Then, in the same manner, we
place layers 2 and 3 as shown in Fig. 6 b). Note that layers 0
and 2 are the same layout, while layers 1 and 3 are also the
same.

Note that chips are stacked so that every layer is shifted
with the size of the coil to prevent vertical interference. Fig-
ure 7 is a cross-cutting view of the chip stack shown in
Fig. 6 b). By shifting chips, a coil can be placed just on coils
in the next lower and upper layers. This is the reason why
the grid tilts. Even if the number of layers is increased, the
vertical interference can be avoided in this manner. We call
this stacking method staggered stacking.

Staggered stacking generates more spaces between
chips than linear stacking. To avoid being physically unsta-
ble, spacer chips are sometimes needed. On the other hand,
space between chips can be advantageous for heat dissipa-
tion.

4.2 The Network Topology

The staggered stacking builds a network between all stacked
chips by using a chip as a bridge of other chips. First, for
simplicity, all TCI links are connected to a single router
which also connects to a core on the chip. That is, a chip

Fig. 8 Topology composed in Fig. 6 a). It is equivalent to the 4×4 mesh

is treated as a node with eight links for connecting to other
nodes. A connection topology between nodes composed by
the staggered structure is defined as follows.

Definition 4.2: Topology formed by staggered stacking
Network topology formed by the staggered stacking is rep-
resented as T[M,N,H] where M and N represent the number
of cores in two adjacent layers, and H is the number of lay-
ers stacked and must be an even number. A node is identified
with (x, y, z), where (x, y) is a coordinate of the grid where
the corresponding chip is placed, and z is the layer num-
ber placed. A node (x, y, z) is connected to (x + 1, y, z + 1),
(x, y+1, z+1), (x−1, y, z+1), (x, y−1, z+1), (x+1, y, z−1),
(x, y+ 1, z− 1), (x− 1, y, z− 1), and (x, y− 1, z− 1) when the
following conditions are satisfied: 0 ≤ x < N, 0 ≤ y < M,
and 0 ≤ z < H. �

Note that staggered stacking connects chips through ver-
tical TCI links, a chip and its neighbors have different z.
For example, topology shown in Fig. 6 b) is represented as
T[4,4,4]. The total number of chips becomes NMH/2.

The topology generated by the staggered stacking it-
self is the same as that of Topology B [12] and the offset
cube [13]. We will extend it to stack multi-core chips which
have multiple cores in a chip connected with each other.

4.3 The Network Topology for Multi-Core Chips

Like the case of linear stacking, we assume that cores in the
chip are connected with a 2D mesh. With this method, we
can extend the network for staggered stacking to multi-core
chips. Note that the node with eight links in T[M,N,H]
is distributed to corner nodes, in which each node has four
links, same as a common 2D mesh and the SBM from the
linear stacking.

Since the data transfer rate of a TCI link is 8Gbps [4],
and the bandwidth of a link can be enhanced by increasing
the number of data coils, we assume that inter and inner chip
links have the same bandwidth.

When such chips are stacked in the staggered stacking,
the network topology Tm[M,N,H,Mc,Nc] is defined.

Definition 4.3: Topology formed by staggered stacking
with multi-core chips
Assume that Mc × Nc nodes in a chip are connected with
2D mesh. Add two TCI links for off-chip connections to

NAKAHARA et al.: NOVEL CHIP STACKING METHODS TO EXTEND BOTH HORIZONTALLY AND VERTICALLY FOR MANY-CORE ARCHITECTURES
2875

Fig. 9 Topology of [2,2,2,2,2]

four corner nodes. These chips are placed in the stag-
gered stacking T[M,N,H], and then a network topology
Tm[M,N,H,Mc,Nc] is formed. �

For example, the topology shown in Fig. 9 is repre-
sented as Tm[2, 2, 2, 2, 2]. Since the stacking method is the
same as the staggered stacking, the topology composed by
chips is a 2×2 mesh. Here, TCI links are shown with doublet
lines, while other single lines show links inside the chip.

4.4 Routing

4.4.1 Routing for T[M,N,H]

First, the routing algorithm for T[M,N,H] is discussed and
then it is extended to Tm[M,N,H,Mc,Nc]. The positive-Z-
first algorithm proposed for the offset cube can be directly
applied to T[M,N,H]. However, since it is an adaptive
routing, it is difficult to be extended for Tm[M,N,H,Mc,Nc].
Here, we use a simpler fixed routing as a basis of the routing.

Although the DOR [11] can be applied on a 2D mesh
formed with T[M,N,H], xy-direction and z direction needs
to be moved simultaneously to z direction. Thus, we must
select two routing methods in accordance with the position
of the source node to the destination node.

Let (xcur, ycur, zcur) be the source node, and (xdst, ydst,
zdst) be the destination node. Here, we define the absolute
distance between the current node and the destination node
as dx = |xcur − xdst|, dy = |ycur − ydst|, and dz = |zcur − zdst|.
The number of hops for routing in xy-axes is expressed as
dx + dy, and that for z-axis is expressed as dz. The routing
method is selected on the basis of the relationship between
the dx + dy and dz as follows.

• dx + dy ≥ dz
In this case, z coordinate reaches zdst before (x, y) be-
comes the destination (xdst, ydst) with the DOR. For ex-
ample, assume that the chip (0,0,0) sends a packet to
(3,3,2) in T[4,4,4] topology. As the routing is basi-
cally done with the DOR, first, the packet goes in x
direction to the xdst. Since a hop in x direction also
moves in z direction, we select the direction in which
zcur moves closer to zdst. That is, the packet is trans-
ferred in the order of (0,0,0)-(1,0,1)-(2,0,2). Now, z co-
ordinate reaches zdst while (x, y) coordinates have not.
In this case, we send the packet to z coordinate so that it

is not far from the destination while the DOR is applied
to xy-direction. That is, if zcur equals zdst, z coordinate
is just incremented except when zcur equals H − 1. In
this case, since the upper neighbor does not exist, z co-
ordinate is decremented. Otherwise, the packet is sent
to z direction with the zdst. In accordance with the rules
above, the packet is forwarded in the order of (2,0,2)-
(3,0,3). Now, since x coordinate is the same as the des-
tination, the packet is sent by the same rules to y direc-
tion. Thus, it reaches the destination on the remaining
path (3,0,3)-(3,1,2)-(3,2,3)-(3,3,2).
• dx + dy < dz

In this case, (x, y) direction reaches (xdst, ydst) before
z coordinate reaches zdst. For example, assume the
case of sending a packet from (0,6,0) to (1,6,7) in the
T[8,8,8]. Similar to the case of dx+dy ≥ dz, routing for
xy direction uses the DOR, and routing on z axis makes
zcur move closer to the zdst. In the example, the packet
goes on the path (0,6,0)-(1,6,1), and x coordinates is
equal to xcur even though z coordinate has not arrived
yet. Then, in accordance with the DOR the packet is
sent to y direction on the basis of the relationship be-
tween the dy and dz. When dy > dz, the packet is sent
to y direction to ycur + 1. When dy < dz, the packet
is sent to ycur − 1. When dy = dz, the packet is sent
to closer to ydst. In this example, the remaining routing
path from (1,6,1) to (1,6,7) is shown in Fig. 10.

The above routing algorithm is represented as Routing
algorithm 3. Here, let (xnext, ynext, znext) be the coordinates of
the next chip determined by the algorithm.

Routing algorithm 3� �
if (dx + dy < dz) {

(xnext, ynext) = DOR to (xdst, ydst)

if (zcur � zdst) making znext move close to zdst

else znext is zcur + 1
} else {

if (xcur � xdst)
making xnext move close to xdst

else {
if (dy > dz) ynext is ycur + 1
else if (dy < dz) ynext is ycur−1

else making ynext move close to ydst

}
making znext move close to zdst

}
� �

Proof of deadlock-freedom of Routing algorithm 3 is
divided into two parts. First, it is shown that all (x, y, z) val-
ues must not change simultaneously. Second, the movement
of packets is proved to be deadlock free on XY-plane, XZ-
plane, and YZ-plane.

Lemma 4.1: When sending a packet to its neighboring
chip, all the (x,y,z) values never change simultaneously

2876
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 10 Routing on YZ-plane in the case of (dx + dy) < dz

Proof 4.1: A chip at (x, y, z) coordinates is adjacent to (x+
1, y, z + 1), (x, y + 1, z + 1), (x − 1, y, z + 1), (x, y − 1, z + 1),
(x+1, y, z−1), (x, y+1, z−1), (x−1, y, z−1), and (x, y−1, z−1).
All of them have the same value as (x, y, z) at one axis. Thus,
all the (x, y, z) values never change simultaneously. �

Lemma 4.2: Routing algorithm 3 is deadlock free on
XY-plane, XZ-plane, and YZ-plane.

Proof 4.2: Proofs are divided into three parts for each
planes.

1. XY-plane
Turns on the XY-plane are shown in Fig. 11 a). As the
routing on the xy-axis is the DOR, two turns ((x+1, y)−
(x+1, y+1)− (x, y+1) and (x, y+1)− (x, y)− (x+1, y))
are prohibited. Cycles are, thus, never formed in this
plane.

2. XZ-plane
Turns on the XZ-plane are shown in Fig. 11 b). Once
a packet goes to the x ± 1 direction, it never changes
its direction, that is, a packet never goes to x ∓ 1 the
direction. That is, turns ((x+1, z)−(x, z+1)−(x+1, z+2)
and (x, z+2)−(x−1, z+1)−(x, z)) are prohibited. Cycles
are, thus, never formed in this plane.

3. YZ-plane
Turns on the YZ-plane are shown in Figs. 11 c) and
11 d). According to algorithm 3, when (dx + dy) < dz,
the next direction is determined by the relationship be-
tween dy and dz. Here a turn (y, z)−(y+1, z+1)−(y, z+
2) in Fig. 11 c) and a turn (y, z+2)− (y+1, z+1)− (y, z)
in Fig. 11 d) are prohibited except if y equals 0. If
y doesn’t equal 0, since these prohibited turns are
known to be negative-first routing [14], cycles are never
formed in this case. If y equals 0, there is no chip at the
(y − 1, z + 1), thus no cycles are formed. �

Theorem 4.3: Routing algorithm 3 is deadlock free.

Proof 4.3: From Lemma 3.1, Routing algorithm 3 is di-
vided into three parts each of which is on three planes, and
routing on each plane is never used twice. From Lemma
3.2, deadlock never occurs in each plane. Thus, the Routing
algorithm 3 is deadlock free. �

Fig. 11 Turns on each plane

4.4.2 Extension of the Routing

The Routing algorithm 3 can be directly applied for the chip-
to-chip communication. However, since an inter-chip link is
distributed to nodes, to use another inter-chip link, the inner-
chip routing is needed. For inner-chip routing, we can use
the common DOR. Here, let (xccur, yccur) and (xcdst, ycdst) be
the coordinates of the current node inside a chip and destina-
tion node inside a chip. (xcnext, ycnext) shows the coordinates
of the next target node inside a chip. Also, let (xctci, yctci) be
the coordinates of the node connected with the TCI in the
current chip (xcur, ycur, zcur) and the next chip (xnext, ynext,
znext). Routing algorithm for multi-core chips is shown in
Routing algorithm 4.

Routing algorithm 4� �
((xnext,ynext,znext) is calculated by Routing algorithm 1)
(xctci, yctci) is determined by the (xnext,ynext,znext)

if ((xcur, ycur, zcur) = (xdst, ydst, zdst)) {
(xnext,ynext,znext) = (xcur,ycur,zcur)
(xcnext, ycnext) = DOR to (xcdst, ycdst)

} else if ((xccur, yccur) � (xctci, yctci)) {
(xnext,ynext,znext) = (xcur,ycur,zcur)
(xcnext, ycnext) = DOR to (xctci, yctci)

} else {
// (xnext,ynext,znext) are not changed.
(xcnext, ycnext) is determined automatically.

}
� �
A problem of routing in Tm[M,N,H,Mc,Nc] is deadlock
possibility generated by the combining inner-chip routing
and inter-chip routing. An example of cyclic dependency in
Tm[2,2,2,2,2] is shown in Fig. 9. In the same manner as lin-
ear stacking with multi-core chips, we introduce two virtual
channels and a simple rule to use them. Since a cycle is only
generated in the XY-plane including four sides of a rectan-
gle consisting of inter-chip TCI links, we can resolve it by

NAKAHARA et al.: NOVEL CHIP STACKING METHODS TO EXTEND BOTH HORIZONTALLY AND VERTICALLY FOR MANY-CORE ARCHITECTURES
2877

changing the virtual channel on either side. We selected a
simple VC transition for Routing algorithm 4 which changes
VC when x coordinate is changed first.

VC transition for Routing algorithm 4� �
1. Only if xcur is not xnext, set next VC to be 1.

2. Otherwise, next VC is the same as current VC.
� �
Theorem 4.4: Routing algorithm 4 with the VC transi-
tion is deadlock free

Proof 4.4: Inter-chip routing uses Routing algorithm 3, so
it is deadlock free. Inner-chip routing uses the DOR, so it is
also deadlock free. The cycle is only generated the combi-
nation of inner-chip routing and inter-chip routing, thus, it is
only generated in XY-plane since inner-chip routing is only
done in the XY-plane. A generated cycle includes at least a
link for x direction, so by changing the VC at the link, the
cycle is removed. �

5. Evaluation

5.1 Evaluation of the Case of Single Core

We compare the network topology formed with the stag-
gered stacking, linear stacking, and common 2D and 3D
mesh. Booksim [15] is modified to treat the user defined
topology, and used to evaluate the average latency and
throughput. Parameters of the network simulation are shown
in Table 1. Here, the speed of inner-chip link is assumed to
be the same as that of TCI, and the uniform traffic is used.
DOR is used for 2D and 3D mesh, Routing algorithm 1 is for
topology S, and Routing algorithm 3 is for topology T, re-
spectively. Fig. 12 shows network simulation results with 64
cores. Although the linear stacking denoted as S[11,11] has
almost the same latency as the mesh, its bandwidth is worse
because of the congestion on the stairway boundaries. On
the other hand, the staggered stacking denoted as T[4,4,8]
improves the latency by 28.8% compared to the mesh. In
the staggered stacking, the packet can move both to x and
y directions and z direction at the same time. As a result,
the latency of T[4,4,8] is almost the same as that of the 4×4
mesh. The throughput of 3D mesh is greater than that of
T[4,4,8] as the average degree of 3D mesh is greater than
that of T[4,4,8].

Figure 13 shows network simulation results with 256
cores. The difference becomes larger as the size becomes

Table 1 Parameters for the network simulation

Number of simulation cycles 100000
Number of VCs 4

Buffer size of each VC 8
Number of the pipeline stage 3

Traffic uniform
VC allocator Round robin

internal speedup 1.0

large. T[8,8,8] improves the latency compared to the 2D
mesh by 42.9%, and the throughput by 53.3% compared to
the 2D mesh. In addition, T[8,8,8] improves the throughput
of 3D mesh as the average degree of T[8,8,8] is greater than
that of 3D mesh. These results are not surprising, since a
node of T[M,N,H] has eight links, while 2D mesh and the
linear stacking uses node with four links. By introducing
multi-core chips connected with 2D mesh, we can reduce
links of each node to four. Thus, the fair comparison will be
done later.

Next, we evaluate the execution time of NAS Parallel
Benchmark (NPB) [16] using the GEM5 [17], a full system
CMP simulator. GEM5 can deal with both topology and
routing defined by the user, but the routing is difficult to
tailor. We modified GEM5 to deal with the routing of stag-
gered stacking. Parameters for the full system simulation
are shown in Table 2.

Fig. 12 Network simulation result with 64 cores

Fig. 13 Network simulation result with 256 cores

Table 2 Parameters for the full system simulation

Processor X86 64
L1 I/D cache size 64KB
L1 cache latency 1 cycle

L2 cache bank size 256KB
L2 cache latency 6 cycles

Memory size 4GB
Memory latency 160 ± 2 cycles
Router pipeline 3 cycles

Buffer size 5 flits per VC
Flit size 128 bit

Coherency Protocol MOESI directory
Number of VCs 4

VC allocator Round robin

2878
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Fig. 14 Application execution time (64 cores)

Fig. 15 The performance with various internal speed

Figure 14 shows full system simulation results with
64 routers. In this evaluation, a single CPU is allocated
on the chip (0,0), (4,0), (10,0), (4,0), (4,10), (10,0), (10,4),
(10,10) on the S[11,11], and (0,0,0), (3,0,1), (0,3,1), (3,3,0),
(0,0,6), (3,0,7), (0,3,7), (3,3,6) on the T[4,4,8] to make the
best use of the inter-chip network. L2 cache is allocated on
the other nodes. We add the evaluation the 3D Mesh with
four stacking of 4×4 mesh chips with TCI represented as 3D
Mesh(4,4,4) in order to compare the staggered stacking and
the stacking in only z direction. The application execution
time is normalized to that of the mesh. The linear stack-
ing denoted as S[11,11] reduces execution time by 3.0% on
average compared to 2D mesh. Also, the staggered stack-
ing denoted as T[4,4,8] reduces execution time by 5.6% on
average compared to the 2D mesh, and achieves almost the
same execution time as the 3D mesh.

5.2 Effect of TCI Bandwidth

Although the frequency clock of TCI is from 1GHz to 8GHz
as shown in Sect. 2, there is possibility that inner-chip links
are faster than inter-chip links. So, we evaluated network
performance with serious internal speedup parameters to
estimate the effect of TCI bandwidth. Here the internal
speedup parameter shows the ratio of the speed of the TCI.
In this evaluation, we assumed that all of inner-chip links
have enough bandwidth, thus, clock frequency of the router
is limited by inter-chip links. Figure 15 shows the network
simulation results with various internal speedup parameters
in BOOKSIM. The broken line shows the performance of
the 2D mesh and 3D mesh with internal speedup 1.0. Injec-
tion rate is fixed to be 0.05, and all of other parameters are
the same as the Table 1. When internal speedup is 0.5, that
is, bandwidth of TCI is a half of inner-chip link, latency of

Fig. 16 Network simulation result with Sm and Tm

the T becomes larger than that of 2D and 3D mesh. Note that
bandwidth of TCI can be widen by increasing the number of
coils. For instance, if there are two TX and RX coils for one
link, the bandwidth can be twice that of the communication
with a single data coil.

5.3 Network Simulation for the Case of Using Multi-
Cores

As mentioned in Sect. 5.1, the evaluation of the case of
single core is not fair because the degree of a router of
T[M,N,H] is different from that of the mesh. However, a
router in the Tm[M,N,H,Mc,Nc] has at most 5 links which
is same to a router in the mesh. Figure 16 shows network
simulation result with 256 cores. Booksim is used again for
simulation. Routing algorithm 2 is used for Sm, and Routing
algorithm 4 is for Tm.

Since Routing algorithm 2 needs to use two VCs to
remove cycle, the number of VCs becomes two in this
evaluation. Other parameters are the same as Table 1.
Unlike the case of a single core, the average degree of
Tm[4,4,8,2,2] is smaller than 16×16 mesh. The through-
put of the Tm[4,4,8,2,2] is, thus, lower than that of 16×16
mesh. However, Tm[4,4,8,2,2] improves the latency by
13.8% compared to the mesh when traffic load is light. Also,
the latency and throughput of 3D mesh are better than those
of Tm. On the other hand, as Tm is consisting of many tiny
chips, it is feasible to form a many core architecture with
much lower cost as shown in Sect. 5.5.

5.4 Full System Simulation

The execution time of NPB with multi-core systems with
Sm[11,11,2,2] and Tm[4,4,8,2,2] is shown in Fig. 17. CPU
allocation of Sm[11,11,2,2] and Tm[4,4,8,2,2] is the same
as that of S[11,11] and T[8,8,4], respectively. Each chip
has only a CPU attached to the most distant router from
the router connected to TCI. Other routers are connected to
L2 caches. Same as the simulation in the previous section,
a GEM5 full-system simulator is used with the parameters
shown in Table 2. The execution results are normalized to
the ones with the 16×16 mesh. The arrangement of CPU
and L2 cache is same to the simulation with 64 routers in
Sect. 5.1. In all application programs, the staggered stack-

NAKAHARA et al.: NOVEL CHIP STACKING METHODS TO EXTEND BOTH HORIZONTALLY AND VERTICALLY FOR MANY-CORE ARCHITECTURES
2879

Fig. 17 Application execution time (256 cores)

Table 3 Single chip area evaluation (256 cores)

Topology Number of chips Area per chip

16 × 16mesh 1 768mm2

Tm[4,4,8,2,2] 64 15.645mm2

ing outperforms the 16×16 2D-mesh by 5.4%.

5.5 Chip Area and Cost

Considering the area used for TCI, the total semiconductor
area for the staggered stacking is larger than that of the 2D
mesh with the same number of cores. However, the cost of
the chip is relational to more than the third power, and the
system consisting of a small chip-stack can cost less than a
large chip. Here, the area and cost of the staggered stacking
are evaluated.

First, the area of TCI is evaluated. The coil for the TCI
uses only two metal layers, and digital circuits can be im-
plemented in the area of the coil. Thus, the footprint of the
coil is not directly a loss of the chip area. However, here,
we conservatively assume that the total area of coil is only
used for the circuits for the TCI. The size of the coil is deter-
mined with the vertical distance to the opposite coil. Here,
we assume that the chip is 30µm thick and 7.5µm is needed
for glue. In this case, 8Gbps throughput is achieved with
a 225µm × 225µm coil. To achieve the same throughput
as the inner chip network, four coils for receiving data and
four coils for sending data and a coil for the data transfer
clock are needed. In staggered stacking, eight TCI links are
needed, and thus, the total area of inter-chip communication
becomes 225µm × 225µm × 72=3.645mm2.

We assume a system with 256 cores each of which is
implemented in an a × b size tile. The total area is repre-
sented by 256ab. On the other hand, in the case of staggered
stacking Tm[4,4,8,2,2], a chip requires 4ab+2.645mm2, so
the total silicon area required becomes 256ab+233.28mm2.
That is 233.28mm2 larger than the case of a single chip.
From the Ref. [18], we assume the area of tile to be
a=1.5mm and b=2.0mm. The estimated chip area with the
above assumption is shown in Table 3. The cost of a chip
is relational to more than the third power [19]. Thus, if we
directly apply this formula, the semiconductor cost of stag-
gered stacking is less than 1/2000 that of a large single chip.

Considering the cost for stacking which is difficult to esti-
mate now, this shows the possibility to build a large system
economically by using staggered stacking method.

6. Conclusion

A novel chip stacking methods called linear stacking and
staggered stacking are proposed to economically form a
large multi-core system from a number of small chips. By
using inductive coupling TCI, a large number of chips can
be stacked in x, y, and z directions by keeping the height
a certain number of chips. The network with 256 nodes
formed by the proposed stacking improves the latency of 2D
mesh by 13.8% and the performance of NAS Parallel Bench-
marks by 5.4% on average compared to 2D mesh. The esti-
mation revealed that the allocation of the chip greatly influ-
ences the performance. Investigating an allocation method
for building large-scale CMPs by using the chip stacking is
our future work.

Acknowledgments

This work was partially supported by JSPS KAKENHI S
Grant Number 25220002.

References

[1] J. Burns, L. McIlrath, C. Keast, C. Lewis, A. Loomis, K. Warner,
and P. Wyatt, “Three-dimensional integrated circuits for low-power,
high-bandwidth systems on a chip,” Proceedings of the IEEE Inter-
national Solid-State Circuits Conference, pp.268–269, Feb. 2001.

[2] H. Amano, “Castle of Chips: A New Chip Stacking Structure
with Wireless Inductive Coupling for Large Scale 3-D Multicore
Systems,” Proceedings of 15th International Conference on Net-
work-Based Information Systems, pp.820–825, 2012.

[3] H. Nakahara, T. Ozaki, H. Matsutani, M. Koibuchi, and H. Amano,
“Expandable chip stacking method for many-core architectures con-
sisting of tiny chips,” 2015 IEEE 9th International Symposium
on Embedded Multicore/Many-core Systems-on-Chip (MCSoC),
pp.41–48, 2015.

[4] Y. Take, H. Matsutani, D. Sasaki, M. Koibuch, T. Kuroda, and
H. Amano, “3D NoC with Inductive-Coupling Links for Build-
ing-Block SiPs,” IEEE Trans. Comput., vol.63, no.3, pp.748–763,
March 2014.

[5] K. Niitsu, Y. Shimazaki, Y. Sugimori, Y. Kohama, K. Kasuga, I.
Nonomura, M. Saen, S. Komatsu, K. Osada, N. Irie, T. Hattori, A.
Hasegawa, and T. Kuroda, “An inductive-coupling link for 3d in-
tegration of a 90nm cmos processor and a 65nm cmos sram,” Pro-
ceedings of the IEEE International Solid-State Circuits Conference,
pp.480–481,481a, Feb. 2009.

[6] Y. Kohama, Y. Sugimori, S. Saito, Y. Hasegawa, T. Sano, K. Kasuga,
Y. Yoshida, K. Niitsu, N. Miura, H. Amano, and T. Kuroda, “A scal-
able 3D processor by homogeneous chip stacking with inductive-
coupling link,” Proceedings of the VLSI Circuits Symposium,
pp.94–95, June 2009.

[7] N. Miura, Y. Koizumi, Y. Take, H. Matsutani, T. Kuroda, H.
Amano, R. Sakamoto, M. Namiki, K. Usami, M. Kondo, and H.
Nakamura, “A Scalable 3D Heterogeneous Multicore with an Induc-
tive ThruChip Interface,” IEEE Micro, vol.33, no.6, pp.6–15, 2013.

[8] N. Miura, H. Ishikuro, T. Sakurai, and T. Kuroda, “A 0.14pJ/b
Inductive-Coupling Inter-Chip Data Transceiver with Digitally-
Controlled Precise Pulse Shaping,” Proceedings of the Interna-
tional Solid-State Circuits Conference (ISSCC’07), pp.358–359,

http://dx.doi.org/10.1109/isscc.2001.912632
http://dx.doi.org/10.1109/nbis.2012.82
http://dx.doi.org/10.1109/mcsoc.2015.26
http://dx.doi.org/10.1109/tc.2012.249
http://dx.doi.org/10.1109/isscc.2009.4977517
http://dx.doi.org/10.1109/mm.2013.112
http://dx.doi.org/10.1109/isscc.2007.373442

2880
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.12 DECEMBER 2016

Feb. 2007.
[9] D.U. Lee, K.W. Kim, K.W. Kim, K.S. Lee, S.J. Byeon, J.H. Kim,

J.H. Cho, J. Lee, and J.H. Chun, “A 1.2 v 8 gb 8-channel 128 gb/s
high-bandwidth memory (hbm) stacked dram with effective i/o test
circuits,” IEEE J. Solid-State Circuits, vol.50, no.1, pp.191–203,
Jan. 2015.

[10] M. Saito, Y. Yoshida, N. Miura, H. Ishikuro, and T. Kuroda, “47%
power reduction and 91% area reduction in inductive-coupling pro-
grammable bus for nand flash memory stacking,” Proc. IEEE Trans.
Circuits Syst., vol.57, no.9, pp.2269–2278, Sept. 2010.

[11] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Per-
formance evaluation and design trade-offs for network-on-chip
interconnect architectures,” IEEE Trans. Comput., vol.54, no.8,
pp.1025–1040, Aug. 2005.

[12] J. Nguyen, J. Pezarts, G. Pratt, and S. Ward, “Three-Dimen-
sional Network Topologies,” Parallel Computer and Communication
(K.Bolding and L. Synder, eds), vol.853, pp.101–115, 1994.

[13] W.S. Lacy, J.L. Cruz-Rivera, and D.S. Wills, “The Offset Cube:
A Three-Dimensional Multicomputer Network Topology Using
Through-Wafer Optics,” IEEE Trans. Parallel Distrib. Syst., vol.9,
no.9, pp.893–908, 1998.

[14] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive Routing,”
Proceedings of 19th International Symposium on Computer Archi-
tecture, pp.278–287, 1992.

[15] W.J. Dally and B.P. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann, 2004.

[16] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performane,” NAS Technical Re-
port NAS-99-011, Oct. 1999.

[17] N. Binkert, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M.D. Hill, D.A. Wood, B. Beckmann, G. Black, S.K. Reinhardt, A.
Saidi, A. Basu, J. Hestness, D.R. Hower, and T. Krishna, “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol.39,
no.2, pp.1–7, May 2011.

[18] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts,
Y. Hoskote, N. Borkar, and S. Borkar, “An 80-tile sub-100-w ter-
aflops processor in 65-nm cmos,” IEEE Jounal of Solid-State Cir-
cuits, vol.43, no.1, pp.29–41, Jan. 2008.

[19] J.L. Hennessy and D.A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, Morgan Kaufmann, 2011.

Hiroshi Nakahara received B.S. degree
from Keio University, Yokohama, Japan, in
2015. He is a master student in Keio university
in the presence.

Tomoya Ozaki received B.S., M.E. de-
gree from Keio University, Yokohama, Japan, in
2014 and 2016 respectively.

Hiroki Matsutani received the B.A., M.E.,
and Ph.D. degrees from Keio University in
2004, 2006, and 2008, respectively. He is cur-
rently an assistant professor in the Department
of Information and Computer Science, Keio
University. From 2009 to 2011, he was a re-
search fellow in the Graduate School of Infor-
mation Science and Technology, The University
of Tokyo, and awarded a Research Fellowship of
the Japan Society for the Promotion of Science.

Michihiro Koibuchi received the B.E.,
M.E., and Ph.D. degrees from Keio University,
Yokohama, Japan, in 2000, 2002 and 2003, re-
spectively. Currently, he is an associate profes-
sor in the Information Systems Architecture Re-
search Division, National Institute of Informat-
ics and the Gradua te University of Advanced
Studies, Tokyo, Japan. His research interests in-
clude the area of high-performance computing
and interconnection networks. He is a member
of the IEEE and a senior member of IEICE and

IPSJ.

Hideharu Amano received Ph.D. degree
from the Department of Electronic Engineering,
Keio University, Japan in 1986. He is currently
a professor in the Department of Information
and Computer Science, Keio University. His re-
search interests include the area of parallel ar-
chitectures and reconfigurable systems.

http://dx.doi.org/10.1109/isscc.2007.373442
http://dx.doi.org/10.1109/jssc.2014.2360379
http://dx.doi.org/10.1109/tcsi.2010.2071670
http://dx.doi.org/10.1109/tc.2005.134
http://dx.doi.org/10.1007/3-540-58429-3_31
http://dx.doi.org/10.1109/71.722222
http://dx.doi.org/10.1109/isca.1992.753324
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/jssc.2007.910957

